WILLIAM STALLINGS

B ——) -

Designing for Performance

Eleventh Edition

Computer Organization and Architecture

Designing for Performance

Eleventh Edition

Computer Organization and Architecture

Designing for Performance
Eleventh Edition

William Stallings

@ Pearson

330 Hudson Street, New York, NY 10013

Senior Vice President Courseware Portfolio Management: Marcia J. Horton

Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge
Executive Portfolio Manager: Tracy Johnson

Portfolio Management Assistant: Meghan Jacoby

Managing Content Producer: Scott Disanno

Content Producer: Amanda Brands

R&P Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications, Inc. (LSC): Maura Zaldivar-Garcia
Inventory Manager: Bruce Boundy

Field Marketing Manager: Demetrius Hall

Product Marketing Manager: Yvonne Vannatta

Marketing Assistant: Jon Bryant

Cover Designer: Black Horse Designs

Cover Art: Shuttersstock/Shimon Bar

Full-Service Project Management: Kabilan Selvakumar, SPi Global

Printer/Binder: LSC Communications, Inc.

Copyright © 2019, 2016, 2013, 2010, 2006, 2003, 2000 by Pearson Education, Inc., Hoboken,
New Jersey 07030.

All rights reserved. Manufactured in the United States of America. This publication is protected by
copyright and permissions should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions department, please
visit http://www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages with, or arising out of, the
furnishing, performance, or use of these programs.

http://www.pearsoned.com/permissions/

Library of Congress Cataloging-in-Publication Data
Names: Stallings, William, author.
Title: Computer organization and architecture : designing for performance / William Stallings.

Description: Eleventh edition. | Hoboken : Pearson Education, 2019. | Includes bibliographical
references and index.

Identifiers: LCCN 0134997190 | ISBN 9780134997193
Subjects: LCSH: Computer organization. | Computer architecture.

Classification: LCC QA76.9.C643 S73 2018 | DDC 004.2/2—dc23 LC record available at
https://lccn.loc.gov/

118

@ Pearson

ISBN-10: 0-13-499719-0

ISBN-13: 978-0-13-499719-3

https://lccn.loc.gov/

To Tricia my loving wife, the kindest and gentlest person

Contents

Preface xiii
About the Author xxii
Chapter 1 Basic Concepts and Computer Evolution 1
1.1 Organization and Architecture 2
1.2 Structure and Function 3
1.3 The IAS Computer 11
1.4 Gates, Memory Cells, Chips, and Multichip Modules 17
1.5 The Evolution of the Intel x86 Architecture 23
1.6 Embedded Systems 24
1.7 ARM Architecture 29
1.8 Key Terms, Review Questions, and Problems 34
Chapter 2 Performance Concepts 37
2.1 Designing for Performance 38
2.2 Multicore, MICs, and GPGPUs 44
2.3 Two Laws that Provide Insight: Ahmdahl’s Law and Little’s Law 45
2.4 Basic Measures of Computer Performance 48
2.5 Calculating the Mean 51
2.6 Benchmarks and SPEC 59
2.7 Key Terms, Review Questions, and Problems 66
Chapter 3 A Top-Level View of Computer Function and Interconnection 72
3.1 Computer Components 73
3.2 Computer Function 75
3.3 Interconnection Structures 90
3.4 Bus Interconnection 92
3.5 Point-to-Point Interconnect 94
3.6 PCI Express 99

3.7 Key Terms, Review Questions, and Problems 107

Chapter 4 The Memory Hierarchy: Locality and Performance 112
4.1 Principle of Locality 113
4.2 Characteristics of Memory Systems 118
4.3 The Memory Hierarchy 121

4.4 Performance Modeling of a Multilevel Memory Hierarchy 128

4.5 Key Terms, Review Questions, and Problems 135

Chapter 5 Cache Memory 138
5.1 Cache Memory Principles 139

5.2 Elements of Cache Design 143

5.3 Intel x86 Cache Organization 165

5.4 The IBM z13 Cache Organization 168

5.5 Cache Performance Models 169

5.6 Key Terms, Review Questions, and Problems 173
Chapter 6 Internal Memory 177

6.1 Semiconductor Main Memory 178

6.2 Error Correction 187

6.3 DDR DRAM 192

6.4 eDRAM 197

6.5 Flash Memory 199

6.6 Newer Nonvolatile Solid-State Memory Technologies 202

6.7 Key Terms, Review Questions, and Problems 205
Chapter 7 External Memory 210

7.1 Magnetic Disk 211

7.2 RAID 221

7.3 Solid State Drives 231

7.4 Optical Memory 234

7.5 Magnetic Tape 240

7.6 Key Terms, Review Questions, and Problems 242
Chapter 8 Input/Output 245

8.1 External Devices 247

8.2 1/0 Modules 249

8.3 Programmed 1/0 252

8.4 Interrupt-Driven 1/O 256

8.5 Direct Memory Access 265

8.6 Direct Cache Access 271

8.7 1/0 Channels and Processors 278

8.8 External Interconnection Standards 280

8.9 IBM 213 1/O Structure 283

8.10 Key Terms, Review Questions, and Problems 287

Chapter 9 Operating System Support 291
9.1 Operating System Overview 292

9.2 Scheduling 303

9.3 Memory Management 309

9.4 Intel x86 Memory Management 320

9.5 ARM Memory Management 325

9.6 Key Terms, Review Questions, and Problems 330
Chapter 10 Number Systems 334

10.1 The Decimal System 335

10.2 Positional Number Systems 336

10.3 The Binary System 337

10.4 Converting Between Binary and Decimal 337

10.5 Hexadecimal Notation 340

10.6 Key Terms and Problems 342
Chapter 11 Computer Arithmetic 344

11.1 The Arithmetic and Logic Unit 345

11.2 Integer Representation 346

11.3 Integer Arithmetic 351

11.4 Floating-Point Representation 366

11.5 Floating-Point Arithmetic 374

11.6 Key Terms, Review Questions, and Problems 383
Chapter 12 Digital Logic 388

12.1 Boolean Algebra 389

12.2 Gates 394

12.3 Combinational Circuits 396

12.4 Sequential Circuits 414

12.5 Programmable Logic Devices 423

12.6 Key Terms and Problems 428

Chapter 13 Instruction Sets: Characteristics and Functions 432
13.1 Machine Instruction Characteristics 433
13.2 Types of Operands 440
13.3 Intel x86 and ARM Data Types 442
13.4 Types of Operations 445
13.5 Intel x86 and ARM Operation Types 458

13.6 Key Terms, Review Questions, and Problems 466
Appendix 13A Little-, Big-, and Bi-Endian 472

Chapter 14 Instruction Sets: Addressing Modes and Formats 476

14.1 Addressing Modes 477

14.2 x86 and ARM Addressing Modes 483

14.3 Instruction Formats 489

14.4 x86 and ARM Instruction Formats 497

14.5 Key Terms, Review Questions, and Problems 502
Chapter 15 Assembly Language and Related Topics 506

15.1 Assembly Language Concepts 507

15.2 Motivation for Assembly Language Programming 510

15.3 Assembly Language Elements 512

15.4 Examples 518

15.5 Types of Assemblers 523

15.6 Assemblers 523

15.7 Loading and Linking 526

15.8 Key Terms, Review Questions, and Problems 533
Chapter 16 Processor Structure and Function 537

16.1 Processor Organization 538

16.2 Register Organization 539

16.3 Instruction Cycle 545

16.4 Instruction Pipelining 548

16.5 Processor Organization for Pipelining 566

16.6 The x86 Processor Family 568

16.7 The ARM Processor 575

16.8 Key Terms, Review Questions, and Problems 581
Chapter 17 Reduced Instruction Set Computers 586

17.1 Instruction Execution Characteristics 588

17.2 The Use of a Large Register File 593

17.3 Compiler-Based Register Optimization 598

17.4 Reduced Instruction Set Architecture 600

17.5 RISC Pipelining 606

17.6 MIPS R4000 610

17.7 SPARC 616

17.8 Processor Organization for Pipelining 621

17.9 CISC, RISC, and Contemporary Systems 623

17.10 Key Terms, Review Questions, and Problems 625

Chapter 18 Instruction-Level Parallelism and Superscalar Processors 629

18.1 Overview 630

18.2 Design Issues 637

18.3 Intel Core Microarchitecture 646
18.4 ARM Cortex-A8 652

18.5 ARM Cortex-M3 658

18.6 Key Terms, Review Questions, and Problems 663
Chapter 19 Control Unit Operation and Microprogrammed Control 669

19.1 Micro-operations 670

19.2 Control of the Processor 676

19.3 Hardwired Implementation 686

19.4 Microprogrammed Control 689

19.5 Key Terms, Review Questions, and Problems 698
Chapter 20 Parallel Processing 701

20.1 Multiple Processors Organization 703

20.2 Symmetric Multiprocessors 705

20.3 Cache Coherence and the MESI Protocol 709

20.4 Multithreading and Chip Multiprocessors 718

20.5 Clusters 723

20.6 Nonuniform Memory Access 726

20.7 Key Terms, Review Questions, and Problems 730
Chapter 21 Multicore Computers 736

21.1 Hardware Performance Issues 737

21.2 Software Performance Issues 740

21.3 Multicore Organization 745

21.4 Heterogeneous Multicore Organization 747

21.5 Intel Core i7-5960X 756

21.6 ARM Cortex-A15 MPCore 757

21.7 IBM z13 Mainframe 762

21.8 Key Terms, Review Questions, and Problems 765

Appendix A System Buses 768
A.1 Bus Structure 769
A.2 Multiple-Bus Hierarchies 770
A.3 Elements of Bus Design 772

Appendix B Victim Cache Strategies 777
B.1 Victim Cache 778

B.2 Selective Victim Cache 780

Appendix C Interleaved Memory 782
Appendix D The International Reference Alphabet 785

Appendix E Stacks 788
E.1 Stacks 789

E.2 Stack Implementation 790

E.3 Expression Evaluation 791
Appendix F Recursive Procedures 795

F.1 Recursion 796

F.2 Activation Tree Representation 797

F.3 Stack Implementation 803

F.4 Recursion and Iteration 804
Appendix G Additional Instruction Pipeline Topics 807

G.1 Pipeline Reservation Tables 808

G.2 Reorder Buffers 815

G.3 Tomasulo’s Algorithm 818

G.4 Scoreboarding 822

Glossary 826
References 835
Supplemental Materials
Index 844

Preface

What's New in the Eleventh Edition

Since the tenth edition of this book was published, the field has seen continued innovations and
improvements. In this new edition, | try to capture these changes while maintaining a broad and
comprehensive coverage of the entire field. To begin this process of revision, the tenth edition of this
book was extensively reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clarified and tightened,
and illustrations have been improved.

Beyond these refinements to improve pedagogy and user-friendliness, there have been substantive
changes throughout the book. Roughly the same chapter organization has been retained, but much of
the material has been revised and new material has been added. The most noteworthy changes are
as follows:

e Multichip Modules: A new discussion of MCMs, which are now widely used, has been added to
Chapter 1.

e SPEC benchmarks: The treatment of SPEC in Chapter 2 has been updated to cover the new
SPEC CPU2017 benchmark suite.

e Memory hierarchy: A new chapter on memory hierarchy expands on material that was in the
cache memory chapter, plus adds new material. The new Chapter 4 includes:
—Updated and expanded coverage of the principle of locality

—Updated and expanded coverage of the memory hierarchy
—A new treatment of performance modeling of data access in a memory hierarchy

e Cache memory: The cache memory chapter has been updated and revised. Chapter 5 now
includes:
—Revised and expanded treatment of logical cache organization, including new figures, to improve
clarity

—New coverage of content-addressable memory
—New coverage of write allocate and no write allocate policies
—A new section on cache performance modeling.

e Embedded DRAM: Chapter 6 on internal memory now includes a section on the increasingly
popular eDRAM.

e Advanced Format 4k sector hard drives: Chapter 7 on external memory now includes
discussion of the now widely used 4k sector hard drive format.

e Boolean algebra: The discussion on Boolean algebra in Chapter 12 has been expanded with new
text, figures, and tables, to enhance understanding.

e Assembly language: The treatment of assembly language has been expanded to a full chapter,
with more detail and more examples.

e Pipeline organization: The discussion on pipeline organization has been substantially expanded
with new text and figures. The material is in new sections in Chapters 16 (Processor Structure and
Function), 17 (RISC), and 18 (Superscalar).

e Cache coherence: The discussion of the MESI cache coherence protocol in Chapter 20 has been
expanded with new text and figures.

Support of ACM/IEEE Computer Science and Computer Engineering Curricula

The book is intended for both an academic and a professional audience. As a textbook, it is intended
as a one- or two-semester undergraduate course for computer science, computer engineering, and
electrical engineering majors. This edition supports recommendations of the ACM/IEEE Computer
Science Curricula 2013 (CS2013). CS2013 divides all course work into three categories: Core-Tier 1
(all topics should be included in the curriculum); Core-Tier-2 (all or almost all topics should be
included); and Elective (desirable to provide breadth and depth). In the Architecture and Organization
(AR) area, CS2013 includes five Tier-2 topics and three Elective topics, each of which has a number
of subtopics. This text covers all eight topics listed by CS2013. Table P.1 shows the support for the
AR Knowledge Area provided in this textbook. This book also supports the ACM/IEEE Computer
Engineering Curricula 2016 (CE2016). CE2016 defines a necessary body of knowledge for
undergraduate computer engineering, divided into twelve knowledge areas. One of these areas is
Computer Architecture and Organization (CE-CAQ), consisting of ten core knowledge areas. This text
covers all of the CE-CAO knowledge areas listed in CE2016. Table P.2 shows the coverage.

Table P.1 Coverage of CS2013 Architecture and Organization (AR) Knowledge Area

IAS Knowledge Units Topics Textbook
Coverage
Digital Logic and e Overview and history of computer architecture —Chapter
Digital Systems (Tier 2) e Combinational vs. sequential logic/Field programmable | 1
t fi tal inational tial
ga .e arrtay.s as a fundamental combinational sequentia __Chapter
logic building block 12
e Multiple representations/layers of interpretation
(hardware is just another layer)
e Physical constraints (gate delays, fan-in, fan-out,
energy/power)
Machine Level ¢ Bits, bytes, and words —Chapter
Representation of Data e Numeric data representation and number bases 10
Tier 2 Fixed- and floating-point syst
(Tier 2) . |lxe and floating-point systems | __Chapter
e Signed and twos-complement representations 11
e Representation of non-numeric data (character codes,
graphical data)
Assembly Level e Basic organization of the von Neumann machine —Chapter
Machine Organization e Control unit; instruction fetch, decode, and execution 1
(Tier 2) e Instruction sets and types (data manipulation, control, __Chapter
1/O) 8
e Assembly/machine language programming
e Instruction formats —Chapter
e Addressing modes 13
e Subroutine call and return mechanisms (cross-
—Chapter

reference PL/Language Translation and Execution)

14
I/O and interrupts
Shared memory multiprocessors/multicore —Chapter
organization 15
Introduction to SIMD vs. MIMD and the Flynn —Chapter
Taxonomy 19
—Chapter
20
—Chapter
21
Memory System Storage systems and their technology —Chapter
Organization and Memory hierarchy: temporal and spatial locality 4
Architecture (Tier 2) Main memory organization and operations Chapter
Latency, cycle time, bandwidth, and interleaving 5
Cache memories (address mapping, block size,
replacement and store policy) —Chapter
Multiprocessor cache consistency/Using the memory 6
system for inter-core synchronization/atomic memory __Chapter
operations -
Virtual memory (page table, TLB)
Fault handling and reliability —Chapter
9
—Chapter
20
Interfacing and I/0O fundamentals: handshaking, buffering, —Chapter
Communication (Tier 2) programmed 1/O, interrupt-driven 1/O 3
I : — :
nterrupt structures: vectored and prioritized, interrupt __Chapter
acknowledgment .
External storage, physical organization, and drives
Buses: bus protocols, arbitration, direct-memory —Chapter
access (DMA) 8
RAID architectures
Functional Implementation of simple datapaths, including —Chapter
Organization (Elective) instruction pipelining, hazard detection, and resolution | 16
Control unit: hardwired realization vs.
—Chapter

microprogrammed realization

Instruction pipelining

17

Introduction to instruction-level parallelism (ILP) —Chapter
18
—Chapter
19
Multiprocessing and Example SIMD and MIMD instruction sets and —Chapter
Alternative architectures 20
Architectures (Elective) Interconnection networks Chapter
Shared multiprocessor memory systems and memory 21
consistency
Multiprocessor cache coherence
Performance Superscalar architecture —Chapter
Enhancements Branch prediction, Speculative execution, Out-of-order | 17
Elective execution
(Ive) xecut _ —Chapter
Prefetching 18
Vector processors and GPUs
Hardware support for multithreading —Chapter
Scalability 20

Table P.2 Coverage of CE2016 Computer Architecture and Organization (AR) Knowledge Area

Knowledge Unit

Textbook Coverage

History and overview

Chapter 1—Basic Concepts and Computer Evolution

engineering constraints

Relevant tools, standards and/or

and Interconnection

Chapter 3—A Top-Level View of Computer Function

Instruction set architecture

Functions

Formats

Chapter 13—Instruction Sets: Characteristics and

Chapter 14—Instruction Sets: Addressing Modes and

Chapter 15—Assembly Language and Related Topics

Measuring performance

Chapter 2—Performance Concepts

Computer arithmetic

Chapter 10—Number Systems

Chapter 11—Computer Arithmetic

Processor organization Chapter 16—Processor Structure and Function

Chapter 17—Reduced Instruction Set Computers
(RISCs)

Chapter 18—Instruction-Level Parallelism and
Superscalar Processors

Chapter 19—Control Unit Operation and
Microprogrammed Control

Memory system organization and Chapter 4—The Memory Hierarchy: Locality and
architectures Performance

Chapter 5—Cache Memory
Chapter 6—Internal Memory Technology

Chapter 7—External Memory

Input/Output interfacing and Chapter 8—Input/Output
communication

Peripheral subsystems Chapter 3—A Top-Level View of Computer Function
and Interconnection

Chapter 8—Input/Output

Multi/Many-core architectures Chapter 21—Multicore Computers
Distributed system architectures Chapter 20—Parallel Processing
Objectives

This book is about the structure and function of computers. Its purpose is to present, as clearly and
completely as possible, the nature and characteristics of modern-day computer systems.

This task is challenging for several reasons. First, there is a tremendous variety of products that can
rightly claim the name of computer, from single-chip microprocessors costing a few dollars to
supercomputers costing tens of millions of dollars. Variety is exhibited not only in cost but also in size,
performance, and application. Second, the rapid pace of change that has always characterized
computer technology continues with no letup. These changes cover all aspects of computer
technology, from the underlying integrated circuit technology used to construct computer components

to the increasing use of parallel organization concepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental concepts apply
consistently throughout. The application of these concepts depends on the current state of the
technology and the price/performance objectives of the designer. The intent of this book is to provide
a thorough discussion of the fundamentals of computer organization and architecture and to relate
these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always been important to
design computer systems to achieve high performance, but never has this requirement been stronger
or more difficult to satisfy than today. All of the basic performance characteristics of computer
systems, including processor speed, memory speed, memory capacity, and interconnection data
rates, are increasing rapidly. Moreover, they are increasing at different rates. This makes it difficult to
design a balanced system that maximizes the performance and utilization of all elements. Thus,
computer design increasingly becomes a game of changing the structure or function in one area to
compensate for a performance mismatch in another area. We will see this game played out in
numerous design decisions throughout the book.

A computer system, like any system, consists of an interrelated set of components. The system is best
characterized in terms of structure—the way in which components are interconnected, and function
—the operation of the individual components. Furthermore, a computer’s organization is hierarchical.
Each major component can be further described by decomposing it into its major subcomponents and
describing their structure and function. For clarity and ease of understanding, this hierarchical
organization is described in this book from the top down:

e Computer system: Major components are processor, memory, 1/O.

e Processor: Major components are control unit, registers, ALU, and instruction execution unit.

e Control unit: Provides control signals for the operation and coordination of all processor
components. Traditionally, a microprogramming implementation has been used, in which major
components are control memory, microinstruction sequencing logic, and registers. More recently,
microprogramming has been less prominent but remains an important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear context. This
should minimize the chance that the reader will get lost and should provide better motivation than a
bottom-up approach.

Throughout the discussion, aspects of the system are viewed from the points of view of both
architecture (those attributes of a system visible to a machine language programmer) and organization
(the operational units and their interconnections that realize the architecture).

Example Systems

This text is intended to acquaint the reader with the design principles and implementation issues of
contemporary operating systems. Accordingly, a purely conceptual or theoretical treatment would be
inadequate. To illustrate the concepts and to tie them to real-world design choices that must be made,
two processor families have been chosen as running examples:

¢ Intel x86 architecture: The x86 architecture is the most widely used for nonembedded computer
systems. The x86 is essentially a complex instruction set computer (CISC) with some RISC
features. Recent members of the x86 family make use of superscalar and multicore design
principles. The evolution of features in the x86 architecture provides a unique case-study of the
evolution of most of the design principles in computer architecture.

e ARM: The ARM architecture is arguably the most widely used embedded processor, used in cell
phones, iPods, remote sensor equipment, and many other devices. The ARM is essentially a

reduced instruction set computer (RISC). Recent members of the ARM family make use of
superscalar and multicore design principles.
Many, but by no means all, of the examples in this book are drawn from these two computer families.
Numerous other systems, both contemporary and historical, provide examples of important computer
architecture design features.

Plan of the Text

The book is organized into six parts:

Introduction

The computer system

Arithmetic and logic

Instruction sets and assembly language

The central processing unit

Parallel organization, including multicore

The book includes a number of pedagogic features, including the use of interactive simulations and
numerous figures and tables to clarify the discussion. Each chapter includes a list of key words,
review questions, and homework problems. The book also includes an extensive glossary, a list of
frequently used acronyms, and a bibliography.

Instructor Support Materials

Support materials for instructors are available at the Instructor Resource Center (IRC) for this
textbook, which can be reached through the publisher’'s Web site www.pearson.com/stallings. To
gain access to the IRC, please contact your local Pearson sales representative via
www.pearson.com/replocator. The IRC provides the following materials:

e Projects manual: Project resources including documents and portable software, plus suggested
project assignments for all of the project categories listed subsequently in this Preface.

Solutions manual: Solutions to end-of-chapter Review Questions and Problems.

PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.

PDF files: Copies of all figures and tables from the book.

Test bank: A chapter-by-chapter set of questions.

Sample syllabuses: The text contains more material than can be conveniently covered in one
semester. Accordingly, instructors are provided with several sample syllabuses that guide the use
of the text within limited time. These samples are based on real-world experience by professors
with the first edition.

Student Resources

For this new edition, a tremendous amount of original supporting material for students has been made
available online. The Companion Web Site, at www.pearson.com/stallings, includes a list of
relevant links organized by chapter and an errata sheet for the book. To aid the student in
understanding the material, a separate set of homework problems with solutions are available at this
site. Students can enhance their understanding of the material by working out the solutions to these
problems and then checking their answers. The site also includes a number of documents and papers
referenced throughout the text.

Projects and Other Student Exercises

http://www.pearson.com/stallings
http://www.pearson.com/stallings
http://www.pearson.com/replocator
http://www.pearson.com/replocator
http://www.pearson.com/stallings

For many instructors, an important component of a computer organization and architecture course is a
project or set of projects by which the student gets hands-on experience to reinforce concepts from
the text. This book provides an unparalleled degree of support for including a projects component in
the course. The instructor’s support materials available through the IRC not only includes guidance on
how to assign and structure the projects but also includes a set of user’'s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can assign work in the
following areas:

¢ Interactive simulation assignments: Described subsequently.

e Research projects: A series of research assignments that instruct the student to research a
particular topic on the Internet and write a report.

e Simulation projects: The IRC provides support for the use of the two simulation packages:
SimpleScalar can be used to explore computer organization and architecture design issues.
SMPCache provides a powerful educational tool for examining cache design issues for symmetric
multiprocessors.

e Assembly language projects: A simplified assembly language, CodeBlue, is used and
assignments based on the popular Core Wars concept are provided.

e Reading/report assignments: A list of papers in the literature, one or more for each chapter, that
can be assigned for the student to read and then write a short report.

e Writing assignments: A list of writing assignments to facilitate learning the material.

e Test bank: Includes T/F, multiple choice, and fill-in-the-blank questions and answers.

This diverse set of projects and other student exercises enables the instructor to use the book as one
component in a rich and varied learning experience and to tailor a course plan to meet the specific
needs of the instructor and students.

Interactive Simulations

An important feature in this edition is the incorporation of interactive simulations. These simulations
provide a powerful tool for understanding the complex design features of a modern computer system.
A total of 20 interactive simulations are used to illustrate key functions and algorithms in computer
organization and architecture design. At the relevant point in the book, an icon indicates that a
relevant interactive simulation is available online for student use. Because the animations enable the
user to set initial conditions, they can serve as the basis for student assignments. The instructor’s
supplement includes a set of assignments, one for each of the animations. Each assignment includes
several specific problems that can be assigned to students.

Acknowledgments

This new edition has benefited from review by a number of people, who gave generously of their time
and expertise. The following professors provided a review of the entire book: Nikhil Bhargava (Indian
Institute of Management, Delhi), James Gil de Lamadrid (Bowie State University, Computer Science
Department), Debra Calliss (Computer Science and Engineering, Arizona State University),
Mohammed Anwaruddin (Wentworth Institute of Technology, Dept. of Computer Science), Roger
Kieckhafer (Michigan Technological University, Electrical & Computer Engineering), Paul Fortier
(University of Massachusetts Darthmouth, Electrical and Computer Engineering), Yan Zhang
(Department of Computer Science and Engineering, University of South Florida), Patricia Roden
(University of North Alabama, Computer Science and Information Systems), Sanjeev Baskiyar
(Auburn University, Computer Science and Software Engineering), and (Jayson Rock, University of
Wisconsin-Milwaukee, Computer Science). | would especially like to thank Professor Roger
Kieckhafer for permission to make use of some of the figures and performance models from his
course lecture notes.

Thanks also to the many people who provided detailed technical reviews of one or more chapters:
Rekai Gonzalez Alberquilla, Allen Baum, Jalil Boukhobza, Dmitry Bufistov, Humberto Calderén, Jesus
Carretero, Ashkan Eghbal, Peter Glaskowsky, Ram Huggahalli, Chris Jesshope, Athanasios
Kakarountas, Isil Oz, Mitchell Poplingher, Roger Shepherd, Jigar Savla, Karl Stevens, Siri Uppalapati,
Dr. Sriram Vajapeyam, Kugan Vivekanandarajah, Pooria M. Yaghini, and Peter Zeno,

Professor Cindy Norris of Appalachian State University, Professor Bin Mu of the University of New
Brunswick, and Professor Kenrick Mock of the University of Alaska kindly supplied homework
problems.

Aswin Sreedhar of the University of Massachusetts developed the interactive simulation assignments.

Professor Miguel Angel Vega Rodriguez, Professor Dr. Juan Manuel Sanchez Pérez, and Professor
Dr. Juan Antonio Gémez Pulido, all of University of Extremadura, Spain, prepared the SMPCache
problems in the instructor’'s manual and authored the SMPCache User’s Guide.

Todd Bezenek of the University of Wisconsin and James Stine of Lehigh University prepared the
SimpleScalar problems in the instructor’'s manual, and Todd also authored the SimpleScalar User’s
Guide.

Finally, | would like to thank the many people responsible for the publication of the book, all of whom
did their usual excellent job. This includes the staff at Pearson, particularly my editor Tracy Johnson,
her assistant Meghan Jacoby, and project manager Bob Engelhardt. Thanks also to the marketing and
sales staffs at Pearson, without whose efforts this book would not be in front of you.

About the Author

Dr. William Stallings

has authored 18 textbooks, and counting revised editions, over 70 books on computer security,
computer networking, and computer architecture. In over 30 years in the field, he has been a technical
contributor, technical manager, and an executive with several high-technology firms. Currently, he is
an independent consultant whose clients have included computer and networking manufacturers and
customers, software development firms, and leading-edge government research institutions. He has
13 times received the award for the best computer science textbook of the year from the Text and
Academic Authors Association.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety of subjects of
general interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame in electrical
engineering.

http://computersciencestudent.com/

Acronyms

ACM Association for Computing Machinery

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

ASCII American Standards Code for Information Interchange
BCD Binary Coded Decimal

CD Compact Disk

CD-ROM Compact Disk Read-Only Memory

CISC Complex Instruction Set Computer

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

DMA Direct Memory Access

DVD Digital Versatile Disk

EEPROM Electrically Erasable Programmable Read-Only Memory
EPIC Explicitly Parallel Instruction Computing

EPROM Erasable Programmable Read-Only Memory

HLL High-Level Language

I/O Input/Output

IAR Instruction Address Register

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers
ILP Instruction-Level Parallelism

IR Instruction Register

LRU Least Recently Used

LSI Large-scale Integration

MAR Memory Address Register

MBR Memory Buffer Register

MESI Modify-Exclusive-Shared-Invalid
MIC Many Integrated Core

MMU Memory Management Unit

MSI Medium-Scale Integration
NUMA Nonuniform Memory Access
OS Operating System

PC Program Counter

PCB Process Control Block

PCI Peripheral Component Interconnect
PROM Programmable Read-Only Memory
PSW Processor Status Word

RAID Redundant Array of Independent Disks
RALU Register/Arithmetic-Logic Unit

RAM Random-Access Memory

RISC Reduced Instruction Set Computer
ROM Read-Only Memory

SCSI Small Computer System Interface
SMP Symmetric Multiprocessors

SRAM Static Random-Access Memory
SSI Small-Scale Integration

ULSI Ultra Large-Scale Integration

VLIW Very Long Instruction Word

VLSI Very Large-Scale Integration

Part One Introduction

Chapter 1 Basic Concepts and Computer Evolution

1.1 Organization and Architecture

1.2 Structure and Function
Function

Structure

1.3 The IAS Computer

1.4 Gates, Memory Cells, Chips, and Multichip Modules
Gates and Memory Cells

Transistors
Microelectronic Chips
Multichip Module

1.5 The Evolution of the Intel x86 Architecture

1.6 Embedded Systems
The Internet of Things

Embedded Operating Systems
Application Processors versus Dedicated Processors
Microprocessors versus Microcontrollers
Embedded versus Deeply Embedded Systems
1.7 ARM Architecture
ARM Evolution
Instruction Set Architecture
ARM Products

1.8 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Explain the general functions and structure of a digital computer.

e Present an overview of the evolution of computer technology from early digital computers to the
latest microprocessors.

e Present an overview of the evolution of the x86 architecture.

e Define embedded systems and list some of the requirements and constraints that various
embedded systems must meet.

1.1 Organization and Architecture

In describing computers, a distinction is often made between computer architecture and computer
organization. Although it is difficult to give precise definitions for these terms, a consensus exists
about the general areas covered by each. For example, see [VRANS8O], [SIEW82], and [BELL78a]; an
interesting alternative view is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a programmer or, put
another way, those attributes that have a direct impact on the logical execution of a program. A term
that is often used interchangeably with computer architecture is instruction set architecture

(ISA) . The ISA defines instruction formats, instruction opcodes, registers, instruction and data
memory; the effect of executed instructions on the registers and memory; and an algorithm for
controlling instruction execution. Computer organization refers to the operational units and their
interconnections that realize the architectural specifications. Examples of architectural attributes
include the instruction set, the number of bits used to represent various data types (e.g., numbers,
characters), I/0 mechanisms, and techniques for addressing memory. Organizational attributes
include those hardware details transparent to the programmer, such as control signals; interfaces
between the computer and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have a multiply instruction. It is
an organizational issue whether that instruction will be implemented by a special multiply unit or by a
mechanism that makes repeated use of the add unit of the system. The organizational decision may
be based on the anticipated frequency of use of the multiply instruction, the relative speed of the two
approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organization has been an
important one. Many computer manufacturers offer a family of computer models, all with the same
architecture but with differences in organization. Consequently, the different models in the family have
different price and performance characteristics. Furthermore, a particular architecture may span many
years and encompass a number of different computer models, its organization changing with changing
technology. A prominent example of both these phenomena is the IBM System/370 architecture. This
architecture was first introduced in 1970 and included a number of models. The customer with modest
requirements could buy a cheaper, slower model and, if demand increased, later upgrade to a more
expensive, faster model without having to abandon software that had already been developed. Over
the years, IBM has introduced many new models with improved technology to replace older models,
offering the customer greater speed, lower cost, or both. These newer models retained the same
architecture so that the customer’s software investment was protected. Remarkably, the System/370
architecture, with a few enhancements, has survived to this day as the architecture of IBM’s
mainframe product line.

In a class of computers called microcomputers, the relationship between architecture and organization
is very close. Changes in technology not only influence organization but also result in the introduction
of more powerful and more complex architectures. Generally, there is less of a requirement for
generation-to-generation compatibility for these smaller machines. Thus, there is more interplay
between organizational and architectural design decisions. An intriguing example of this is the
reduced instruction set computer (RISC), which we examine in Chapter 15.

This book text examines both computer organization and computer architecture. The emphasis is
perhaps more on the side of organization. However, because a computer organization must be
designed to implement a particular architectural specification, a thorough treatment of organization
requires a detailed examination of architecture as well.

1.2 Structure and Function

A computer is a complex system; contemporary computers contain millions of elementary electronic
components. How, then, can one clearly describe them? The key is to recognize the hierarchical
nature of most complex systems, including the computer [SIMO96]. A hierarchical system is a set of
interrelated subsystems; each subsystem may, in turn, contain lower level subsystems, until we reach
some lowest level of elementary subsystem.

The hierarchical nature of complex systems is essential to both their design and their description. The
designer need only deal with a particular level of the system at a time. At each level, the system
consists of a set of components and their interrelationships. The behavior at each level depends only
on a simplified, abstracted characterization of the system at the next lower level. At each level, the
designer is concerned with structure and function:

e Structure: The way in which the components are interrelated.

e Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and building up to a complete
description, or beginning with a top view and decomposing the system into its subparts. Evidence from
a number of fields suggests that the top-down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer system will be described
from the top down. We begin with the major components of a computer, describing their structure and
function, and proceed to successively lower layers of the hierarchy. The remainder of this section
provides a very brief overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. In general terms, there are
only four basic functions that a computer can perform:

e Data processing: Data may take a wide variety of forms, and the range of processing
requirements is broad. However, we shall see that there are only a few fundamental methods or
types of data processing.

e Data storage: Even if the computer is processing data on the fly (i.e., data come in and get
processed, and the results go out immediately), the computer must temporarily store at least those
pieces of data that are being worked on at any given moment. Thus, there is at least a short-term
data storage function. Equally important, the computer performs a long-term data storage function.
Files of data are stored on the computer for subsequent retrieval and update.

e Data movement: The computer’s operating environment consists of devices that serve as either
sources or destinations of data. When data are received from or delivered to a device that is
directly connected to the computer, the process is known as input—output (I/0), and the device is
referred to as a peripheral. When data are moved over longer distances, to or from a remote
device, the process is known as data communications.

e Control: Within the computer, a control unit manages the computer’s resources and orchestrates
the performance of its functional parts in response to instructions.

The preceding discussion may seem absurdly generalized. It is certainly possible, even at a top level
of computer structure, to differentiate a variety of functions, but to quote [SIEW82]:

There is remarkably little shaping of computer structure to fit the function to be performed. At the
root of this lies the general-purpose nature of computers, in which all the functional specialization

| occurs at the time of programming and not at the time of design.
Structure

We now look in a general way at the internal structure of a computer. We begin with a traditional

computer with a single processor that employs a microprogrammed control unit, then examine a
typical multicore structure.

SIMPLE SINGLE-PROCESSOR COMPUTER

Figure 1.1 provides a hierarchical view of the internal structure of a traditional single-processor
computer. There are four main structural components:

COMPUTER

Figure 1.1 The Computer: Top-Level Structure

e Central processing unit (CPU): Controls the operation of the computer and performs its data
processing functions; often simply referred to as processor

e Main memory: Stores data.

e 1/0: Moves data between the computer and its external environment.

e System interconnection: Some mechanism that provides for communication among CPU, main
memory, and 1/0. A common example of system interconnection is by means of a system bus

consisting of a number of conducting wires to which all the other components attach.
There may be one or more of each of the aforementioned components. Traditionally, there has been
just a single processor. In recent years, there has been increasing use of multiple processors in a
single computer. Some design issues relating to multiple processors crop up and are discussed as the
text proceeds; Part Five focuses on such computers.

Each of these components will be examined in some detail in Part Two. However, for our purposes,
the most interesting and in some ways the most complex component is the CPU. Its major structural
components are as follows:

Control unit: Controls the operation of the CPU and hence the computer.

Arithmetic and logic unit (ALU): Performs the computer’s data processing functions.

Registers: Provides storage internal to the CPU.

CPU interconnection: Some mechanism that provides for communication among the control unit,
ALU, and registers.

Part Three covers these components, where we will see that complexity is added by the use of
parallel and pipelined organizational techniques. Finally, there are several approaches to the
implementation of the control unit; one common approach is a microprogrammed implementation. In
essence, a microprogrammed control unit operates by executing microinstructions that define the
functionality of the control unit. With this approach, the structure of the control unit can be depicted, as
in Figure 1.1. This structure is examined in Part Four.

MULTICORE COMPUTER STRUCTURE

As was mentioned, contemporary computers generally have multiple processors. When these
processors all reside on a single chip, the term multicore computer is used, and each processing unit
(consisting of a control unit, ALU, registers, and perhaps cache) is called a core. To clarify the
terminology, this text will use the following definitions.

e Central processing unit (CPU): That portion of a computer that fetches and executes instructions.
It consists of an ALU, a control unit, and registers. In a system with a single processing unit, it is
often simply referred to as a processor.

e Core: Anindividual processing unit on a processor chip. A core may be equivalent in
functionality to a CPU on a single-CPU system. Other specialized processing units, such as one
optimized for vector and matrix operations, are also referred to as cores.

e Processor: A physical piece of silicon containing one or more cores. The processor is the
computer component that interprets and executes instructions. If a processor contains multiple
cores, it is referred to as a multicore processor.

After about a decade of discussion, there is broad industry consensus on this usage.

Another prominent feature of contemporary computers is the use of multiple layers of memory, called
cache memory, between the processor and main memory. Chapter 4 is devoted to the topic of cache
memory. For our purposes in this section, we simply note that a cache memory is smaller and faster
than main memory and is used to speed up memory access, by placing in the cache data from main
memory, that is likely to be used in the near future. A greater performance improvement may be
obtained by using multiple levels of cache, with level 1 (L1) closest to the core and additional levels
(L2, L3, and so on) progressively farther from the core. In this scheme, level n is smaller and faster
than level n +1.

Figure 1.2 is a simplified view of the principal components of a typical multicore computer. Most

computers, including embedded computers in smartphones and tablets, plus personal computers,
laptops, and workstations, are housed on a motherboard. Before describing this arrangement, we
need to define some terms. A printed circuit board (PCB) s arigid, flat board that holds and

interconnects chips and other electronic components. The board is made of layers, typically two to
ten, that interconnect components via copper pathways that are etched into the board. The main
printed circuit board in a computer is called a system board or motherboard, while smaller ones that
plug into the slots in the main board are called expansion boards.

f/_ MOTHERBOARD \
) Main memory chips
S
oy
Sy
oy [-
Processor el
— hi T~
1/0 chips chip S~
[] [] [] v T~
% e
" \ 4 TN~
i ™ -
\ N
\ 4 PROCESSOR CHIP 2
\
\ Core Core | | Core | | Core
"i‘
%
1
Y L3 cache L3 cache
"‘n.
.‘1 -
X
=TT Core | | Core | | Core | | Core
- - h!
- -7 - 1 i
- - !
= !
= /
/’ CORE \ _;’
o = !
Instruction | | ATIIMetic] [y oy K
logic sl store logic /
unit (ALU /
L1 I-cache L1 data cache
L.2 instruction L2 data
cache cache
o 4

Figure 1.2 Simplified View of Major Elements of a Multicore Computer

The most prominent elements on the motherboard are the chips. A chip is a single piece of
semiconducting material, typically silicon, upon which electronic circuits and logic gates are fabricated.
The resulting product is referred to as an integrated circuit

The motherboard contains a slot or socket for the processor chip, which typically contains multiple
individual cores, in what is known as a multicore processor. There are also slots for memory chips, 1/0
controller chips, and other key computer components. For desktop computers, expansion slots enable

the inclusion of more components on expansion boards. Thus, a modern motherboard connects only a
few individual chip components, with each chip containing from a few thousand up to hundreds of
millions of transistors.

Figure 1.2 shows a processor chip that contains eight cores and an L3 cache. Not shown is the logic
required to control operations between the cores and the cache and between the cores and the
external circuitry on the motherboard. The figure indicates that the L3 cache occupies two distinct
portions of the chip surface. However, typically, all cores have access to the entire L3 cache via the
aforementioned control circuits. The processor chip shown in Figure 1.2 does not represent any
specific product, but provides a general idea of how such chips are laid out.

Next, we zoom in on the structure of a single core, which occupies a portion of the processor chip. In
general terms, the functional elements of a core are:

¢ Instruction logic: This includes the tasks involved in fetching instructions, and decoding each
instruction to determine the instruction operation and the memory locations of any operands.

e Arithmetic and logic unit (ALU): Performs the operation specified by an instruction.

e Load/store logic: Manages the transfer of data to and from main memory via cache.
The core also contains an L1 cache, split between an instruction cache (l-cache) that is used for the
transfer of instructions to and from main memory, and an L1 data cache, for the transfer of operands
and results. Typically, today’s processor chips also include an L2 cache as part of the core. In many
cases, this cache is also split between instruction and data caches, although a combined, single L2
cache is also used.

Keep in mind that this representation of the layout of the core is only intended to give a general idea of
internal core structure. In a given product, the functional elements may not be laid out as the three
distinct elements shown in Figure 1.2, especially if some or all of these functions are implemented as
part of a microprogrammed control unit.

EXAMPLES

It will be instructive to look at some real-world examples that illustrate the hierarchical structure of
computers. Figure 1.3 is a photograph of the motherboard for a computer built around two Intel Quad-
Core Xeon processor chips. Many of the elements labeled on the photograph are discussed
subsequently in this book. Here, we mention the most important, in addition to the processor sockets:

Intel® 3420

i Chipset
Six Channel DDR3-1333 Memory

Serial ATAS300 (SATA)
Interfaces Up to 48GRB

Interfaces

2x Quad-Core Intel® Xeon® Processors
with Integrated Memory Controllers

2x USE 2.0
Internal
X USE 2.0

External

VGA Video Output

BIOS

____— 2x Ethernet Ports
LY 100/1000Base-T

Ethernet Controller

Power & Backplane 1/O PCI Express® PCI Express® Clock
Connector C Connector B Connector A

Figure 1.3 Motherboard with Two Intel Quad-Core Xeon Processors

Source: Courtesy of Chassis Plans Rugged Rackmount Computers

e PCI-Express slots for a high-end display adapter and for additional peripherals (Section 3.6
describes PCle).
e Ethernet controller and Ethernet ports for network connections.
e USB sockets for peripheral devices.
e Serial ATA (SATA) sockets for connection to disk memory (Section 7.7 discusses Ethernet, USB,
and SATA).
¢ Interfaces for DDR (double data rate) main memory chips (Section 5.3 discusses DDR).
e Intel 3420 chipset is an I/O controller for direct memory access operations between peripheral
devices and main memory (Section 7.5 discusses DDR).
Following our top-down strategy, as illustrated in Figures 1.1 and 1.2, we can now zoom in and look
at the internal structure of a processor chip, referred to as a processor unit (PU). For variety, we look
at an IBM chip instead of the Intel processor chip. Figure 1.4 is a to-scale layout of the processor chip
for the IBM z13 mainframe computer [LASC16]. This chip has 3.99 billion transistors. The
superimposed labels indicate how the silicon surface area of the chip is allocated. We see that this
chip has eight cores, or processors. In addition, a substantial portion of the chip is devoted to the L3
cache, which is shared by all eight cores. The L3 control logic controls traffic between the L3 cache
and the cores and between the L3 cache and the external environment. Additionally, there is storage
control (SC) logic between the cores and the L3 cache. The memory controller (MC) function controls
access to memory external to the chip. The GX I/O bus controls the interface to the channel adapters
accessing the 1/0O.

CPI1 Drvrs
1CPO Revrs|-

CP1 Revrs

[Scpom]

[ren | [eout] SondoXfomeapnuo] [pco |

Figure 1.4 IBM z13 Processor Unit (PU) Chip Diagram

Going down one level deeper, we examine the internal structure of a single core, as shown in the
photograph of Figure 1.5. The core implements the z13 instruction set architecture, referred to as the
z/Architecture. Keep in mind that this is a portion of the silicon surface area making up a single-
processor chip. The main sub-areas within this core area are the following:

{ RU
=5 ;:l‘ &
IFB 2 1SU =
VFD
ICM LSU |
=
(=
8 ICM ICM

Figure 1.5 IBM z13 Core Layout

¢ ISU (instruction sequence unit): Determines the sequence in which instructions are executed in
what is referred to as a superscalar architecture. It enables the out-of-order (OOO) pipeline. It
tracks register names, OOO instruction dependency, and handling of instruction resource dispatch.
These concepts are discussed in Chapter 16.

e IFB (instruction fetch and branch) and ICM (instruction cache and merge) These two subunits
contain the 128-kB1 instruction cache, branch prediction logic, instruction fetching controls, and

buffers. The relative size of these subunits is the result of the elaborate branch prediction design.
1

kB = kilobyte = 1048 bytes. Numerical prefixes are explained in a document under the “Other Useful” tab at

ComputerScienceStudent.com.

IDU (instruction decode unit): The IDU is fed from the IFU buffers, and is responsible for the
parsing and decoding of all z/Architecture operation codes.

LSU (load-store unit): The LSU contains the 96-kB L1 data cache, and manages data traffic
between the L2 data cache and the functional execution units. It is responsible for handling all
types of operand accesses of all lengths, modes, and formats as defined in the z/Architecture.

XU (translation unit): This unit translates logical addresses from instructions into physical
addresses in main memory. The XU also contains a translation lookaside buffer (TLB) used to
speed up memory access. TLBs are discussed in Chapter 8.

PC (core pervasive unit): Used for instrumentation and error collection.

FXU (fixed-point unit): The FXU executes fixed-point arithmetic operations.

VFU (vector and floating-point units): The binary floating-unit part handles all binary and
hexadecimal floating-point operations, as well as fixed-point multiplication operations. The decimal
floating-unit part handles both fixed-point and floating-point operations on numbers that are stored
as decimal digits. The vector execution part handles vector operations.

RU (recovery unit): The RU keeps a copy of the complete state of the system that includes all
registers, collects hardware fault signals, and manages the hardware recovery actions.

COP (dedicated co-processor): The COP is responsible for data compression and encryption
functions for each core.

L2D: A 2-MB L2 data cache for all memory traffic other than instructions.

L2I: A 2-MB L2 instruction cache.

As we progress through the book, the concepts introduced in this section will become clearer.

1.3 The IAS Computer

The first generation of computers used vacuum tubes for digital logic elements and memory. A
number of research and then commercial computers were built using vacuum tubes. For our
purposes, it will be instructive to examine perhaps the most famous first-generation computer, known
as the IAS computer. This example illustrates many of the fundamental concepts found in all computer
systems.

A fundamental design approach first implemented in the IAS computer is known as the stored-
program concept. This idea is usually attributed to the mathematician John von Neumann. Alan Turing
developed the idea at about the same time. The first publication of the idea was in a 1945 proposal by
von Neumann for a new computer, the EDVAC (Electronic Discrete Variable Computer).2

2 The 1945 report on EDVAC is available at box.com/COA11e.

In 1946, von Neumann and his colleagues began the design of a new stored-program computer,
referred to as the IAS computer, at the Princeton Institute for Advanced Studies. The IAS computer,
although not completed until 1952, is the prototype of all subsequent general-purpose computers.3

3 A 1954 report [GOLD54] describes the implemented IAS machine and lists the final instruction set. It is available at
box.com/COA11e.

Figure 1.6 shows the structure of the IAS computer (compare with Figure 1.1). It consists of

Central processing unit (CPU)

-

1 1
I Arithmetic-logic unit (CA) 1
1 1
I 1
1 AC “—,M—Q I
| A A 1
1 Y Y I Input-
! Arithmetic-logic ' output
: circuits : equipment
. f . 1,0)
1 1
I Y 1
I MBR 1
| 1 A
I A | A !
Instructions | !
and data ! I
| I
I 1
Y : : Instructions
M(0) i ! and data
M(1) ! ﬁ 1
M{i} I I
MQ3) ! PC IBR ! _
M(d) ' I AC: Accumulator register
: : MQ: multiply-quotient register
* | Y l ¥ VY 1 MBR: memory buffer register
* I 1 IBR: instruction buffer register
* ! MAR IR I PC: program counter
Main ' I MAR: memory address register
memory : Y : IR: insruction register
(M) | -]
-
: Control * Control :
l signals . | circuits !
M(4092) i ~]
M
Mgﬁg : Program control unit (CC) :
! Addresses | T TTTTTF !

Figure 1.6 IAS Structure

e A main memory , which stores both data and instructions#
* In this book text, unless otherwise noted, the term instruction refers to a machine instruction that is directly
interpreted and executed by the processor, in contrast to a statement in a high-level language, such as Ada or
C++, which must first be compiled into a series of machine instructions before being executed.

e An arithmetic and logic unit (ALU) capable of operating on binary data
e A control unit , which interprets the instructions in memory and causes them to be executed
e Input—output (I/0O) equipment operated by the control unit

This structure was outlined in von Neumann’s earlier proposal, which is worth quoting in part at this

point [VONN45]:

2.2 First: Since the device is primarily a computer, it will have to perform the elementary operations
of arithmetic most frequently. These are addition, subtraction, multiplication, and division. It is

therefore reasonable that it should contain specialized organs for just these operations.

It must be observed, however, that while this principle as such is probably sound, the specific way
in which it is realized requires close scrutiny. At any rate a central arithmetical part of the device will
probably have to exist, and this constitutes the first specific part: CA.

2.3 Second: The logical control of the device, that is, the proper sequencing of its operations, can
be most efficiently carried out by a central control organ. If the device is to be elastic, that is, as
nearly as possible all purpose, then a distinction must be made between the specific instructions
given for and defining a particular problem, and the general control organs that see to it that these
instructions—no matter what they are—are carried out. The former must be stored in some way; the
latter are represented by definite operating parts of the device. By the central control we mean this

latter function only, and the organs that perform it form the second specific part: CC.

2.4 Third: Any device that is to carry out long and complicated sequences of operations
(specifically of calculations) must have a considerable memory . . .

The instructions which govern a complicated problem may constitute considerable material,
particularly so if the code is circumstantial (which it is in most arrangements). This material must be

remembered.
At any rate, the total memory constitutes the third specific part of the device: M.

2.6 The three specific parts CA, CC (together C), and M correspond to the associative neurons in
the human nervous system. It remains to discuss the equivalents of the sensory or afferent and the

motor or efferent neurons. These are the input and output organs of the device.

The device must be endowed with the ability to maintain input and output (sensory and motor)
contact with some specific medium of this type. The medium will be called the outside recording
medium of the device: R.

2.7 Fourth: The device must have organs to transfer information from R into its specific parts C and
M. These organs form its input, the fourth specific part: I. It will be seen that it is best to make all

transfers from R (by I) into M and never directly from C.

2.8 Fifth: The device must have organs to transfer from its specific parts C and M into R. These
organs form its output, the fifth specific part: O. It will be seen that it is again best to make all

transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure and function and are
thus referred to as von Neumann machines. Thus, it is worthwhile at this point to describe briefly the
operation of the IAS computer [BURK46, GOLD54]. Following [HAYE98], the terminology and notation
of von Neumann are changed in the following to conform more closely to modern usage; the examples
accompanying this discussion are based on that latter text.

The memory of the IAS consists of 4,096 storage locations, called words, of 40 binary digits (bits)
each.® Both data and instructions are stored there. Numbers are represented in binary form, and each
instruction is a binary code. Figure 1.7 illustrates these formats. Each number is represented by a
sign bit and a 39-bit value. A word may alternatively contain two 20-bit instructions, with each
instruction consisting of an 8-bit operation code (opcode) specifying the operation to be performed and
a 12-bit address designating one of the words in memory (numbered from 0 to 999).

5 There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits that is the

normal unit in which information may be stored, transmitted, or operated on within a given computer. Typically, if a
processor has a fixed-length instruction set, then the instruction length equals the word length.

01 39

!

sign bit

(a) Number word

left instruction (20 bits) right instruction (20 bits)
— — e — =
0 8 20 28 39
opcode (8 bits) address (12 bits) opcode (8 bits) address (12 bits)

(b) Instruction word

Figure 1.7 IAS Memory Formats

The control unit operates the IAS by fetching instructions from memory and executing them one at a
time. We explain these operations with reference to Figure 1.6. This figure reveals that both the
control unit and the ALU contain storage locations, called registers, defined as follows:

e Memory buffer register (MBR): Contains a word to be stored in memory or sent to the I/O unit, or
is used to receive a word from memory or from the I/O unit.

e Memory address register (MAR): Specifies the address in memory of the word to be written from
or read into the MBR.

¢ Instruction register (IR): Contains the 8-bit opcode instruction being executed.

¢ Instruction buffer register (IBR): Employed to hold temporarily the right-hand instruction from a
word in memory.

e Program counter (PC): Contains the address of the next instruction pair to be fetched from
memory.

e Accumulator (AC) and multiplier quotient (MQ): Employed to hold temporarily operands and
results of ALU operations. For example, the result of multiplying two 40-bit numbers is an 80-bit
number; the most significant 40 bits are stored in the AC and the least significant in the MQ.

The |AS operates by repetitively performing an instruction cycle, as shown in Figure 1.8. Each
instruction cycle consists of two subcycles. During the fetch cycle, the opcode of the next instruction is
loaded into the IR and the address portion is loaded into the MAR. This instruction may be taken from
the IBR, or it can be obtained from memory by loading a word into the MBR, and then down to the
IBR, IR, and MAR.

Start

MAR+—PC
No memory
FEt‘l’h access Y
cycle required MBR<«—M(MAR)

Y

IBR<—MBR (20:39)
IR «—MBR (0:7)
MAR<+—MBR (8:19)

IR«—IBR (0:7) IR «—MBR (20:27)
MAR<—IBR (8:19)| [MAR<+—MBR (28:39)

.
F

Y

PC+—PC+1
¥ Decode instruction in IR
“AC «—M(X) Go to M(X, 0:19) If AC > 0 then AC+—AC + M(X)
go to M(X, 0:19)
Execution B Yes A
C}'ﬂe il ISAC}D'!
Y Y \
MBR<«—M(MAR) PC<«—MAR No MBR<«—M(MAR)
: :
AC+«—MBR AC+«—AC + MBR

Y

M(X) = contents of memory location whose address is X
(izj) = bits i through j

Figure 1.8 Partial Flowchart of IAS Operation

Why the indirection? These operations are controlled by electronic circuitry and result in the use of
data paths. To simplify the electronics, there is only one register that is used to specify the address in
memory for a read or write and only one register used for the source or destination.

Once the opcode is in the IR, the execute cycle is performed. Control circuitry interprets the opcode
and executes the instruction by sending out the appropriate control signals to cause data to be moved
or an operation to be performed by the ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 1.1. These can be grouped
as follows:

Table 1.1 The IAS Instruction Set

Instruction Opcode Symbolic Description
Type Representation
Data transfer | 00001010 | LOAD MQ Transfer contents of register MQ to the
accumulator AC
00001001 | LOAD MQ,M(X) Transfer contents of memory location X to
MQ
00100001 | STOR M(X) Transfer contents of accumulator to memory
location X
00000001 | LOAD M(X) Transfer M(X) to the accumulator
00000010 | LOAD —M(X) Transfer —-M(X) to the accumulator
00000011 | LOAD |M(X)| Transfer absolute value of M(X) to the
accumulator
00000100 | LOAD —|M(X)| Transfer —|M(X)| to the accumulator
Unconditional | 00001101 | JUMP M(X,0:19) Take next instruction from left half of M(X)
branch
00001110 | JUMP M(X,20:39) Take next instruction from right half of M(X)
JOMP+M (X, 0:19)
Conditional 00001111 If number in the accumulator is nonnegative,
branch take next instruction from left half of M(X)
JTOMP+M (X, 20:39)
00010000 If number in the accumulator is nonnegative,
take next instruction from right half of M(X)
Arithmetic 00000101 | ADD M(X) Add M(X) to AC; put the result in AC
00000111 | ADD |M(X)| Add |[M(X)| to AC; put the result in AC

00000110 | SUB M(X) Subtract M(X) from AC; put the result in AC
00001000 | SUB |M(X)| Subtract |[M(X)| from AC; put the remainder in
AC
00001011 | MUL M(X) Multiply M(X) by MQ; put most significant bits
of result in AC, put least significant bits in MQ
00001100 | DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC
00010100 | LSH Multiply accumulator by 2; that is, shift left
one bit position
00010101 | RSH Divide accumulator by 2; that is, shift right
one position
Address 00010010 | STOR M(X,8:19) Replace left address field at M(X) by 12
modify rightmost bits of AC
00010011 | STOR M(X,28:39) Replace right address field at M(X) by 12
rightmost bits of AC

Data transfer: Move data between memory and ALU registers or between two ALU registers.

e Unconditional branch: Normally, the control unit executes instructions in sequence from memory.

This sequence can be changed by a branch instruction, which facilitates repetitive operations.
Conditional branch: The branch can be made dependent on a condition, thus allowing decision
points.

Arithmetic: Operations performed by the ALU.

Address modify: Permits addresses to be computed in the ALU and then inserted into instructions
stored in memory. This allows a program considerable addressing flexibility.

Table 1.1 presents instructions (excluding 1/O instructions) in a symbolic, easy-to-read form. In binary
form, each instruction must conform to the format of Figure 1.7b. The opcode portion (first 8 bits)
specifies which of the 21 instructions is to be executed. The address portion (remaining 12 bits)
specifies which of the 4,096 memory locations is to be involved in the execution of the instruction.

Figure 1.8 shows several examples of instruction execution by the control unit. Note that each
operation requires several steps, some of which are quite elaborate. The multiplication operation
requires 39 suboperations, one for each bit position except that of the sign bit.

1.4 Gates, Memory Cells, Chips, and Multichip Modules

Gates and Memory Cells

The basic elements of a digital computer, as we know, must perform data storage, movement,
processing, and control functions. Only two fundamental types of components are required (Figure
1.9): gates and memory cells. A gate is a device that implements a simple Boolean or logical
function. For example, an AND gate with inputs A and B and output C implements the expression IF A
AND B ARE TRUE THEN C IS TRUE. Such devices are called gates because they control data flow
in much the same way that canal gates control the flow of water. The memory cell is a device that
can store one bit of data; that is, the device can be in one of two stable states at any time. By
interconnecting large numbers of these fundamental devices, we can construct a computer. We can
relate this to our four basic functions as follows:

e Data storage: Provided by memory cells.

e Data processing: Provided by gates.

e Data movement: The paths among components are used to move data from memory to memory
and from memory through gates to memory.

e Control: The paths among components can carry control signals. For example, a gate will have
one or two data inputs plus a control signal input that activates the gate. When the control signal is
ON, the gate performs its function on the data inputs and produces a data output. Conversely,
when the control signal is OFF, the output line is null, such as is produced by a high impedance
state. Similarly, the memory cell will store the bit that is on its input lead when the WRITE control
signal is ON and will place the bit that is in the cell on its output lead when the READ control signal
is ON.

Thus, a computer consists of gates, memory cells, and interconnections among these elements. The
gates and memory cells are, in turn, constructed of simple electronic components, such as transistors
and capacitors.

—_—

. Boolean Binary
Input -+ logic — Output Input —=| storage —— Output

S function cell

T Read 41 W
Activate Write
signal
(a) Gate (b) Memory cell

Figure 1.9 Fundamental Computer Elements

Transistors

The fundamental building block of digital circuits used to construct processors, memories, and other
digital logic devices is the transistor. The active part of the transistor is made of silicon or some other
semiconductor material that can change its electrical state when pulsed. In its normal state, the
material may be nonconductive or conductive, either impeding or allowing current flow. When voltage
is applied to the gate, the transistor changes its state.

A single, self-contained transistor is called a discrete component. Throughout the 1950s and early
1960s, electronic equipment was composed largely of discrete components—transistors, resistors,
capacitors, and so on. Discrete components were manufactured separately, packaged in their own
containers, and soldered or wired together onto Masonite-like circuit boards, which were then installed
in computers, oscilloscopes, and other electronic equipment. Whenever an electronic device called for
a transistor, a little tube of metal containing a pinhead-sized piece of silicon had to be soldered to a
circuit board. The entire manufacturing process, from transistor to circuit board, was expensive and
cumbersome.

These facts of life were beginning to create problems in the computer industry. Early second-
generation computers contained about 10,000 transistors. This figure grew to the hundreds of
thousands, making the manufacture of newer, more powerful machines increasingly difficult.

Microelectronic Chips

Microelectronics means, literally, “small electronics.” Since the beginning of digital electronics and the
computer industry, there has been a consistent trend toward the reduction in size of digital electronic
circuits. Before examining the implications and benefits of this trend, we need to say something about
the nature of digital electronics. A more detailed discussion is found in Chapter 12.

The integrated circuit exploits the fact that such components as transistors, resistors, and conductors
can be fabricated from a semiconductor such as silicon. It is merely an extension of the solid-state art
to fabricate an entire circuit in a tiny piece of silicon rather than assemble discrete components made
from separate pieces of silicon into the same circuit. Many transistors can be produced at the same
time on a single wafer of silicon. Equally important, these transistors can be connected with a process
of metallization to form circuits.

=T =y -
;'" .Q’Vaf er
A b
L \
[)
f
\ /
\I. "‘lu!r
L 7
sl
Chi
|
0]
I:Il]
0
000000
Gate
Packaged
chip

Figure 1.10 Relationship among Wafer, Chip, and Gate

Figure 1.10 depicts the key concepts in an integrated circuit. A thin wafer of silicon is divided into a

matrix of small areas, each a few millimeters square. The identical circuit pattern is fabricated in each
area, and the wafer is broken up into chips. Each chip consists of many gates and/or memory cells
plus a number of input and output attachment points. This chip is then packaged in housing that
protects it and provides pins for attachment to devices beyond the chip. A number of these packages
can then be interconnected on a printed circuit board to produce larger and more complex circuits.
Figure 1.11a indicates what a packaged processor or memory chip looks like, and Figure 1.11b
shows a packaged chip wired onto a motherboard.

(a) Close-up of packaged chip (b) Chip on motherboard

Figure 1.11 Processor or Memory Chip on Motherboard
Krzysztof Gorski/Shutterstock
Nikolich/Shutterstock

Initially, only a few gates or memory cells could be reliably manufactured and packaged together.
These early integrated circuits are referred to as small-scale integration (SSI). As time went on, it
became possible to pack more and more components on the same chip. This growth in density is
illustrated in Figure 1.12; it is one of the most remarkable technological trends ever recorded.® This
figure reflects the famous Moore’s law, which was propounded by Gordon Moore, cofounder of Intel,
in 1965 [MOORG65]. Moore observed that the number of transistors that could be put on a single chip
was doubling every year, and correctly predicted that this pace would continue into the near future. To
the surprise of many, including Moore, the pace continued year after year and decade after decade.
The pace slowed to a doubling every 18 months in the 1970s, but has sustained that rate ever since.

¢ Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document at the

Computer Science Student Resource Site at ComputerScienceStudent.com.

& &
& 3 &
-a? '\Q#Q ":'\é Ny @b
. "l.;‘:".:‘'*‘5"""@'1 4"'& {ﬁ‘@b & \‘}\Q?
Q\‘ {}Qﬁ"' AF \Er% & a&
N & g
100 bn
/_,4 10 bn
/ 1 bn
10m
// 100,000
——— 10,000
.r#:*"ﬂﬂ e
100
1 1 L L l L 1 L 1 1 1 L l
1947 50 55 60 65 70 75 80 85 90 95 2000 05 11

Figure 1.12 Growth in Transistor Count on Integrated Circuits

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of rapid growth in
density. This means that the cost of computer logic and memory circuitry has fallen at a
dramatic rate.

2. Because logic and memory elements are placed closer together on more densely packed chips,
the electrical path length is shortened, increasing operating speed.

3. The computer becomes smaller, making it more convenient to place in a variety of
environments.

4. There is a reduction in power requirements.

The interconnections on the integrated circuit are much more reliable than solder connections.

With more circuitry on each chip, there are fewer interchip connections.

o

Multichip Module

The increasing requirements for denser and faster memories have led to efforts to further compact
standard packaging approaches, with one of the most important and widely used being the multichip
module. In traditional system design, each individual process or memory chip is packaged and then
wired to a motherboard (see Figure 1.11).

. B Second-
" . level
Bare l*lrst-le?el 1 connection
chip connection |~
| L‘nmmn.n .circuit hase. |
| o MCMpackage o |

2 Printed circuit board (motherboard) 8

Figure 1.13 Multichip Module

The basic idea behind developing MCM technology is to decrease the average spacing between ICs
in an electronic system. An MCM is a chip package that contains several bare chips mounted close
together on a substrate (base) of some kind and interconnected by conductors in that base. The short
tracks between the chips increase performance and eliminate much of the noise that external tracks
between individual chip packages can pick up.

MCNMs are classified by substrate, which include the following types [BLUM99]:

e MCM-L: composed of metal traces on stacked organic laminate sheets.
e MCM-C: metal patterned and interconnected on co-fired ceramic layers.
e MCM-D: vapor-deposited, patterned metal layers alternating sequentially with spun-on or vapor-
deposited dielectric thin films.
The basic architecture of an MCM is composed of (Figure 1.13):

¢ Integrated circuits: Bare chips mounted on/in the surface of the substrate.

e Level-1 interconnections: Connections between chips through paths in the substrate.

e Substrate: The common base that provides all the signal interconnections and the mechanical
support for all chips

e MCM package: Provides a degree of protection to the circuits in addition to heat removal and
interconnections.

e Level-2 interconnections: Provides the necessary interface to the printed circuit board on which
the MCM is mounted.

1.5 The Evolution of the Intel x86 Architecture

Throughout this book, we rely on many concrete examples of computer design and implementation to
illustrate concepts and to illuminate trade-offs. Numerous systems, both contemporary and historical,
provide examples of important computer architecture design features. But the book relies principally
on examples from two processor families: the Intel x86 and the ARM architectures. The current x86
offerings represent the results of decades of design effort oncomplex instruction set computers
(CISCs). The x86 incorporates the sophisticated design principles once found only on mainframes
and supercomputers and serves as an excellent example of CISC design. An alternative approach to
processor design is the reduced instruction set computer (RISC) . The ARM architecture is used
in a wide variety of embedded systems and is one of the most powerful and best-designed RISC-
based systems on the market. In this section and the next, we provide a brief overview of these two
systems.

In terms of market share, Intel has ranked as the number one maker of microprocessors for non-
embedded systems for decades, a position it seems unlikely to yield. The evolution of its flagship
microprocessor product serves as a good indicator of the evolution of computer technology in general.

Table 1.3 shows that evolution. Interestingly, as microprocessors have grown faster and much more
complex, Intel has actually picked up the pace. Intel used to develop microprocessors one after
another, every four years. But Intel hopes to keep rivals at bay by trimming a year or two off this
development time, and has done so with the most recent x86 generations.”

" Intel refers to this as the tick-tock model. Using this model, Intel has successfully delivered next-generation silicon

technology as well as new processor microarchitecture on alternating years for the past several years. See

Table 1.3 Evolution of Intel Microprocessors (page 1 of 2)

(a) 1970s Processors

4004 8008 8080 8086 8088
Introduced 1971 1972 1974 1978 1979
Clock speeds 108 kHz | 108 kHz | 2 MHz | 5 MHz, 8 MHz, 10 MHz | 5 MHz, 8 MHz
Bus width 4 bits 8 bits 8 bits 16 bits 8 bits
Number of transistors 2,300 3,500 6,000 29,000 29,000
Feature size (um) 10 8 6 3 6
Addressable memory | 640 bytes | 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors
I |

80286 386TM DX 386TM SX 486TM DX CPU
Introduced 1982 1985 1988 1989
Clock speeds 6—12.5 MHz 16-33 MHz 16-33 MHz 25-50 MHz
Bus width 16 bits 32 bits 16 bits 32 bits
Number of transistors 134,000 275,000 275,000 1.2 million
Feature size (um) 1.5 1 1 0.8-1
Addressable memory 16 MB 4 GB 16 MB 4 GB
Virtual memory 1GB 64 TB 64 TB 64 TB
Cache — — — 8 kB
(c) 1990s Processors
486TM SX Pentium Pentium Pro Pentium I
Introduced 1991 1993 1995 1997
Clock speeds 16-33 MHz | 60-166 MHz, 150-200 MHz 200-300 MHz
Bus width 32 bits 32 bits 64 bits 64 bits
Number of transistors | 1.185 million 3.1 million 5.5 million 7.5 million
Feature size (um) 1 0.8 0.6 0.35
Addressable memory 4 GB 4 GB 64 GB 64 GB
Virtual memory 64 TB 64 TB 64 TB 64 TB
Cache 8 kB 8 kB 512 kB L1 and 1 MB L2 512 kB L2
(d) Recent Processors
Pentium lll | Pentium4 | Core 2 Duo | Core i7 EE 4960X Core i9-
7900X
Introduced 1999 2000 2006 2013 2017

Clock speeds 450-660 1.3-1.8 1.06-1.2 4 GHz 4.3 GHz
MHz GHz GHz

Bus width 64 bits 64 bits 64 bits 64 bits 64 bits

Number of 9.5 million 42 million 167 million 1.86 billion 7.2 billion

transistors

Feature size (nm) 250 180 65 22 14

Addressable 64 GB 64 GB 64 GB 64 GB 128 GB

memory

Virtual memory 64 TB 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5MB L2/ 15 MB 14 MB L3

L3
Number of cores 1 1 2 6 10

It is worthwhile to list some of the highlights of the evolution of the Intel product line:

e 8080: The world’s first general-purpose microprocessor. This was an 8-bit machine, with an 8-bit

data path to memory. The 8080 was used in the first personal computer, the Altair.

e 8086: A far more powerful, 16-bit machine. In addition to a wider data path and larger registers, the
8086 sported an instruction cache, or queue, that prefetches a few instructions before they are
executed. A variant of this processor, the 8088, was used in IBM’s first personal computer,

securing the success of Intel. The 8086 is the first appearance of the x86 architecture.

e 80286: This extension of the 8086 enabled addressing a 16-MB memory instead of just 1 MB.

e 80386: Intel's first 32-bit machine, and a major overhaul of the product. With a 32-bit architecture,
the 80386 rivaled the complexity and power of minicomputers and mainframes introduced just a
few years earlier. This was the first Intel processor to support multitasking, meaning it could run
multiple programs at the same time.

e 80486: The 80486 introduced the use of much more sophisticated and powerful cache technology
and sophisticated instruction pipelining. The 80486 also offered a built-in math coprocessor,
offloading complex math operations from the main CPU.

e Pentium: With the Pentium, Intel introduced the use of superscalar techniques, which allow
multiple instructions to execute in parallel.

e Pentium Pro: The Pentium Pro continued the move into superscalar organization begun with the
Pentium, with aggressive use of register renaming, branch prediction, data flow analysis, and
speculative execution.

e Pentium IlI: The Pentium Il incorporated Intel MMX technology, which is designed specifically to
process video, audio, and graphics data efficiently.

e Pentium lll: The Pentium Il incorporates additional floating-point instructions: The Streaming
SIMD Extensions (SSE) instruction set extension added 70 new instructions designed to increase
performance when exactly the same operations are to be performed on multiple data objects.
Typical applications are digital signal processing and graphics processing.

e Pentium 4: The Pentium 4 includes additional floating-point and other enhancements for

multimedia.

e Core: This is the first Intel x86 microprocessor with a dual core, referring to the implementation of
two cores on a single chip.

e Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad provides four cores
on a single chip. More recent Core offerings have up to 10 cores per chip. An important addition to
the architecture was the Advanced Vector Extensions instruction set that provided a set of 256-bit,
and then 512-bit, instructions for efficient processing of vector data.

Almost 40 years after its introduction in 1978, the x86 architecture continues to dominate the
processor market outside of embedded systems. Although the organization and technology of the x86
machines have changed dramatically over the decades, the instruction set architecture has evolved to
remain backward compatible with earlier versions. Thus, any program written on an older version of
the x86 architecture can execute on newer versions. All changes to the instruction set architecture
have involved additions to the instruction set, with no subtractions. The rate of change has been the
addition of roughly one instruction per month added to the architecture [ANTHOS8], so that there are
now thousands of instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hardware over the past 35
years. The 1978 8086 was introduced with a clock speed of 5 MHz and had 29,000 transistors. A six-
core Core i7 EE 4960X introduced in 2013 operates at 4 GHz, a speedup of a factor of 800, and has
1.86 billion transistors, about 64,000 times as many as the 8086. Yet the Core i7 EE 4960X is in only
a slightly larger package than the 8086 and has a comparable cost.

1.6 Embedded Systems

The term embedded system refers to the use of electronics and software within a product, as opposed
to a general-purpose computer, such as a laptop or desktop system. Millions of computers are sold
every year, including laptops, personal computers, workstations, servers, mainframes, and
supercomputers. In contrast, billions of computer systems are produced each year that are embedded
within larger devices. Today many, perhaps most, devices that use electric power have an embedded
computing system. It is likely that in the near future virtually all such devices will have embedded
computing systems.

Types of devices with embedded systems are almost too numerous to list. Examples include cell
phones, digital cameras, video cameras, calculators, microwave ovens, home security systems,
washing machines, lighting systems, thermostats, printers, various automotive systems (e.g.,
transmission control, cruise control, fuel injection, anti-lock brakes, and suspension systems), tennis
rackets, toothbrushes, and numerous types of sensors and actuators in automated systems.

Often, embedded systems are tightly coupled to their environment. This can give rise to real-time
constraints imposed by the need to interact with the environment. Constraints, such as required
speeds of motion, required precision of measurement, and required time durations, dictate the timing
of software operations. If multiple activities must be managed simultaneously, this imposes more
complex real-time constraints.

Figure 1.14 shows in general terms an embedded system organization. In addition to the processor
and memory, there are a number of elements that differ from the typical desktop or laptop computer:

Custom
logic

‘//” A

Y

Processor |<=———>| Memory

Human Diagnostic
interface port
A/D D/

A
conversion Conversion
A
¥
Actuators/
Sensors . e
indicators

Figure 1.14 Possible Organization of an Embedded System

e There may be a variety of interfaces that enable the system to measure, manipulate, and otherwise
interact with the external environment. Embedded systems often interact (sense, manipulate, and

communicate) with the external world through sensors and actuators, and hence are typically
reactive systems; a reactive system is in continual interaction with the environment and executes at
a pace determined by that environment.

e The human interface may be as simple as a flashing light or as complicated as real-time robotic
vision. In many cases, there is no human interface.

e The diagnostic port may be used for diagnosing the system that is being controlled—not just for
diagnosing the computer.

e Special-purpose field programmable (FPGA), application-specific (ASIC), or even nondigital
hardware may be used to increase performance or reliability.

e Software often has a fixed function and is specific to the application.

e Efficiency is of paramount importance for embedded systems. They are optimized for energy, code
size, execution time, weight and dimensions, and cost.

There are several noteworthy areas of similarity to general-purpose computer systems as well:

e Even with nominally fixed function software, the ability to field upgrade to fix bugs, to improve
security, and to add functionality, has become very important for embedded systems, and not just
in consumer devices.

e One comparatively recent development has been of embedded system platforms that support a
wide variety of apps. Good examples of this are smartphones and audio/visual devices, such as
smart TVs.

The Internet of Things

It is worthwhile to separately call out one of the major drivers in the proliferation of embedded
systems. The Internet of things (loT) is a term that refers to the expanding interconnection of smart
devices, ranging from appliances to tiny sensors. A dominant theme is the embedding of short-range
mobile transceivers into a wide array of gadgets and everyday items, enabling new forms of
communication between people and things, and between things themselves. The Internet now
supports the interconnection of billions of industrial and personal objects, usually through cloud
systems. The objects deliver sensor information, act on their environment, and, in some cases, modify
themselves to create overall management of a larger system, like a factory or city.

The loT is primarily driven by deeply embedded devices (defined below). These devices are low-
bandwidth, low-repetition data-capture, and low-bandwidth data-usage appliances that communicate
with each other and provide data via user interfaces. Embedded appliances, such as high-resolution
video security cameras, video VoIP phones, and a handful of others, require high-bandwidth
streaming capabilities. Yet countless products simply require packets of data to be intermittently
delivered.

With reference to the end systems supported, the Internet has gone through roughly four generations
of deployment culminating in the loT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought as IT devices
by enterprise IT people and primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built by non-IT
companies, such as medical machinery, SCADA (supervisory control and data acquisition),
process control, and kiosks, bought as appliances by enterprise OT people and primarily using
wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT devices by
consumers (employees) exclusively using wireless connectivity and often multiple forms of
wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, and OT

people exclusively using wireless connectivity, generally of a single form, as part of larger
systems.

It is the fourth generation that is usually thought of as the 10T, and it is marked by the use of billions of
embedded devices.

Embedded Operating Systems

There are two general approaches to developing an embedded operating system (OS). The first
approach is to take an existing OS and adapt it for the embedded application. For example, there are
embedded versions of Linux, Windows, and Mac, as well as other commercial and proprietary
operating systems specialized for embedded systems. The other approach is to design and implement
an OS intended solely for embedded use. An example of the latter is TinyOS, widely used in wireless
sensor networks. This topic is explored in depth in [STAL18].

Application Processors versus Dedicated Processors

In this subsection, and the next two, we briefly introduce some terms commonly found in the literature
on embedded systems. Application processors are defined by the processor’s ability to execute
complex operating systems, such as Linux, Android, and Chrome. Thus, the application processor is
general-purpose in nature. A good example of the use of an embedded application processor is the
smartphone. The embedded system is designed to support numerous apps and perform a wide
variety of functions.

Most embedded systems employ a dedicated processor, which, as the name implies, is dedicated to
one or a small number of specific tasks required by the host device. Because such an embedded
system is dedicated to a specific task or tasks, the processor and associated components can be
engineered to reduce size and cost.

Microprocessors versus Microcontrollers

As we have seen, early microprocessor chips included registers, an ALU, and some sort of
control unit or instruction processing logic. As transistor density increased, it became possible to
increase the complexity of the instruction set architecture, and ultimately to add memory and more
than one processor. Contemporary microprocessor chips, as shown in Figure 1.2, include multiple
cores and a substantial amount of cache memory.

A microcontroller chip makes a substantially different use of the logic space available. Figure 1.15
shows in general terms the elements typically found on a microcontroller chip. As shown, a
microcontroller is a single chip that contains the processor, non-volatile memory for the program
(ROM), volatile memory for input and output (RAM), a clock, and an I/O control unit. The processor
portion of the microcontroller has a much lower silicon area than other microprocessors and much
higher energy efficiency. We examine microcontroller organization in more detail in Section 1.7.

Processor

1
1
1
1
1
1
1
1
1
1
I v
Analo_g ,:l.filﬂ 3 A/D RAM | Temporary
acquisition I converter) data
1 1
: l
1 1
Analﬂg_ dr.rlla « D/A ROM | Program
transmission ! converter . and data
1
: I
] 1
, - 1 P 1
Send/receive) o o | Serial /O EEPROM | Permanent
data ' ports ! data
1 1
1 1
1 1
] 1
P_'enpheral E : : Parallel I/O TIMER : Tl"ﬂlilg
interfaces] ports System . functions
' bus :

Figure 1.15 Typical Microcontroller Chip Elements

Also called a “computer on a chip,” billions of microcontroller units are embedded each year in myriad
products from toys to appliances to automobiles. For example, a single vehicle can use 70 or more
microcontrollers. Typically, especially for the smaller, less expensive microcontrollers, they are used
as dedicated processors for specific tasks. For example, microcontrollers are heavily utilized in
automation processes. By providing simple reactions to input, they can control machinery, turn fans on
and off, open and close valves, and so forth. They are integral parts of modern industrial technology
and are among the most inexpensive ways to produce machinery that can handle extremely complex
functionalities.

Microcontrollers come in a range of physical sizes and processing power. Processors range from 4-bit
to 32-bit architectures. Microcontrollers tend to be much slower than microprocessors, typically
operating in the MHz range rather than the GHz speeds of microprocessors. Another typical feature of
a microcontroller is that it does not provide for human interaction. The microcontroller is programmed
for a specific task, embedded in its device, and executes as and when required.

Embedded versus Deeply Embedded Systems

We have, in this section, defined the concept of an embedded system. A subset of embedded
systems, and a quite numerous subset, is referred to as deeply embedded systems. Although this
term is widely used in the technical and commercial literature, you will search the Internet in vain (or at
least | did) for a straightforward definition. Generally, we can say that a deeply embedded system has
a processor whose behavior is difficult to observe both by the programmer and the user. A deeply
embedded system uses a microcontroller rather than a microprocessor, is not programmable once the

program logic for the device has been burned into ROM (read-only memory), and has no interaction
with a user.

Deeply embedded systems are dedicated, single-purpose devices that detect something in the
environment, perform a basic level of processing, and then do something with the results. Deeply
embedded systems often have wireless capability and appear in networked configurations, such as
networks of sensors deployed over a large area (e.qg., factory, agricultural field). The Internet of things
depends heavily on deeply embedded systems. Typically, deeply embedded systems have extreme
resource constraints in terms of memory, processor size, time, and power consumption.

1.7 ARM Architecture

The ARM architecture refers to a processor architecture that has evolved from RISC design principles
and is used in embedded systems. Chapter 7 examines RISC design principles in detail. In this
section, we give a brief overview of the ARM architecture.

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed by ARM Holdings,
Cambridge, England. The company doesn’t make processors but instead designs microprocessor and
multicore architectures and licenses them to manufacturers. ARM Holdings has two types of
licensable products: processors and processor architectures. For processors, the customer buys the
rights to use ARM-supplied design in their own chips. For a processor architecture, the customer buys
the rights to design their own processor compliant with ARM’s architecture.

ARM chips are high-speed processors that are known for their small die size and low power
requirements. They are widely used in smartphones and other handheld devices, including game
systems, as well as a large variety of consumer products. ARM chips are the processors in Apple’s
popular iPod and iPhone devices, and are used in virtually all Android smartphones as well. ARM’s
partners shipped 16.7 billion ARM-based chips in 2016. ARM is probably the most widely used
embedded processor architecture and indeed the most widely used processor architecture of any kind
in the world [VANC14].

The origins of ARM technology can be traced back to the British-based Acorn Computers company. In
the early 1980s, Acorn was awarded a contract by the British Broadcasting Corporation (BBC) to
develop a new microcomputer architecture for the BBC Computer Literacy Project. The success of this
contract enabled Acorn to go on to develop the first commercial RISC processor, the Acorn RISC
Machine (ARM). The first version, ARM1, became operational in 1985 and was used for internal
research and development as well as being used as a coprocessor in the BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual fabrication of the
processor chips. VLSI was licensed to market the chip on its own and had some success in getting
other companies to use the ARM in their products, particularly as an embedded processor.

The ARM design matched a growing commercial need for a high-performance, low-power-
consumption, small-size, and low-cost processor for embedded applications. But further development
was beyond the scope of Acorn’s capabilities. Accordingly, a new company was organized, with
Acorn, VLSI, and Apple Computer as founding partners, known as ARM Ltd. The Acorn RISC
Machine became Advanced RISC Machines.® ARM was acquired by Japanese telecommunications
company SoftBank Group in 2016.

& The company dropped the designation Advanced RISC Machines in the late 1990s. It is now simply known as the
ARM architecture.

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of the processor and
efficient execution. All instructions are 32 bits long and follow a regular format. This makes the ARM
ISA suitable for implementation over a wide range of products.

Augmenting the basic ARM ISA is the Thumb instruction set, which is a re-encoded subset of the
ARM instruction set. Thumb is designed to increase the performance of ARM implementations that
use a 16-bit or narrower memory data bus, and to allow better code density than provided by the ARM
instruction set. The Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded
into 16-bit instructions. The current defined version is Thumb-2.

The ARM and Thumb-2 ISAs are discussed in Chapters 12 and 13.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related technologies, but the
bulk of their product line is the Cortex family of microprocessor architectures. There are three Cortex
architectures, conveniently labeled with the initials A, R, and M.

CORTEX-A

The Cortex-A series of processors are application processors, intended for mobile devices such as
smartphones and eBook readers, as well as consumer devices such as digital TV and home gateways
(e.g., DSL and cable Internet modems). These processors run at higher clock frequency (over 1 GHz),
and support a memory management unit (MMU), which is required for full feature OSs such as Linux,
Android, MS Windows, and mobile OSs. An MMU is a hardware module that supports virtual memory
and paging by translating virtual addresses into physical addresses; this topic is explored in Chapter
8.

The two architectures use both the ARM and Thumb-2 instruction. Some of the processors in this
series are 32-bit machines and others are 64-bit machines.

CORTEX-R

The Cortex-R is designed to support real-time applications, in which the timing of events needs to be
controlled with rapid response to events. They can run at a fairly high clock frequency (e.g., 2 MHz to
4 MHz) and have very low response latency. The Cortex-R includes enhancements both to the
instruction set and to the processor organization to support deeply embedded real-time devices. Most
of these processors do not have MMU; the limited data requirements and the limited number of
simultaneous processes eliminates the need for elaborate hardware and software support for virtual
memory. The Cortex-R does have a Memory Protection Unit (MPU), cache, and other memory
features designed for industrial applications. An MPU is a hardware module that prohibits one
program in memory from accidentally accessing memory assigned to another active program. Using
various methods, a protective boundary is created around the program, and instructions within the
program are prohibited from referencing data outside of that boundary.

Examples of embedded systems that would use the Cortex-R are automotive braking systems, mass
storage controllers, and networking and printing devices.

CORTEX-M

Cortex-M series processors have been developed primarily for the microcontroller domain where the
need for fast, highly deterministic interrupt management is coupled with the desire for extremely low
gate count and lowest possible power consumption. As with the Cortex-R series, the Cortex-M
architecture has an MPU but no MMU. The Cortex-M uses only the Thumb-2 instruction set. The
market for the Cortex-M includes |loT devices, wireless sensor/actuator networks used in factories and
other enterprises, automotive body electronics, and so on.

There are currently seven versions of the Cortex-M series:

Cortex-MO0: Designed for 8- and 16-bit applications, this model emphasizes low cost, ultra low
power, and simplicity. It is optimized for small silicon die size (starting from 12k gates) and use in
the lowest cost chips.

Cortex-M0+: An enhanced version of the MO that is more energy efficient.

e Cortex-M3: Designed for 16- and 32-bit applications, this model emphasizes performance and

Int

energy efficiency. It also has comprehensive debug and trace features to enable software
developers to develop their applications quickly.

Cortex-M4: This model provides all the features of the Cortex-M3, with additional instructions to
support digital signal processing tasks.

Cortex-M7: Provides higher performance than the M4. It is still primarily a 32-bit machine but uses
64-bit wide instruction and data buses.

Cortex-M23: This model is similar to the M0+, and adds integer divide instructions and some
security features.

Cortex-M33: This model is similar to the M4, and adds some security features.

his text, we will primarily use the ARM Cortex-M3 as our example embedded system processor. It

is the best suited of all ARM models for general-purpose microcontroller use. The Cortex-M3 is used
by a variety of manufacturers of microcontroller products. Initial microcontroller devices from lead
partners already combine the Cortex-M3 processor with flash, SRAM, and multiple peripherals to

pro

vide a competitive offering at the price of just $1.

Figure 1.16 provides a block diagram of the EFM32 microcontroller from Silicon Labs. The figure also
shows detail of the Cortex-M3 processor and core components. We examine each level in turn.

e N
va:(:uril};1 fﬁnﬂlug lntﬂrfﬂce; (Timers &fTriggcrE" (Parallel /O Ports) (Serial Interfaces |
(Periph | (Timer/ & R
- (ous nt lcounte || Pin USART|| UsB
ware AD) (D/A) ||(Low)(Real)| ||) 3)
AES con- con- \energy J{ime ctr}| | Generall (Externall| |(D
verter) \verter) || " pylse \(Watch-)| ||purpose| | Inter- UART || energy
counter) |\dog tmr /O rupts UART
. AN / \.L A 7S y . AN oy
Peripheral bus
- Y7 \14 N
fVoltageq\ an]tageq\ ingh fre- 'ingh freq“ " Flash | [SRAM Debug DMA)
regula- | | compar- ||||quency RC|| crystal memory | [memory | | inter- | | control-
_ tor) { ator | kﬂﬁm"ﬂtﬂg @56!11&105 _64kB | 64kB face ler
rPﬂwer-\ (Brown-)| |(Low fre- | [Low ﬁeqﬁ Memory) (k
onreset | | O de- ||||quency RC|| crystal protec- Cortex-M3 processor
9) {_tector kuscﬂlatﬂrj @5‘3’”3‘“5 Jion undl;t& A 4
\ (Energy management) _Clock management)\ ¢ Core and memory ;‘3

Microcontroller Chip

4
>

[Code
interface

SRAM &

peripheral I/F

Bus marrix |
Debug logic
DAP Memory
protection unit
I Sy ARM
=T -= NVIC core ETM
——em==="""" Cortex-M3 Core _ . J
(NVIC ETM) »/ Cortex-M3
interface interface) 7 Processor
32-bit ALU .
Hardware 32-bit ,f,
divider multiplier g
/,f
Control Thumb R4
logic decode s
rd
Instruction Data !.r{
\ interface interface),f

Figure 1.16 Typical Microcontroller Chip Based on Cortex-M3

The Cortex-M3 core makes use of separate buses for instructions and data. This arrangement is
sometimes referred to as a Harvard architecture, in contrast with the von Neumann architecture, which
uses the same signal buses and memory for both instructions and data. By being able to read both an
instruction and data from memory at the same time, the Cortex-M3 processor can perform many
operations in parallel, speeding application execution. The core contains a decoder for Thumb
instructions, an advanced ALU with support for hardware multiply and divide, control logic, and
interfaces to the other components of the processor. In particular, there is an interface to the nested
vector interrupt controller (NVIC) and the embedded trace macrocell (ETM) module.

The core is part of a module called the Cortex-M3 processor. This term is somewhat misleading,
because typically in the literature, the terms core and processor are viewed as equivalent. In addition
to the core, the processor includes the following elements:

e NVIC: Provides configurable interrupt handling abilities to the processor. It facilitates low-latency
exception and interrupt handling, and controls power management.

e ETM: An optional debug component that enables reconstruction of program execution. The ETM is
designed to be a high-speed, low-power debug tool that only supports instruction trace.

e Debug access port (DAP): This provides an interface for external debug access to the processor.

Debug logic: Basic debug functionality includes processor halt, single-step, processor core

register access, unlimited software breakpoints, and full system memory access.

ICode interface: Fetches instructions from the code memory space.

SRAM & peripheral interface: Read/write interface to data memory and peripheral devices.

Bus matrix: Connects the core and debug interfaces to external buses on the microcontroller.

Memory protection unit: Protects critical data used by the operating system from user

applications, separating processing tasks by disallowing access to each other’s data, disabling
access to memory regions, allowing memory regions to be defined as read-only, and detecting
unexpected memory accesses that could potentially break the system.
The upper part of Figure 1.16 shows the block diagram of a typical microcontroller built with the
Cortex-M3, in this case the EFM32 microcontroller. This microcontroller is marketed for use in a wide
variety of devices, including energy, gas, and water metering; alarm and security systems; industrial
automation devices; home automation devices; smart accessories; and health and fitness devices.
The silicon chip consists of 10 main areas:

e Core and memory: This region includes the Cortex-M3 processor, static RAM (SRAM) data
memory,? and flash memory10 for storing program instructions and nonvarying application data.
Flash memory is nonvolatile (data is not lost when power is shut off) and so is ideal for this
purpose. The SRAM stores variable data. This area also includes a debug interface, which makes
it easy to reprogram and update the system in the field.
® Static RAM (SRAM) is a form of random-access memory used for cache memory; see Chapter 6.

19 Flash memory is a versatile form of memory used both in microcontrollers and as external memory; it is

discussed in Chapter 7.

Parallel 1/0 ports: Configurable for a variety of parallel I/O schemes.

Serial interfaces: Supports various serial I/O schemes.

Analog interfaces: Analog-to-digital and digital-to-analog logic to support sensors and actuators.
Timers and triggers: Keeps track of timing and counts events, generates output waveforms, and
triggers timed actions in other peripherals.

e Clock management: Controls the clocks and oscillators on the chip. Multiple clocks and oscillators
are used to minimize power consumption and provide short startup times.

e Energy management: Manages the various low-energy modes of operation of the processor and
peripherals to provide real-time management of the energy needs so as to minimize energy
consumption.

e Security: The chip includes a hardware implementation of the Advanced Encryption Standard
(AES).

e 32-bit bus: Connects all of the components on the chip.

e Peripheral bus: A network which lets the different peripheral modules communicate directly with
each other without involving the processor. This supports timing-critical operation and reduces
software overhead.

Comparing Figure 1.16 with Figure 1.2, you will see many similarities and the same general
hierarchical structure. Note, however, that the top level of a microcontroller computer system is a
single chip, whereas for a multicore computer, the top level is a motherboard containing a number of
chips. Another noteworthy difference is that there is no cache, either in the Cortex-M3 processor or in
the microcontroller as a whole, which plays an important role if the code or data resides in external
memory. Though the number of cycles to read the instruction or data varies depending on cache hit or
miss, the cache greatly improves the performance when external memory is used. Such overhead is
not needed for a microcontroller.

1.8 Key Terms, Review Questions, and Problems

Key Terms

application processor
arithmetic and logic unit (ALU)
ARM

central processing unit (CPU)
chip

computer architecture
computer organization

control unit

core

dedicated processor

deeply embedded system
embedded system

gate

input—output (I/O)

instruction set architecture (ISA)
integrated circuit

Intel x86

Internet of things (loT)

main memory

memory cell

memory management unit (MMU)
memory protection unit (MPU)
microcontroller
microelectronics
microprocessor

motherboard

multichip module (MCM)
multicore

multicore processor

printed circuit board
processor

registers
semiconductor
semiconductor memory
system bus

system interconnection

transistor

Review Questions

1.1 What, in general terms, is the distinction between computer organization and computer
architecture?

1.2 What, in general terms, is the distinction between computer structure and computer
function?

1.3 What are the four main functions of a computer?

1.4 List and briefly define the main structural components of a computer.

1.5 List and briefly define the main structural components of a processor.

1.6 What is a stored program computer?

1.7 Explain Moore’s law.

1.8 What is the key distinguishing feature of a microprocessor?

Problems

1.1 You are to write an IAS program to comgute%exresults of the following equation.

X=1

Assume that the computation does not result in an arithmetic overflow and that X, Y, and N are
positive integers with N > 1. Note: The IAS did not have assembly language, only machine

language. N(N+1)
a. Use the equation Sum(Y)=——2—— when writing the IAS program.

b. Do it the “hard way,” without using the equation from part (a).

1.2
a. On the IAS, what would the machine code instruction look like to load the contents of
memory address 2 to the accumulator?
b. How many trips to memory does the CPU need to make to complete this instruction
during the instruction cycle?

1.3 On the IAS, describe in English the process that the CPU must undertake to read a value
from memory and to write a value to memory in terms of what is put into the MAR, MBR,
address bus, data bus, and control bus.

1.4 Given the memory contents of the IAS computer shown below,

Address Contents

08A 010FA210FB

08B 010FAOF08D

08C 020FA210FB

show the assembly language code for the program, starting at address 08A. Explain what this
program does.
1.5 In Figure 1.6 , indicate the width, in bits, of each data path (e.g., between AC and ALU).
1.6 In the IBM 360 Models 65 and 75, addresses are staggered in two separate main memory
units (e.g., all even-numbered words in one unit and all odd-numbered words in another). What
might be the purpose of this technique?
1.7 The relative performance of the IBM 360 Model 75 is 50 times that of the 360 Model 30, yet
the instruction cycle time is only 5 times as fast. How do you account for this discrepancy?
1.8 While browsing at Billy Bob’s computer store, you overhear a customer asking Billy Bob
what is the fastest computer in the store that he can buy. Billy Bob replies, “You’re looking at
our Macintoshes. The fastest Mac we have runs at a clock speed of 1.2 GHz. If you really want
the fastest machine, you should buy our 2.4-GHz Intel Pentium IV instead.” Is Billy Bob correct?
What would you say to help this customer?
1.9 The ENIAC, a precursor to the ISA machine, was a decimal machine, in which each register
was represented by a ring of 10 vacuum tubes. At any time, only one vacuum tube was in the
ON state, representing one of the 10 decimal digits. Assuming that ENIAC had the capability to
have multiple vacuum tubes in the ON and OFF state simultaneously, why is this representation
“‘wasteful” and what range of integer values could we represent using the 10 vacuum tubes?
1.10 For each of the following examples, determine whether this is an embedded system,
explaining why or why not.
a. Are programs that understand physics and/or hardware embedded? For example, one
that uses finite-element methods to predict fluid flow over airplane wings?
b. Is the internal microprocessor controlling a disk drive an example of an embedded
system?
c. 1/O drivers control hardware, so does the presence of an |/O driver imply that the
computer executing the driver is embedded?
d. Is a PDA (Personal Digital Assistant) an embedded system?
Is the microprocessor controlling a cell phone an embedded system?
Are the computers in a big phased-array radar considered embedded? These radars are
10-story buildings with one to three 100-foot diameter radiating patches on the sloped
sides of the building.
g. Is a traditional flight management system (FMS) built into an airplane cockpit considered
embedded?
h. Are the computers in a hardware-in-the-loop (HIL) simulator embedded?
i. Is the computer controlling a pacemaker in a person’s chest an embedded computer?
j. Is the computer controlling fuel injection in an automobile engine embedded?

= @

Chapter 2 Performance Concepts

2.1 Designing for Performance
Microprocessor Speed

Performance Balance

Improvements in Chip Organization and Architecture

2.2 Multicore, MICs, and GPGPUs

2.3 Two Laws that Provide Insight: Amdahl’s Law and Little’s Law
Amdahl’s Law

Little’s Law

2.4 Basic Measures of Computer Performance
Clock Speed

Instruction Execution Rate

2.5 Calculating the Mean
Arithmetic Mean

Harmonic Mean

Geometric Mean

2.6 Benchmarks and SPEC
Benchmark Principles

SPEC Benchmarks

2.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Understand the key performance issues that relate to computer design.
e Explain the reasons for the move to multicore organization, and understand the trade-off between

cache and processor resources on a single chip.
Distinguish among multicore, MIC, and GPGPU organizations.

Discuss the SPEC benchmarks.

Summarize some of the issues in computer performance assessment.

Explain the differences among arithmetic, harmonic, and geometric means.

This chapter addresses the issue of computer system performance. We begin with
a consideration of the need for balanced utilization of computer resources, which
provides a perspective that is useful throughout the book. Next we look at
contemporary computer organization designs intended to provide performance to
meet current and projected demand. Finally, we look at tools and models that have

been developed to provide a means of assessing comparative computer system
performance.

2.1 Designing for Performance

Year by year, the cost of computer systems continues to drop dramatically, while the performance and
capacity of those systems continue to rise equally dramatically. Today’s laptops have the computing
power of an IBM mainframe from 10 or 15 years ago. Thus, we have virtually “free” computer power.
Processors are so inexpensive that we now have microprocessors we throw away. The digital
pregnancy test is an example (used once and then thrown away). And this continuing technological
revolution has enabled the development of applications of astounding complexity and power. For
example, desktop applications that require the great power of today’s microprocessor-based systems
include:

Image processing
Three-dimensional rendering
Speech recognition
Videoconferencing

Multimedia authoring
Voice and video annotation of files

e Simulation modeling
Workstation systems now support highly sophisticated engineering and scientific applications and
have the capacity to support image and video applications. In addition, businesses are relying on
increasingly powerful servers to handle transaction and database processing and to support massive
client/server networks that have replaced the huge mainframe computer centers of yesteryear. As
well, cloud service providers use massive high-performance banks of servers to satisfy high-volume,
high-transaction-rate applications for a broad spectrum of clients.

What is fascinating about all this from the perspective of computer organization and architecture is
that, on the one hand, the basic building blocks for today’s computer miracles are virtually the same
as those of the IAS computer from over 50 years ago, while on the other hand, the techniques for
squeezing the maximum performance out of the materials at hand have become increasingly
sophisticated.

This observation serves as a guiding principle for the presentation in this book. As we progress
through the various elements and components of a computer, two objectives are pursued. First, the
book explains the fundamental functionality in each area under consideration, and second, the book
explores those techniques required to achieve maximum performance. In the remainder of this
section, we highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling power is the
relentless pursuit of speed by processor chip manufacturers. The evolution of these machines
continues to bear out Moore’s law, described in Chapter 1. So long as this law holds, chipmakers can
unleash a new generation of chips every three years—with four times as many transistors. In memory
chips, this has quadrupled the capacity of dynamic random-access memory (DRAM), still the basic
technology for computer main memory, every three years. In microprocessors, the addition of new
circuits, and the speed boost that comes from reducing the distances between them, has improved
performance four- or fivefold every three years or so since Intel launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless it is fed a constant stream
of work to do in the form of computer instructions. Anything that gets in the way of that smooth flow
undermines the power of the processor. Accordingly, while the chipmakers have been busy learning

how to fabricate chips of greater and greater density, the processor designers must come up with ever
more elaborate techniques for feeding the monster. Among the techniques built into contemporary
processors are the following:

e Pipelining: The execution of an instruction involves multiple stages of operation, including fetching
the instruction, decoding the opcode, fetching operands, performing a calculation, and so on.
Pipelining enables a processor to work simultaneously on multiple instructions by performing a
different phase for each of the multiple instructions at the same time. The processor overlaps
operations by moving data or instructions into a conceptual pipe with all stages of the pipe
processing simultaneously. For example, while one instruction is being executed, the computer is
decoding the next instruction. This is the same principle as seen in an assembly line.

e Branch prediction: The processor looks ahead in the instruction code fetched from memory and
predicts which branches, or groups of instructions, are likely to be processed next. If the processor
guesses right most of the time, it can prefetch the correct instructions and buffer them so that the
processor is kept busy. The more sophisticated examples of this strategy predict not just the next
branch but multiple branches ahead. Thus, branch prediction potentially increases the amount of
work available for the processor to execute.

e Superscalar execution: This is the ability to issue more than one instruction in every processor
clock cycle. In effect, multiple parallel pipelines are used.

e Data flow analysis: The processor analyzes which instructions are dependent on each other’s
results, or data, to create an optimized schedule of instructions. In fact, instructions are scheduled
to be executed when ready, independent of the original program order. This prevents unnecessary
delay.

e Speculative execution: Using branch prediction and data flow analysis, some processors
speculatively execute instructions ahead of their actual appearance in the program execution,
holding the results in temporary locations. This enables the processor to keep its execution
engines as busy as possible by executing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer power of the processor.
Collectively they make it possible to execute many instructions per processor cycle, rather than to take
many cycles per instruction.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical components of the
computer have not kept up. The result is a need to look for performance balance: an
adjustment/tuning of the organization and architecture to compensate for the mismatch among the
capabilities of the various components.

The problem created by such mismatches is particularly critical at the interface between processor
and main memory. While processor speed has grown rapidly, the speed with which data can be
transferred between main memory and the processor has lagged badly. The interface between
processor and main memory is the most crucial pathway in the entire computer because it is
responsible for carrying a constant flow of program instructions and data between memory chips and
the processor. If memory or the pathway fails to keep pace with the processor’s insistent demands,
the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which are reflected in
contemporary computer designs. Consider the following examples:

e Increase the number of bits that are retrieved at one time by making DRAMSs “wider” rather than
“‘deeper” and by using wide bus data paths.
e Change the DRAM interface to make it more efficient by including a cache’ or other buffering

scheme on the DRAM chip.
T A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that

accesses the larger memory. The cache holds recently accessed data and is designed to speed up subsequent
access to the same data. Caches are discussed in Chapter 4.

e Reduce the frequency of memory access by incorporating increasingly complex and efficient cache
structures between the processor and main memory. This includes the incorporation of one or
more caches on the processor chip as well as on an off-chip cache close to the processor chip.

¢ Increase the interconnect bandwidth between processors and memory by using higher-speed
buses and a hierarchy of buses to buffer and structure data flow.

Another area of design focus is the handling of I/0O devices. As computers become faster and more
capable, more sophisticated applications are developed that support the use of peripherals with
intensive 1/0 demands. Figure 2.1 gives some examples of typical peripheral devices in use on
personal computers and workstations. These devices create tremendous data throughput demands.
While the current generation of processors can handle the data pumped out by these devices, there
remains the problem of getting that data moved between processor and peripheral. Strategies here
include caching and buffering schemes plus the use of higher-speed interconnection buses and more
elaborate interconnection structures. In addition, the use of multiple-processor configurations can aid
in satisfying I/0 demands.

Ethernet modem
(max speed)

Graphics display |

Wi-Fi modem
(max speed)

Hard disk

Optical disc

Laser printer

Scanner

Mouse |

Keyboard

10! 10% 10° 104 10° 108 107 108 10? 1010 101
Data Rate (bps)

Figure 2.1 Typical I/0 Device Data Rates

The key in all this is balance. Designers constantly strive to balance the throughput and processing
demands of the processor components, main memory, 1/O devices, and the interconnection

structures. This design must constantly be rethought to cope with two constantly evolving factors:

e The rate at which performance is changing in the various technology areas (processor, buses,
memory, peripherals) differs greatly from one type of element to another.
e New applications and new peripheral devices constantly change the nature of the demand on the
system in terms of typical instruction profile and the data access patterns.
Thus, computer design is a constantly evolving art form. This book attempts to present the
fundamentals on which this art form is based and to present a survey of the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with that of main memory
and other computer components, the need to increase processor speed remains. There are three
approaches to achieving increased processor speed:

¢ Increase the hardware speed of the processor. This increase is fundamentally due to shrinking the
size of the logic gates on the processor chip so that more gates can be packed together more
tightly and to increasing the clock rate. With gates closer together, the propagation time for signals
is significantly reduced, enabling a speeding up of the processor. An increase in clock rate means
that individual operations are executed more rapidly.
¢ Increase the size and speed of caches that are interposed between the processor and main
memory. In particular, by dedicating a portion of the processor chip itself to the cache, cache
access times drop significantly.
e Make changes to the processor organization and architecture that increase the effective speed of
instruction execution. Typically, this involves using parallelism in one form or another.
Traditionally, the dominant factor in performance gains has been increases in clock speed and logic
density. However, as clock speed and logic density increase, a number of obstacles become more
significant [INTEO4]:

e Power: Aszthe density of logic and the clock speed on a chip increase, so does the power density
(Watts/cm™) . The difficulty of dissipating the heat generated on high-density, high-speed chips is

becoming a serious design issue [GIBB04, BORKO3].
¢ RC delay: The speed at which electrons can flow on a chip between transistors is limited by the
resistance and capacitance of the metal wires connecting them; specifically, delay increases as the
RC product increases. As components on the chip decrease in size, the wire interconnects become
thinner, increasing resistance. Also, the wires are closer together, increasing capacitance.
e Memory latency and throughput: Memory access speed (latency) and transfer speed
(throughput) lag processor speeds, as previously discussed.
Thus, there will be more emphasis on organization and architectural approaches to improving
performance. These techniques are discussed in later chapters of the text.

Beginning in the late 1980s, and continuing for about 15 years, two main strategies have been used to
increase performance beyond what can be achieved simply by increasing clock speed. First, there has
been an increase in cache capacity. There are now typically two or three levels of cache between the
processor and main memory. As chip density has increased, more of the cache memory has been
incorporated on the chip, enabling faster cache access. For example, the original Pentium chip
devoted about 10% of on-chip area to a cache. Contemporary chips devote over half of the chip area
to caches. And, typically, about three-quarters of the other half is for pipeline-related control and
buffering.

Second, the instruction execution logic within a processor has become increasingly complex to enable
parallel execution of instructions within the processor. Two noteworthy design approaches have been

pipelining and superscalar. A pipeline works much like an assembly line in a manufacturing plant,
enabling different stages of execution of different instructions to occur at the same time along the
pipeline. A superscalar approach, in essence, allows multiple pipelines within a single processor, so
that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of diminishing returns. The
internal organization of contemporary processors is exceedingly complex and is able to squeeze a
great deal of parallelism out of the instruction stream. It seems likely that further significant increases
in this direction will be relatively modest [GIBB04]. With three levels of cache on the processor chip,
each level providing substantial capacity, it also seems that the benefits from the cache are reaching a
limit.

However, simply relying on increasing clock rate for increased performance runs into the power
dissipation problem already referred to. The faster the clock rate, the greater the amount of power to
be dissipated, and some fundamental physical limits are being reached.

Figure 2.2 illustrates the concepts we have been discussing.? The top line shows that, as per Moore’s
Law, the number of transistors on a single chip continues to grow exponentially.® Meanwhile, the clock
speed has leveled off, in order to prevent a further rise in power. To continue increasing performance,
designers have had to find ways of exploiting the growing number of transistors other than simply
building a more complex processor. The response in recent years has been the development of the
multicore computer chip.

2 | am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.

® The observant reader will note that the transistor count values in this figure are significantly less than those of
Figure 1.12. That latter figure shows the transistor count for a form of main memory known as DRAM (discussed in
Chapter 5), which supports higher transistor density than processor chips.

107

s
106 :
#* Transistors (Thousands)
105 B Frequency (MHz)
A Power (W)
104 Cores

{]tl ! I 1 ! I
1970 1975 1980 1985 1990 1995 2000 2005 2010

Figure 2.2 Processor Trends
Source: Graph provided by: Professor Kathy Yelick, Associate Laboratory Director for Computing Sciences Lawrence Berkeley National Laboratory, Computer

Science Division University of California at Berkeley.

2.2 Multicore, Mics, and GPGPUs

With all of the difficulties cited in the preceding section in mind, designers have turned to a
fundamentally new approach to improving performance: placing multiple processors on the same chip,
with a large shared cache. The use of multiple processors on the same chip, also referred to as
multiple cores, or multicore, provides the potential to increase performance without increasing the
clock rate. Studies indicate that, within a processor, the increase in performance is roughly
proportional to the square root of the increase in complexity [BORKO03]. But if the software can support
the effective use of multiple processors, then doubling the number of processors almost doubles
performance. Thus, the strategy is to use two simpler processors on the chip, rather than one more
complex processor.

In addition, with two processors larger caches are justified. This is important because the power
consumption of memory logic on a chip is much less than that of processing logic.

As the logic density on chips continues to rise, the trend for both more cores and more cache on a
single chip continues. Two-core chips were quickly followed by four-core chips, then 8, then 16, and
so on. As the caches became larger, it made performance sense to create two and then three levels
of cache on a chip, with the first-level cache initially dedicated to an individual processor, and levels
two and three being shared by all the processors. It is now common for the second-level cache to also
be private to each core.

Chip manufacturers are now in the process of making a huge leap forward in the number of cores per
chip, with more than 50 cores per chip. The leap in performance as well as the challenges in
developing software to exploit such a large number of cores has led to the introduction of a new term:
many integrated core (MIC).

The multicore and MIC strategy involves a homogeneous collection of general-purpose processors on
a single chip. At the same time, chip manufacturers are pursuing another design option: a chip with
multiple general-purpose processors plus graphics processing units (GPUs) and specialized cores
for video processing and other tasks. In broad terms, a GPU is a core designed to perform parallel
operations on graphics data. Traditionally found on a plug-in graphics card (display adapter), it is used
to encode and render 2D and 3D graphics as well as process video.

Since GPUs perform parallel operations on multiple sets of data, they are increasingly being used as
vector processors for a variety of applications that require repetitive computations. This blurs the line
between the GPU and the CPU [AROR12, FATA08, PROP11]. When a broad range of applications
are supported by such a processor, the term general-purpose computing on GPUs (GPGPU) is
used.

We explore design characteristics of multicore computers in Chapter 18 and GPGPUs in Chapter 19.

2.3 Two Laws that Provide Insight: Ahmdahl’s Law and Little's
Law

In this section, we look at two equations, called “laws.” The two laws are unrelated, but both provide
insight into the performance of parallel systems and multicore systems.

Amdahl’'s Law

Computer system designers look for ways to improve system performance by advances in technology
or change in design. Examples include the use of parallel processors, the use of a memory cache
hierarchy, and speedup in memory access time and I/O transfer rate due to technology improvements.
In all of these cases, it is important to note that a speedup in one aspect of the technology or design
does not result in a corresponding improvement in performance. This limitation is succinctly expressed
by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in 1967 (JAMDAG67], [AMDA13]) and deals with the
potential speedup of a program using multiple processors compared to a single processor. Consider a
program running on a single processor such that a fraction (1 —f) of the execution time involves code

that is inherently sequential, and a fraction f that involves code that is infinitely parallelizable with no
scheduling overhead. Let T be the total execution time of the program using a single processor. Then
the speedup using a parallel processor with N processors that fully exploits the parallel portion of the
program is as follows:

= Time to execute program on a single processor
B e
= r(l-f)+1f 1
Tf = £
T(1-f)+& (I-f)+H¥

Speedup

This equation is illustrated in Figures 2.3 and 2.4. Two important conclusions can be drawn:

T

L
Y

(1-HT

L
_———

A
Y

-
Y

(1-H)T ST
N

A2y

Figure 2.3 lllustration of Amdahl’s Law

A
Y

Number of Processors

Figure 2.4 Amdahl’s Law for Multiprocessors

1. When fis small, the use of parallel processors has little effect.
2. As N approaches infinity, speedup is bound by 1/ (1 —f), so that there are diminishing returns

for using more processors.

These conclusions are too pessimistic, an assertion first put forward in [GUST88]. For example, a
server can maintain multiple threads or multiple tasks to handle multiple clients and execute the
threads or tasks in parallel up to the limit of the number of processors. Many database applications
involve computations on massive amounts of data that can be split up into multiple parallel tasks.
Nevertheless, Amdahl’s law illustrates the problems facing industry in the development of multicore
machines with an ever-growing number of cores: The software that runs on such machines must be
adapted to a highly parallel execution environment to exploit the power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improvement in a computer
system. Consider any enhancement to a feature of a system that results in a speedup. The speedup
can be expressed as

Performance after enhancement Execution time before enhancement
Specdup s Besbesmepesselosscnbiiosiient . Jeteonboi e e epbanes e n (2.1)

Suppose that a feature of the system is used during execution a fraction of the time f, before
enhancement, and that the speedup of that feature after enhancement is SUf. Then the overall

speedup of the system is
1

Speedup = T S_JZL
f

Example 2.1

Suppose that a task makes extensive use of floating-point operations, with 40% of the time
consumed by floating-point operations. With a new hardware design, the floating-point module is
sped up by a factor of K. Then the overall speedup is as follows:

1
Speedup = ——04
0.6 + &

Thus, independent of K, the maximum speedup is 1.67.
Little’s Law

A fundamental and simple relation with broad applications is Little’s Law [LITT61, LITT11].4 We can
apply it to almost any system that is statistically in steady state, and in which there is no leakage.
Specifically, we have a steady state system to which items arrive at an average rate of 1 items per

unit time. The items stay in the system an average of W units of time. Finally, there is an average of L
units in the system at any one time. Little’s Law relates these three variables as L =AW.

4 The second reference is a retrospective article on his law that Little wrote 50 years after his original paper. That

must be unique in the history of the technical literature, although Amdahl comes close, with a 46-year gap between
[AMDAG67] and [AMDA13].

Using queuing theory terminology, Little’s Law applies to a queuing system. The central element of the
system is a server, which provides some service to items. Items from some population of items arrive
at the system to be served. If the server is idle, an item is served immediately. Otherwise, an arriving
item joins a waiting line, or queue. There can be a single queue for a single server, a single queue for
multiple servers, or multiples queues, one for each of multiple servers. When a server has completed
serving an item, the item departs. If there are items waiting in the queue, one is immediately
dispatched to the server. The server in this model can represent anything that performs some function
or service for a collection of items. Examples: A processor provides service to processes; a
transmission line provides a transmission service to packets or frames of data; and an I/O device
provides a read or write service for I/O requests.

To understand Little’s formula, consider the following argument, which focuses on the experience of a
single item. When the item arrives, it will find on average L items ahead of it, one being serviced and
the rest in the queue. When the item leaves the system after being serviced, it will leave behind on
average the same number of items in the system, namely L, because L is defined as the average
number of items waiting. Further, the average time that the item was in the system was W. Since
items arrive at a rate of A, we can reason that in the time W, a total of AW items must have arrived.

Thus L =AW.

To summarize, under steady state conditions, the average number of items in a queuing system
equals the average rate at which items arrive multiplied by the average time that an item spends in the
system. This relationship requires very few assumptions. We do not need to know what the service
time distribution is, what the distribution of arrival times is, or the order or priority in which items are
served. Because of its simplicity and generality, Little’s Law is extremely useful and has experienced
somewhat of a revival due to the interest in performance problems related to multicore computers.

A very simple example, from [LITT11], illustrates how Little’s Law might be applied. Consider a
multicore system, with each core supporting multiple threads of execution. At some level, the cores
share a common memory. The cores share a common main memory and typically share a common
cache memory as well. In any case, when a thread is executing, it may arrive at a point at which it
must retrieve a piece of data from the common memory. The thread stops and sends out a request for
that data. All such stopped threads are in a queue. If the system is being used as a server, an analyst
can determine the demand on the system in terms of the rate of user requests, and then translate that
into the rate of requests for data from the threads generated to respond to an individual user request.
For this purpose, each user request is broken down into subtasks that are implemented as threads.
We then have 1=the average rate of total thread processing required after all members’ requests

have been broken down into whatever detailed subtasks are required. Define L as the average
number of stopped threads waiting during some relevant time. Then W=average response time. This

simple model can serve as a guide to designers as to whether user requirements are being met and, if
not, provide a quantitative measure of the amount of improvement needed.

2.4 Basic Measures of Computer Performance

In evaluating processor hardware and setting requirements for new systems, performance is one of
the key parameters to consider, along with cost, size, security, reliability, and, in some cases, power
consumption.

It is difficult to make meaningful performance comparisons among different processors, even among
processors in the same family. Raw speed is far less important than how a processor performs when
executing a given application. Unfortunately, application performance depends not just on the raw
speed of the processor but also on the instruction set, choice of implementation language, efficiency
of the compiler, and skill of the programming done to implement the application.

In this section, we look at some traditional measures of processor speed. In the next section, we
examine benchmarking, which is the most common approach to assessing processor and computer
system performance. The following section discusses how to average results from multiple tests.

Clock Speed

Operations performed by a processor, such as fetching an instruction, decoding the instruction,
performing an arithmetic operation, and so on, are governed by a system clock. Typically, all
operations begin with the pulse of the clock. Thus, at the most fundamental level, the speed of a
processor is dictated by the pulse frequency produced by the clock, measured in cycles per second,
or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a constant sine wave while
power is applied. This wave is converted into a digital voltage pulse stream that is provided in a
constant flow to the processor circuitry (Figure 2.5). For example, a 1-GHz processor receives 1
billion pulses per second. The rate of pulses is known as the clock rate, or clock speed. One
increment, or pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between
pulses is the cycle time.

Quartz A-to-D |
crystal convertor

Figure 2.5 System Clock

The clock rate is not arbitrary, but must be appropriate for the physical layout of the processor. Actions
in the processor require signals to be sent from one processor element to another. When a signal is
placed on a line inside the processor, it takes some finite amount of time for the voltage levels to settle
down so that an accurate value (logical 1 or 0) is available. Furthermore, depending on the physical
layout of the processor circuits, some signals may change more rapidly than others. Thus, operations
must be synchronized and paced so that the proper electrical signal (voltage) values are available for
each operation.

The execution of an instruction involves a number of discrete steps, such as fetching the instruction
from memory, decoding the various portions of the instruction, loading and storing data, and
performing arithmetic and logical operations. Thus, most instructions on most processors require
multiple clock cycles to complete. Some instructions may take only a few cycles, while others require

dozens. In addition, when pipelining is used, multiple instructions are being executed simultaneously.
Thus, a straight comparison of clock speeds on different processors does not tell the whole story
about performance.

Instruction Execution Rate

A processor is driven by a clock with a constant frequency f or, equivalently, a constant cycle time z,
where 7 =1/f. Define the instruction count, 7., for a program as the number of machine instructions

executed for that program until it runs to completion or for some defined time interval. Note that this is
the number of instruction executions, not the number of instructions in the object code of the program.
An important parameter is the average cycles per instruction (CPI) for a program. If all instructions
required the same number of clock cycles, then CPIl would be a constant value for a processor.
However, on any given processor, the number of clock cycles required varies for different types of
instructions, such as load, store, branch, and so on. Let CPI; be the number of cycles required for

instruction type /i, and I; be the number of executed instructions of type i for a given program. Then we
can calculate an overall CP/ as follows:

. T {(CPIXI) 2.2)

e

The processor time T needed to execute a given program can be expressed as
T=I,xCPIxt

We can refine this formulation by recognizing that during the execution of an instruction, part of the
work is done by the processor, and part of the time a word is being transferred to or from memory. In
this latter case, the time to transfer depends on the memory cycle time, which may be greater than the
processor cycle time. We can rewrite the preceding equation as

T=I.X[p+(mxk)] Xt

where p is the number of processor cycles needed to decode and execute the instruction, m is the
number of memory references needed, and k is the ratio between memory cycle time and processor
cycle time. The five performance factors in the preceding equation (I.,p ,m ,k,7) are influenced by

four system attributes: the design of the instruction set (known as instruction set architecture),
compiler technology (how effective the compiler is in producing an efficient machine language
program from a high-level language program); processor implementation; and cache and memory
hierarchy. Table 2.1 is a matrix in which one dimension shows the five performance factors and the
other dimension shows the four system attributes. An X in a cell indicates a system attribute that
affects a performance factor.

Table 2.1 Performance Factors and System Attributes

1. T
p m k
Instruction set architecture X X
Compiler technology X X X
Processor implementation X X

Cache and memory hierarchy ‘ ‘ ‘ ‘ X ‘ X ‘

A common measure of performance for a processor is the rate at which instructions are executed,
expressed as millions of instructions per second (MIPS), referred to as the MIPS rate. We can
express the MIPS rate in terms of the clock rate and CP/ as follows:

MIPS fe / (2.3)
rate = 7= 10° = CPIx 10° '

Example 2.2

Consider the execution of a program that results in the execution of 2 million instructions on a 400-
MHz processor. The program consists of four major types of instructions. The instruction mix and
the CPI for each instruction type are given below, based on the result of a program trace

experiment:
Instruction Type CPI Instruction Mix (%)
Arithmetic and logic 1 60
Load/store with cache hit 2 18
Branch 4 12
Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with the above trace results is
CPI=0.6+ (2x0.18) + (4x0.12) + (8x0.1) =2.24. The corresponding MIPS rate is

(400% 10°) 7 (2.24% 10°) ~178.

Another common performance measure deals only with floating-point instructions. These are common
in many scientific and game applications. Floating-point performance is expressed as millions of
floating-point operations per second (MFLOPS), defined as follows:

Number of executed floating — point operations in a program
MFLOPS rate =

L
Execution time x 10~

2.5 Calculating the Mean

In evaluating some aspect of computer system performance, it is often the case that a single number,
such as execution time or memory consumed, is used to characterize performance and to compare
systems. Clearly, a single number can provide only a very simplified view of a system’s capability.
Nevertheless, and especially in the field of benchmarking, single numbers are typically used for
performance comparison [SMIT88].

As is discussed in Section 2.6, the use of benchmarks to compare systems involves calculating the
mean value of a set of data points related to execution time. It turns out that there are multiple
alternative algorithms that can be used for calculating a mean value, and this has been the source of
some controversy in the benchmarking field. In this section, we define these alternative algorithms and
comment on some of their properties. This prepares us for a discussion in the next section of mean
calculation in benchmarking.

The three common formulas used for calculating a mean are arithmetic, geometric, and harmonic.
Given a set of n real numbers (x;,x,, ... ,x,), the three means are defined as follows:

Arithmetic mean
Xp+ e +X,

AM=—n——=13% x; (2.4)
1=
Geometric mean
GM=w= Mxi = #Zin(x)
= 1=
Harmonic mean
>0
HM = —¢ " = n1 K (2.6)
1=
It can be shown that the following inequality holds:
AM >GM >HM

The values are equal only if x;=x,= ... x

n-

We can get a useful insight into these alternative calculations by defining the functional mean. Let f(x)
be a continuous monotonic function defined in the interval 0<y<oo. The functional mean with respect

to the function f(x) for n positive real numbers x,,x,, ... ,x, is defined as

Functional mean

IWACSPR RV ACTY 1
FM=f " = T fe

where f_l(x) is the inverse of f(x). The mean values defined in Equations (2.1) through (2.3) are
special cases of the functional mean, as follows:

e AM is the FM with respect to f(x)=x

e GM is the FM with respect to f(x)=In x

e HM is the FM with respect to f(x)=1/x
Example 2.3
Figure 2.6 illustrates the three means applied to various data sets, each of which has eleven data
points and a maximum data point value of 11. The median value is also included in the chart.

Perhaps what stands out the most in this figure is that the HM has a tendency to produce a
misleading result when the data is skewed to larger values or when there is a small-value outlier.

MD
AM
(@) om

1 S R
MD
AM

®) gm
Y

MD
AM
© oM
HM

MD
AM
d) gm
HM

MD
AM
(e) GM
HM

MD
AM
® oM
HM

MD

AM
() oM

HM

0 1 2 3 4 5 [} 7 8 9 10 11

(a) Constant (11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11) MD = median
(b) Clustered around a central value (3,5,6,6,7,7,7,8,8,9,11) AM = arithmetic mean
(c) Uniform distribution (1, 2, 3,4, 5,6,7,8,9, 10, 11) GM = geometric mean

(d) Large-number bias (1,4,4,7,7,9,9, 10, 10, 11, 11) HM = harmonic mean
(e) Small-number bias(1, 1, 2,2, 3,3,5,5,8,8,11)

(f)y Upper outhier (11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

(g) Lower outlier (1, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11)

Figure 2.6 Comparison of Means on Various Data Sets (each set has a maximum data point
value of 11)

Let us now consider which of these means are appropriate for a given performance measure. As a
preface to these remarks, it should be noted that a number of papers ([CITR06], [FLEM86], [GILA95],
[JACQO95], [JOHNO04], [MASHO04], [SMIT88]) and books ([HENN12], [HWAN93], [JAIN91], [LILJOO])

over the years have argued the pros and cons of the three means for performance analysis and come
to conflicting conclusions. To simplify a complex controversy, we just note that the conclusions
reached depend very much on the examples chosen and the way in which the objectives are stated.

Arithmetic Mean

An AM is an appropriate measure if the sum of all the measurements is a meaningful and interesting
value. The AM is a good candidate for comparing the execution time performance of several systems.
For example, suppose we were interested in using a system for large-scale simulation studies and
wanted to evaluate several alternative products. On each system we could run the simulation multiple
times with different input values for each run, and then take the average execution time across all
runs. The use of multiple runs with different inputs should ensure that the results are not heavily
biased by some unusual feature of a given input set. The AM of all the runs is a good measure of the
system’s performance on simulations, and a good number to use for system comparison.

The AM used for a time-based variable (e.g., seconds), such as program execution time, has the
important property that it is directly proportional to the total time. So, if the total time doubles, the
mean value doubles.

Harmonic Mean

For some situations, a system’s execution rate may be viewed as a more useful measure of the value
of the system. This could be either the instruction execution rate, measured in MIPS or MFLOPS, or a
program execution rate, which measures the rate at which a given type of program can be executed.
Consider how we wish the calculated mean to behave. It makes no sense to say that we would like
the mean rate to be proportional to the total rate, where the total rate is defined as the sum of the
individual rates. The sum of the rates would be a meaningless statistic. Rather, we would like the
mean to be inversely proportional to the total execution time. For example, if the total time to execute
all the benchmark programs in a suite of programs is twice as much for system C as for system D, we
would want the mean value of the execution rate to be half as much for system C as for system D.

Let us look at a basic example and first examine how the AM performs. Suppose we have a set of n
benchmark programs and record the execution times of each program on a given system as
ty,t, ... ,t,. For simplicity, let us assume that each program executes the same number of

operations Z; we could weight the individual programs and calculate accordingly, but this would not
change the conclusion of our argument. The execution rate for each individual programis R, =Z/1;.

We use the AM to calculate the average execution rate.

1 1 Z Z 1
AM=nr YR =n) t;=n) &
i=1 i=1 i=1

We see that the AM execution rate is proportional to the sum of the inverse execution times, which is
not the same as being inversely proportional to the sum of the execution times. Thus, the AM does not
have the desired property.

The HM yields the following result.

HM =

The HM is inversely proportional to the total execution time, which is the desired property.

Example 2.4

A simple numerical example will illustrate the difference between the two means in calculating a
mean value of the rates, shown in Table 2.2. The table compares the performance of three
computers on the execution of two programs. For simplicity, we assume that the execution of each
program results in the execution of 10~ floating-point operations. The left half of the table shows

the execution times for each computer running each program, the total execution time, and the AM
of the execution times. Computer A executes in less total time than B, which executes in less total
time than C, and this is reflected accurately in the AM.

Table 2.2 A Comparison of Arithmetic and Harmonic Means for Rates

Computer | Computer | Computer | Computer | Computer | Computer
A time B time C time A rate B rate C rate
(secs) (secs) (secs) (MFLOPS) | (MFLOPS) | (MFLOPS)
Program 1 (108 2.0 1.0 0.75 50 100 133.33
FP ops)
Program 2 (108 0.75 2.0 4.0 133.33 50 25
FP ops)
Total execution 2.75 3.0 4.75 — — —
time
Arithmetic 1.38 1.5 2.38 — — —
mean of times
Inverse of total 0.36 0.33 0.21 — — —
execution time
(1/sec)
Arithmetic — — — 91.67 75.00 79.17
mean of rates
Harmonic mean — — — 72.72 66.67 42 11
of rates

The right half of the table provides a comparison in terms of rates, expressed in MFLOPS. The
rate calculation is straightforward. For example, program 1 executes 100 million floating-point
operations. Computer A takes 2 seconds to execute the program for a MFLOPS rate of 100/2 =50

. Next, consider the AM of the rates. The greatest value is for computer A, which suggests that A is
the fastest computer. In terms of total execution time, A has the minimum time, so it is the fastest
computer of the three. But the AM of rates shows B as slower than C, whereas in fact B is faster

than C. Looking at the HM values, we see that they correctly reflect the speed ordering of the
computers. This confirms that the HM is preferred when calculating rates.

The reader may wonder why go through all this effort. If we want to compare execution times, we
could simply compare the total execution times of the three systems. If we want to compare rates, we
could simply take the inverse of the total execution time, as shown in the table. There are two reasons
for doing the individual calculations rather than only looking at the aggregate numbers:

1. A customer or researcher may be interested not only in the overall average performance but
also performance against different types of benchmark programs, such as business
applications, scientific modeling, multimedia applications, and systems programs. Thus, a
breakdown by type of benchmark is needed, as well as a total.

2. Usually, the different programs used for evaluation are weighted differently. In Table 2.2, it is
assumed that the two test programs execute the same number of operations. If that is not the
case, we may want to weight accordingly. Or different programs could be weighted differently to
reflect importance or priority.

Let us see what the result is if test programs are weighted proportional to the number of operations.
Following the preceding notation, each program i executes Zij instructions in a time ti. Each rate is
weighted by the instructions count. The weighted HM is therefore:

Y17 (2.7)
WHM =

We see that the weighted HM is the quotient of the sum of the operation count divided by the sum of
the execution times.

Geometric Mean

Looking at the equations for the three types of means, it is easier to get an intuitive sense of the
behavior of the AM and the HM than that of the GM. Several observations from [FEIT15] may be
helpful in this regard. First, we note that with respect to changes in values, the GM gives equal weight
to all of the values in the data set. For example, suppose the set of data values to be averaged
includes a few large values and more small values. Here, the AM is dominated by the large values. A
change of 10% in the largest value will have a noticeable effect, while a change in the smallest value
by the same factor will have a negligible effect. In contrast, a change in value by 10% of any of the
data values results in the same change in the GM: @&L

Example 2.5

This point is illustrated by data set (e) in Figure 2.6. Here are the effects of increasing either the
maximum or the minimum value in the data set by 10%:

Geometric Mean Arithmetic Mean

Original value 3.37 4.45
340C+087%) 4550 +224%)

Increase max value from 11 to 12.1 (+10%)

3400 +087%) 446 +0.20%)
Increase min value from 1 to 1.1 (+10%)

A second observation is that for the GM of a ratio, the GM of the ratios equals the ratio of the GMs:
1/n

1/n HZi (28)
i=1

GM= T[4 =— 4

=1 IT¢

i=1

Compare this with Equation 2.4.

For use with execution times, as opposed to rates, one drawback of the GM is that it may be non-
monotonic relative to the more intuitive AM. In other words there may be cases where the AM of one
data set is larger than that of another set, but the GM is smaller.

Example 2.6

In Figure 2.6, the AM for data set d is larger than the AM for data set c, but the opposite is true for
the GM.

Data set c Data set d
Arithmetic mean 7.00 7.55
Geometric mean 6.68 6.42

One property of the GM that has made it appealing for benchmark analysis is that it provides
consistent results when measuring the relative performance of machines. This is in fact what
benchmarks are primarily used for: to compare one machine with another in terms of performance
metrics. The results, as we have seen, are expressed in terms of values that are normalized to a
reference machine.

Example 2.7

A simple example will illustrate the way in which the GM exhibits consistency for normalized
results. In Table 2.3, we use the same performance results as were used in Table 2.2. In Table
2.3a, all results are normalized to Computer A, and the means are calculated on the normalized
values. Based on total execution time, A is faster than B, which is faster than C. Both the AMs and
GMs of the normalized times reflect this. In Table 2.3b, the systems are now normalized to B.
Again the GMs correctly reflect the relative speeds of the three computers, but now the AM
produces a different ordering.

Table 2.3 A Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A Computer B Computer C
time time time
Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)
Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)
Total execution time 2.75 3.0 4.75
Arithmetic mean of normalized 1.00 1.58 2.85
times
Geometric mean of normalized 1.00 1.15 1.41
times
(b) Results normalized to Computer B
Computer A Computer B Computer C
time time time
Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)
Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)
Total execution time 2.75 3.0 4.75
Arithmetic mean of normalized 1.19 1.00 1.38
times
Geometric mean of normalized 0.87 1.00 1.22
times

Sadly, consistency does not always produce correct results. In Table 2.4, some of the execution
times are altered. Once again, the AM reports conflicting results for the two normalizations. The
GM reports consistent results, but the result is that B is faster than A and C, which are equal.

Table 2.4 Another Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A Computer B Computer C
time time time
Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)
Total execution time 2.4 3.00 4.2
Arithmetic mean of normalized 1.00 2.75 5.05
times
Geometric mean of normalized 1.00 1.58 1.00
times
(b) Results normalized to Computer B
Computer A Computer B Computer C

time time time
Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)
Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)
Total execution time 2.4 3.00 4.2
Arithmetic mean of normalized 1.10 1.00 1.10
times
Geometric mean of normalized 0.63 1.00 0.63
times

It is examples like this that have fueled the “benchmark means wars” in the citations listed earlier. It is
safe to say that no single number can provide all the information that one needs for comparing
performance across systems. However, despite the conflicting opinions in the literature, SPEC has
chosen to use the GM, for several reasons:

1. As mentioned, the GM gives consistent results regardless of which system is used as a
reference. Because benchmarking is primarily a comparison analysis, this is an important
feature.

2. As documented in [MCMAZ93], and confirmed in subsequent analyses by SPEC analysts
[MASHO04], the GM is less biased by outliers than the HM or AM.

3. [MASHO04] demonstrates that distributions of performance ratios are better modeled by
lognormal distributions than by normal ones, because of the generally skewed distribution of the
normalized numbers. This is confirmed in [CITR06]. And, as shown in Equation (2.5), the GM
can be described as the back-transformed average of a lognormal distribution.

2.6 Benchmarks and Spec

Benchmark Principles

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the performance of
processors. Because of differences in instruction sets, the instruction execution rate is not a valid
means of comparing the performance of different architectures.

Example 2.8

Consider this high-level language statement:

A =B+ C /* assume all quantities in main memory */

With a traditional instruction set architecture, referred to as a complex instruction set computer
(CISC), this instruction can be compiled into one processor instruction:

add mem (B) , mem (C) , mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem (B) , reg (1) ;
load mem (C) , reg(2);
add reg (1), reg(2), reg(3) ;
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15), both machines may
execute the original high-level language instruction in about the same time. If this example is
representative of the two machines, then if the CISC machine is rated at 1 MIPS, the RISC
machine would be rated at 4 MIPS. But both do the same amount of high-level language work in
the same amount of time.

Another consideration is that the performance of a given processor on a given program may not be
useful in determining how that processor will perform on a very different type of application.
Accordingly, beginning in the late 1980s and early 1990s, industry and academic interest shifted to
measuring the performance of systems using a set of benchmark programs. The same set of
programs can be run on different machines and the execution times compared. Benchmarks provide
guidance to customers trying to decide which system to buy, and can be useful to vendors and
designers in determining how to design systems to meet benchmark goals.

[WEIC90] lists the following as desirable characteristics of a benchmark program:

1. It is written in a high-level language, making it portable across different machines.

2. It is representative of a particular kind of programming domain or paradigm, such as systems
programming, humerical programming, or commercial programming.

3. It can be measured easily.

4. It has wide distribution.

SPEC Benchmarks

The common need in industry and academic and research communities for generally accepted
computer performance measurements has led to the development of standardized benchmark suites.
A benchmark suite is a collection of programs, defined in a high-level language, that together attempt
to provide a representative test of a computer in a particular application or system programming area.
The best known such collection of benchmark suites is defined and maintained by the Standard
Performance Evaluation Corporation (SPEC), an industry consortium. This organization defines
several benchmark suites aimed at evaluating computer systems. SPEC performance measurements
are widely used for comparison and research purposes.

The best known of the SPEC benchmark suites is SPEC CPU2017. This is the industry standard suite
for processor-intensive applications. That is, SPEC CPU2017 is appropriate for measuring
performance for applications that spend most of their time doing computation rather than 1/0O.

Other SPEC suites include the following:

e SPEC Cloud_laaS: Benchmark addresses the performance of infrastructure-as-a-service (laaS)
public or private cloud platforms.

e SPECviewperf: Standard for measuring 3D graphics performance based on professional
applications.

e SPECwpc: benchmark to measure all key aspects of workstation performance based on diverse
professional applications, including media and entertainment, product development, life sciences,
financial services, and energy.

e SPECjvm2008: Intended to evaluate performance of the combined hardware and software aspects
of the Java Virtual Machine (JVM) client platform.

e SPECjbb2015 (Java Business Benchmark): A benchmark for evaluating server-side Java-based
electronic commerce applications.

e SPECsfs2014: Designed to evaluate the speed and request-handling capabilities of file servers.

e SPECVvirt_sc2013: Performance evaluation of datacenter servers used in virtualized server
consolidation. Measures the end-to-end performance of all system components including the
hardware, virtualization platform, and the virtualized guest operating system and application
software. The benchmark supports hardware virtualization, operating system virtualization, and
hardware partitioning schemes.

The CPU2017 suite is based on existing applications that have already been ported to a wide variety
of platforms by SPEC industry members. In order to make the benchmark results reliable and realistic,
the CPU2017 benchmarks are drawn from real-life applications, rather than using artificial loop
programs or synthetic benchmarks. The suite consists of 20 integer benchmarks and 23 floating-point
benchmarks written in C, C++, and Fortran (Table 2.5). For all of the integer benchmarks and most of
the floating-point benchmarks, there are both rate and speed benchmark programs. The differences
between corresponding rate and speed benchmarks include workload sizes, compile flags, and run
rules. The suite contains over 11 million lines of code. This is the sixth generation of processor-
intensive suites from SPEC,; the fifth generation was CPU2006. CPU2017 is designed to provide a
contemporary set of benchmarks that reflect the dramatic changes in workload and performance
requirements in the 11 years since CPU2006 [MOOR17].

Table 2.5 SPEC CPU2017 Benchmarks
Kloc =line count (including comments/whitespace) for source files used in a build/1000

(a) Integer

Rate Speed Language | Kloc Application Area

500.perlbench_r 600.perlbench_s C 363 | Perl interpreter
502.gcc r 602.gcc_s C 1304 | GNU C compiler
505.mcf r 605.mcf s C 3 | Route planning
520.omnetpp_r 620.omnetpp_s C++ 134 | Discrete event simulation - computer

network
523.xalancbmk_r | 623.xalancbmk_s C++ 520 | XML to HTML conversion via XSLT
525.x264 r 625.x264 s C 96 | Video compression
531.deepsjeng_r 631.deepsjeng_s C++ 10 | Al: alpha-beta tree search (chess)
541 .leela_r 641.leela_s C++ 21 | Al: Monte Carlo tree search (Go)
548.exchange2 r | 648.exchange2_s Fortran 1 | Al: recursive solution generator

(Sudoku)
557.xz_r 657.xz_s C 33 | General data compression

(b) Floating Point
503.bwaves r 603.bwaves_s Fortran 1 | Explosion modeling
507.cactuBSSN r | 607.cactuBSSN_s | C++, C, 257 | Physics; relativity
Fortran

508.namd_r C++,C 8 | Molecular dynamics
510.parest_r C++ 427 | Biomedical imaging; optical

tomography with finite elements
511.povray_r C++ 170 | Ray tracing
519.ibm_r 619.ibm_s C 1 | Fluid dynamics
521.wrf r 621.wrf_s Fortran, 991 | Weather forecasting

C

526.blender_r C++ 1577 | 3D rendering and animation

527.cam4_r 627.cam4_s Fortran, 407 | Atmosphere modeling
C
628.pop2_s Fortran, 338 | Wide-scale ocean modeling (climate
C level)
538.imagick_r 638.imagick_s C 259 | Image manipulation
544.nab r 644.nab_s C 24 | Molecular dynamics
549 .fotonik3d_r 649.fotonik3d_s Fortran 14 | Computational electromagnetics
554.roms_r 654.roms_s Fortran 210 | Regional ocean modeling.

To better understand published results of a system using CPU2017, we define the following terms
used in the SPEC documentation:

e Benchmark: A program written in a high-level language that can be compiled and executed on any
computer that implements the compiler.

e System under test: This is the system to be evaluated.

e Reference machine: This is a system used by SPEC to establish a baseline performance for all
benchmarks. Each benchmark is run and measured on this machine to establish a reference time
for that benchmark. A system under test is evaluated by running the CPU2017 benchmarks and
comparing the results for running the same programs on the reference machine.

e Base metric: These are required for all reported results and have strict guidelines for compilation.
In essence, the standard compiler with more or less default settings should be used on each
system under test to achieve comparable results.

e Peak metric: This enables users to attempt to optimize system performance by optimizing the
compiler output. For example, different compiler options may be used on each benchmark, and
feedback-directed optimization is allowed.

e Speed metric: This is simply a measurement of the time it takes to execute a compiled
benchmark. The speed metric is used for comparing the ability of a computer to complete single
tasks.

e Rate metric: This is a measurement of how many tasks a computer can accomplish in a certain
amount of time; this is called a throughput, capacity, or rate measure. The rate metric allows the
system under test to execute simultaneous tasks to take advantage of multiple processors.

SPEC uses a historical Sun system, the “Ultra Enterprise 2,” which was introduced in 1997, as the
reference machine. The reference machine uses a 296-MHz UltraSPARC Il processor. It takes about

12 days to do a rule-conforming run of the base metrics for CINT2017 and CFP2017 on the CPU2017

reference machine. Tables 2.5 and 2.6 show the amount of time to run each benchmark using the
reference machine. The tables also show the dynamic instruction counts on the reference machine, as
reported in [PHANO7]. These values are the actual number of instructions executed during the run of
each program.

Table 2.6 SPEC CPU2017 Integer Benchmarks for HP Integrity Superdome X

(a) Rate Result (768 copies)

Base Peak

Benchmark Seconds Rate Seconds Rate
500.perlbench_r 1141 1070 933 1310
502.gcc_r 1303 835 1276 852
505.mcf_r 1433 866 1378 901
520.omnetpp_r 1664 606 1634 617
523.xalancbmk_r 722 1120 713 1140
525.x264 r 655 2053 661 2030
531.deepsjeng_r 604 1460 597 1470
541 leela_r 892 1410 896 1420
548.exchange2_r 833 2420 770 2610
557 xz_r 870 953 863 961

(b) Speed Result (384 threads)
Base Peak
Benchmark Seconds Ratio Seconds Ratio
600.perlbench_s 358 4.96 295 6.01
602.gcc_s 546 7.29 535 7.45
605.mcf_s 866 5.45 700 6.75
620.omnetpp_s 276 5.90 247 6.61
623.xalancbmk_s 188 7.52 179 7.91
625.x264_s 283 6.23 271 6.51
631.deepsjeng_s 407 3.52 343 4.18
641.leela_s 469 3.63 439 3.88
648.exchange2_s 329 8.93 299 9.82

657.xz_s 2164 2.86 2119 2.92

We now consider the specific calculations that are done to assess a system. We consider the integer
benchmarks; the same procedures are used to create a floating- point benchmark value. For the
integer benchmarks, there are 12 programs in the test suite. Calculation is a three-step process
(Figure 2.7):

(Start)

Y

Get next
program

Y

Y

Run program
three times

.

Select
median value

Y

Ratio(prog) =
Tredprog)/ Tsyr(prog)

i

Yes More No | Compute geometric
programs? mean of all ratios

Y
End

Figure 2.7 SPEC Evaluation Flowchart

1. The first step in evaluating a system under test is to compile and run each program on the
system three times. For each program, the runtime is measured and the median value is
selected. The reason to use three runs and take the median value is to account for variations in
execution time that are not intrinsic to the program, such as disk access time variations, and OS
kernel execution variations from one run to another.

2. Next, each of the 12 results is normalized by calculating the runtime ratio of the reference run
time to the system run time. The ratio is calculatggd,as follows:

r; = st (2.9)

[}

where Trefi is the execution time of benchmark program i/ on the reference system and Tsulti is
the execution time of benchmark program i on the system under test. Thus, ratios are higher for
faster machines.

3. Finally, the geometric mean of the 12 runtime ratios js$,calculated to yield the overall metric:

rg = ﬁ”i

i=1

For the integer benchmarks, four separate metrics can be calculated:

e SPECspeed2017_int_base: The geometric mean of 12 normalized ratios when the benchmarks
are compiled with base tuning.

e SPECspeed2017_int_peak: The geometric mean of 12 normalized ratios when the benchmarks
are compiled with peak tuning.

e SPECrate2017_int_base: The geometric mean of 12 normalized throughput ratios when the
benchmarks are compiled with base tuning.

e SPECrate2017_int_peak: The geometric mean of 12 normalized throughput ratios when the
benchmarks are compiled with peak tuning.

Table 2.6 shows the CPU2017 integer benchmarks reported for the HP Integrity Superdome X.

Example 2.9

One of the SPEC CPU2017 integer speed benchmarks is 625.x264_s. This is an implementation
of H.264/AVC (Advanced Video Coding), the commonly used video compression standard. The
reference machine Sun Fire V490 executes this program in a median time of 1764 seconds for the
base speed metric. The HP Integrity Superdome X requires 283 seconds. The ratio is calculated
as: 1764/283 =6.23. Similar calculations are done to determine the ratios for the other benchmark

programs. The SPECspeed2017_int_base speed metric is calculated by taking the tenth root of
the product of the ratios:

(496 x7.29 x5.45%x590x 7.52x6.23 x3.52x 3.63%x

8.93%x2.86)' ' 1°=5.31

The rate metrics take into account a system with multiple processors. To test a machine, a number of
copies N is selected—usually this is equal to the number of processors or the number of simultaneous
threads of execution on the test system. Each individual test program’s rate is determined by taking
the median of three runs. Each run consists of N copies of the program running simultaneously on the
test system. The execution time is the time it takes for all the copies to finish (i.e., the time from when
the first copy starts until the last copy finishes). The rate metric for that program is calculated by the
following formula:

Tref;
rate; =N X Lsut

The rate score for the system under test is determined from a geometric mean of rates for each
program in the test suite.

Example 2.10

The results for the HP Integrity Superdome X are shown in Table 2.6a. This system has 16
processor chips, with 24 cores per chip, for a total of 384 cores. Two threads are run per core so
that a total of 768 copies of a program are run simultaneously. To get the rate metric, each
benchmark program is executed simultaneously on all threads, with the execution time being the
time from the start of all 768 copies to the end of the slowest run. The speed ratio is calculated as
before, and the rate value is simply 384 times the speed ratio. For example, for the integer rate
benchmark SPECrate2017_int_base, the reference machine report a speed of 1751 seconds, and

the system under test reports a speed of 655 seconds. The rate is calculated as
768x(1751/655)=2053. The final rate metric is found by taking the geometric mean of the rate

values:

(1070 x 835 x 866 x 606 x 1120 x 2053 x 1460 x 1410x

2420x953)

1/10=1223

SPEC CPU2017 introduces an additional, experimental, metric that enables measurement of power
consumption while running the benchmark, giving users insight into the relationship between

performance and power. A vendor can measure and report power statistics, including maximum power
(W), average power (W), and total energy used (kJ) and compare these to the reference machine. The

results for the reference machine are shown in Table 2.7.

Table 2.7 SPECspeed2017_int_base Benchmark Results for Reference Machine (1 thread)

Benchmark Seconds | Energy (kJ) Average Power (W) Maximum Power (W)
600.perlbench_s 1774 1920 1080 1090
602.gcc_s 3981 4330 1090 1110
605.mcf_s 4721 5150 1090 1120
620.omnetpp_s 1630 1770 1090 1090
623.xalancbmk_s 1417 1540 1090 1090
625.x264_s 1764 1920 1090 1100
631.deepsjeng_s 1432 1560 1090 1130
641.leela_s 1706 1850 1090 1090
648.exchange2_s 2939 3200 1080 1090
657.xz_s 6182 6730 1090 1140

2.7 Key Terms, Review Questions, and Problems

Key Terms

Amdahl’s law

arithmetic mean (AM)

base metric

benchmark

clock cycle

clock cycle time

clock rate

clock speed

clock tick

cycles per instruction (CPI)
functional mean (FM)
general-purpose computing on GPU (GPGPU)
geometric mean (GM)
graphics processing unit (GPU)
harmonic mean (HM)
instruction execution rate
Little’s law

many integrated core (MIC)
microprocessor

MIPS rate

multicore

peak metric

rate metric

reference machine

speed metric

SPEC

system under test

throughput

Review Questions

2.1 List and briefly define some of the techniques used in contemporary processors to increase

speed.

2.2 Explain the concept of performance balance.
2.3 Explain the differences among multicore systems, MICs, and GPGPUs.
2.4 Briefly characterize Amdahl’s law.
2.5 Briefly characterize Little’s law.

2.6 Define MIPS and FLOPS.

2.7 List and define three methods for calculating a mean value of a set of data values.

2.8 List the desirable characteristics of a benchmark program.

2.9 What are the SPEC benchmarks?
2.10 What are the differences among base metric, peak metric, speed metric, and rate metric?

Problems

2.1 A benchmark program is run on a 40 MHz processor. The executed program consists of
100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction Type Instruction Count Cycles per Instruction
Integer arithmetic 45,000 1
Data transfer 32,000 2
Floating point 15,000 2
Control transfer 8000 2

Determine the effective CPI, MIPS rate, and execution time for this program.

2.2 Consider two different machines, with two different instruction sets, both of which have a
clock rate of 200 MHz. The following measurements are recorded on the two machines running
a given set of benchmark programs:

Instruction Type

Instruction Count (millions)

Cycles per Instruction

Machine A

Arithmetic and logic 8 1
Load and store 4 3
Branch 2 4
Others 4 3
Machine A

Arithmetic and logic 10 1

Load and store 8 2

Branch 2 4

Others 4 3

a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.

2.3 Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000,
respectively. Using a typical benchmark program, the following machine characteristics result:

Processor Clock Frequency (MHz) Performance (MIPS) CPU Time (secs)
VAX 11/780 5 1 12 x
IBM RS/6000 25 18 X

The final column shows that the VAX required 12 times longer than the IBM measured in CPU
time.
a. What is the relative size of the instruction count of the machine code for this benchmark
program running on the two machines?
b. What are the CP/ values for the two machines?

2.4 Four benchmark programs are executed on three computers with the following results:

Computer A Computer B Computer C
Program 1 1 10 20
Program 2 1000 100 20
Program 3 500 1000 50
Program 4 100 800 100

The table shows the execution time in seconds, with 100,000,000 instructions executed in each
of the four programs. Calculate the MIPS values for each computer for each program. Then
calculate the arithmetic and harmonic means assuming equal weights for the four programs,
and rank the computers based on arithmetic mean and harmonic mean.

2.5 The following table, based on data reported in the literature [HEAT84], shows the execution
times, in seconds, for five different benchmark programs on three machines.

Benchmark Processor

R M Z

E 417 244 134

F 83 70 70
H 66 153 135
I 39,449 35,527 66,000
K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to

machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated using

Equation (2.5) with R treated as the reference system. Then compute the arithmetic

mean value for each system using Equation (2.3) . This is the approach taken in
[HEATS4].

b. Repeat part (a) using M as the reference machine. This calculation was not tried in
[HEAT84].

c. Which machine is the slowest based on each of the preceding two calculations?

d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in
Equation (2.6) . Which machine is the slowest based on the two calculations?

2.6 To clarify the results of the preceding problem, we look at a simpler example.

Benchmark Processor
X Y Z
1 20 10 40
2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference machine
and then using Y as the reference machine. Argue that intuitively, the three machines

have roughly equivalent performance and that the arithmetic mean gives misleading
results.

b. Compute the geometric mean value for each system, using X as the reference machine
and then using Y as the reference machine. Argue that the results are more realistic than

with the arithmetic mean.

2.7 Consider the example in Section 2.5 for the calculation of average CPI and MIPS rate,

which yielded the result of CPI=2.24 and MIPS rate=178. Now assume that the program can be

executed in eight parallel tasks or threads, with roughly equal number of instructions executed
in each task. Execution is on an 8-core system, with each core (processor) having the same
performance as the single processor originally used. Coordination and synchronization between

the parts adds an extra 25,000 instruction executions to each task. Assume the same

instruction mix as in the example for each task, but increase the CPI for memory reference with

cache miss to 12 cycles due to contention for memory.
a. Determine the average CPI.
b. Determine the corresponding MIPS rate.

c. Calculate the speedup factor.
d. Compare the actual speedup factor with the theoretical speedup factor determined by
Amdhal’s law.

2.8 A processor accesses main memory with an average access time of 7,. A smaller cache

memory is interposed between the processor and main memory. The cache has a significantly
faster access time of T,<T,. The cache holds, at any time, copies of some main memory words

and is designed so that the words more likely to be accessed in the near future are in the cache.
Assume that the probability that the next word accessed by the processor is in the cache is H,
known as the hit ratio.
a. For any single memory access, what is the theoretical speedup of accessing the word in
the cache rather than in main memory?
b. Let T be the average access time. Express T as a function of T, T,, and H. What is the

overall speedup as a function of H?

c. In practice, a system may be designed so that the processor must first access the cache
to determine if the word is in the cache and, if it is not, then access main memory, so that
on a miss (opposite of a hit), memory access time is T+7T,. Express T as a function of

T,,T,, and H. Now calculate the speedup and compare to the result produced in part (b).

2.9 The owner of a shop observes that on average 18 customers per hour arrive, and there are
typically 8 customers in the shop. What is the average length of time each customer spends in
the shop?

2.10 We can gain more insight into Little’s law by considering Figure 2.8a . Over a period of
time T, a total of C items arrive at a system, wait for service, and complete service. The upper
solid line shows the time sequence of arrivals, and the lower solid line shows the time sequence
of departures. The shaded area bounded by the two lines represents the total “work” done by
the system in units of job-seconds; let A be the total work. We wish to derive the relationship
among L, W, and 4.

a. Figure 2.8b divides the total area into horizontal rectangles, each with a height of one
job. Picture sliding all these rectangles to the left so that their left edges line up at 1 =0.

Develop an equation that relates A, C, and W.

b. Figure 2.8c divides the total area into vertical rectangles, defined by the vertical transition
boundaries indicated by the dashed lines. Picture sliding all these rectangles down so
that their lower edges line up at N(¢) =0. Develop an equation that relates A, T, and L.

c. Finally, derive L =AW from the results of (a) and (b).

2.11 In Figure 2.8a, jobs arrive at times r=0,1,1.5,3.25,5.25, and 7.75. The corresponding
completion times are r=2,3,3.5,4.25,8.25, and 8.75.

a. Determine the area of each of the six rectangles in Figure 2.8b and sum to get the total
area A. Show your work.

b. Determine the area of each of the 10 rectangles in Figure 2.8c and sum to get the total
area A. Show your work.

Nir)
A A
L e e e S et S minils Bty Cr-r--1"1"1-"-rrr-q--oytoomeoe
! Total arfivals| | . A A
SRR W | BRI
L AN L SRR e :
! ! . Tdtal completipns | : - _ : : :
0 R | Vo I* 0 pero j :
0 T t 0

(a) Arrival and completion of jobs

(b) Viewed as horizontal rectangles

Nir)
A
{:‘ e e B T e Sl el el B H J
n [| 1 1] 1 :F
0 T ¢

(c) Viewed as vertical rectangles

Figure 2.8 lllustration of Little’s Law

>
Tt

2.12 In Section 2.6 , we specified that the base ratio used for comparing a system under test to

a reference system is: Tref;

ri = Fsut;

[}

a. The preceding equation provides a measure of the speedup of the system under test

compared to the reference system. Assume that the number of floating-point operations
executed in the test program is I;. Now show the speedup as a function of the instruction

execution rate FLOPS..

b. Another technique for normalizing performance is to express the performance of a
system as a percent change relative to the performance of another system. Express this
relative change first as a function of instruction execution rate, and then as a function of

execution times.

2.13 Assume that a benchmark program executes in 480 seconds on a reference machine A.
The same program executes on systems B, C, and D in 360, 540, and 210 seconds,

respectively.

a. Show the speedup of each of the three systems under test relative to A.
b. Now show the relative speedup of the three systems. Comment on the three ways of
comparing machines (execution time, speedup, relative speedup).

2.14 Repeat the preceding problem using machine D as the reference machine. How does this
affect the relative rankings of the four systems?
2.15 Recalculate the results in Table 2.2 using the computer time data of Table 2.4 and
comment on the results.
2.16 Equation 2.5 shows two different formulations of the geometric mean, one using a product
operator and one using a summation operator.

a. Show that the two formulas are equivalent.

b. Why would the summation formulation be preferred for calculating the geometric mean?

2.17 Project. Section 2.5 lists a number of references that document the “benchmark means
wars.” All of the referenced papers are available at box.com/COA10e. Read these papers and
summarize the case for and against the use of the geometric mean for SPEC calculations.

http://box.com/COA10e
http://box.com/COA10e

Part Two The Computer System

Chapter 3 A Top-Level View of Computer Function and
Interconnection

3.1 Computer Components

3.2 Computer Function
Instruction Fetch and Execute

Interrupts

1/0 Function

3.3 Interconnection Structures
3.4 Bus Interconnection

3.5 Point-to-Point Interconnect
QPI Physical Layer

QPI Link Layer
QPI Routing Layer
QPI Protocol Layer
3.6 PCI Express
PCI Physical and Logical Architecture
PCle Physical Layer
PCle Transaction Layer
PCle Data Link Layer

3.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Understand the basic elements of an instruction cycle and the role of interrupts.

Describe the concept of interconnection within a computer system.

Assess the relative advantages of point-to-point interconnection compared to bus interconnection.
Present an overview of QPI.

Present an overview of PCle.

At a top level, a computer consists of CPU (central processing unit), memory, and
I/0O components, with one or more modules of each type. These components are
interconnected in some fashion to achieve the basic function of the computer,
which is to execute programs. Thus, at a top level, we can characterize a
computer system by describing (1) the external behavior of each component, that

is, the data and control signals that it exchanges with other components, and (2)
the interconnection structure and the controls required to manage the use of the
interconnection structure.

This top-level view of structure and function is important because of its explanatory
power in understanding the nature of a computer. Equally important is its use to
understand the increasingly complex issues of performance evaluation. A grasp of
the top-level structure and function offers insight into system bottlenecks, alternate
pathways, the magnitude of system failures if a component fails, and the ease of
adding performance enhancements. In many cases, requirements for greater
system power and fail-safe capabilities are being met by changing the design
rather than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component
interconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional overview is
provided. We are then prepared to examine the use of buses to interconnect
System components.

3.1 Computer Components

As discussed in Chapter 1, virtually all contemporary computer designs are based on concepts
developed by John von Neumann at the Institute for Advanced Studies, Princeton. Such a design is
referred to as the von Neumann architecture and is based on three key concepts:

e Data and instructions are stored in a single read—write memory.
e The contents of this memory are addressable by location, without regard to the type of data
contained there.
e Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the
next.
The reasoning behind these concepts was discussed in Chapter 2 but is worth summarizing here.
There is a small set of basic logic components that can be combined in various ways to store binary
data and perform arithmetic and logical operations on that data. If there is a particular computation to
be performed, a configuration of logic components designed specifically for that computation could be
constructed. We can think of the process of connecting the various components in the desired
configuration as a form of programming. The resulting “program” is in the form of hardware and is
termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose configuration of arithmetic and
logic functions. This set of hardware will perform various functions on data depending on control
signals applied to the hardware. In the original case of customized hardware, the system accepts data
and produces results (Figure 3.1a). With general-purpose hardware, the system accepts data and
control signals and produces results. Thus, instead of rewiring the hardware for each new program,
the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The entire program is actually
a sequence of steps. At each step, some arithmetic or logical operation is performed on some data.
For each step, a new set of control signals is needed. Let us provide a unique code for each possible
set of control signals, and let us add to the general-purpose hardware a segment that can accept a
code and generate control signals (Figure 3.1b).

Sequence of
arithmetic
and logic
functions

Data - = Results

a) Programming in hardware
(g g

Instruction Instruction
codes interpreter

Control
signals

L

General-purpose
Data - al"llllmesli.‘ > Results
and logic

functions

(b) Programming in software

Figure 3.1 Hardware and Software Approaches

Programming is now much easier. Instead of rewiring the hardware for each new program, all we
need to do is provide a new sequence of codes. Each code is, in effect, an instruction, and part of the
hardware interprets each instruction and generates control signals. To distinguish this new method of
programming, a sequence of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction interpreter and a module of
general-purpose arithmetic and logic functions. These two constitute the CPU. Several other
components are needed to yield a functioning computer. Data and instructions must be put into the
system. For this we need some sort of input module. This module contains basic components for
accepting data and instructions in some form and converting them into an internal form of signals
usable by the system. A means of reporting results is needed, and this is in the form of an output
module. Taken together, these are referred to as I/O components.

One more component is needed. An input device will bring instructions and data in sequentially. But a
program is not invariably executed sequentially; it may jump around (e.g., the IAS jump instruction).
Similarly, operations on data may require access to more than just one element at a time in a
predetermined sequence. Thus, there must be a place to temporarily store both instructions and data.
That module is called memory, or main memory, to distinguish it from external storage or peripheral
devices. Von Neumann pointed out that the same memory could be used to store both instructions
and data.

Figure 3.2 illustrates these top-level components and suggests the interactions among them. The

CPU exchanges data with memory. For this purpose, it typically makes use of two internal (to the
CPU) registers: a memory address register (MAR) , which specifies the address in memory for
the next read or write, and a memory buffer register (MBR) , which contains the data to be written
into memory or receives the data read from memory. Similarly, an I/O address register (I/OAR)
specifies a particular 1/0 device. An I/O buffer register (I/OBR) is used for the exchange of data
between an I/O module and the CPU.

CPU Main memory
0
System . 1
. 2
PC MAR bus :
Instruction .
Instruction)
IR MBR Instruction
I/O AR i
\/, Data
Execution
unit HO BR Data
Data
Data
I/0 Module . .
n-1
. PC = Program counter
Buffers IR = [nstruction register _
MAR = Memory address register
MBR = Memory buffer register
/0O AR = Input/output address register
1/0 BR - Input/output bufter register

Figure 3.2 Computer Components: Top-Level View

A memory module consists of a set of locations, defined by sequentially numbered addresses. Each
location contains a binary number that can be interpreted as either an instruction or data. An I/O
module transfers data from external devices to CPU and memory, and vice versa. It contains internal
buffers for temporarily holding these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview of how these
components function together to execute programs.

3.2 Computer Function

The basic function performed by a computer is execution of a program, which consists of a set of
instructions stored in memory. The processor does the actual work by executing instructions specified
in the program. This section provides an overview of the key elements of program execution. In its
simplest form, instruction processing consists of two steps. The processor reads (fetches) instructions
from memory one at a time, then executes each instruction. Program execution consists of repeating
the process of instruction fetch and instruction execution. The instruction execution may involve
several operations and depends on the nature of the instruction (see, for example, the lower portion of
Figure 2.4).

The processing required for a single instruction is called an instruction cycle . Using the simplified
two-step description given previously, the instruction cycle is depicted in Figure 3.3. The two steps
are referred to as the fetch cycle and the execute cycle . Program execution halts only if the
machine is turned off, some sort of unrecoverable error occurs, or a program instruction that halts the
computer is encountered.

Fetch cycle Execute cycle

F

L

Y Fetch next Execute S ()
C START y | instruction instruction AL

Figure 3.3 Basic Instruction Cycle

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from memory. In a
typical processor, a register called the program counter (PC) holds the address of the instruction to be
fetched next. Unless told otherwise, the processor always increments the PC after each instruction
fetch so that it will fetch the next instruction in sequence (i.e., the instruction located at the next higher
memory address). So, for example, consider a computer in which each instruction occupies one 16-bit
word of memory. Assume that the program counter is set to memory location 300, where the location
address refers to a 16-bit word. The processor will next fetch the instruction at location 300. On
succeeding instruction cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as the instruction register (IR).
The instruction contains bits that specify the action the processor is to take. The processor interprets
the instruction and performs the required action. In general, these actions fall into four categories:

e Processor-memory: Data may be transferred from processor to memory or from memory to
processor.

e Processor-1/0: Data may be transferred to or from a peripheral device by transferring between the
processor and an |I/O module.

e Data processing: The processor may perform some arithmetic or logic operation on data.

e Control: An instruction may specify that the sequence of execution be altered. For example, the
processor may fetch an instruction from location 149, which specifies that the next instruction be

from location 182. The processor will remember this fact by setting the program counter to 182.
Thus, on the next fetch cycle, the instruction will be fetched from location 182 rather than 150.
An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical machine that includes the characteristics listed in
Figure 3.4. The processor contains a single data register, called an accumulator (AC). Both
instructions and data are 16 bits long. Thus, it is convenient to organize memory using 16 bit words.
The instruction format prowdes 4 bits for the opcode, so that there can be as many as 2* = 16 different

opcodes, and up to 2"% = 4096 (4K) words of memory can be directly addressed.

0 3 4 15
Opcode Address

(a) Instruction format

Magnitude

(b) Integer format

Program counter (PC) = Address of instruction
Instruction register (IR) = Instruction being executed
Accumulator (AC) = Temporary storage

(¢) Internal CPU registers

0001 = Load AC from memory
0010 = Store AC to memory
0101 = Add to AC from memory

(d) Partial list of opcodes

Figure 3.4 Characteristics of a Hypothetical Machine

Figure 3.5 illustrates a partial program execution, showing the relevant portions of memory and
processor registers.? The program fragment shown adds the contents of the memory word at address
940 to the contents of the memory word at address 941 and stores the result in the latter location.
Three instructions, which can be described as three fetch and three execute cycles, are required:

T Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient notation for
representing the contents of memory and registers when the word length is a multiple of 4. See Chapter 9 for a
basic refresher on number systems (decimal, binary, hexadecimal)

Memory CPU registers Memory CPU registers
300[1 9 4 0~ [300]PC 300(1 9 40 30 1|PC
3D]5'}41L AC|[301(594 1] ~000 3|]AC
30212 9 4 1 =1 0 4 0|IR |302({2 O 4 1 1 94 0]IR
04010 0 0 3 Uzlﬂ'l]{}D?r-jl
041|10 0 0 2 94110 0 0 2
Step 1 Step 2

Memory CPU registers Memory CPU registers
30001 9 40 30 1|PC 300(1 9 40 30 2|PC
301(5 9 4 1}— GDDBACBDIS@J-][—DDGSAC
30212 9 4 1| =594 I|[IR [302(2 9 4 1 \59411[11
0400 0 0 3 94010 0 O 3 3+2=5—
941[0 0 0 2 9410 0 0 2
Step 3 Step 4

Memory CPU registers Memory CPU registers
300(1 9 40 3 0 2|PC 3001 9 40 3 0 3|PC
30115 9 41 000 5/AC|[301|5 9 41 ~10 0 0 5|AC
30212 9 4 1 =2 0 4 1[(IR |302|2 9 4 1 ||2941[R

- b 1

04010 0 0 3 94010 0 O 3 _/,I
04110 0 0 2 94110 0 0 5=
Step 3 Step 6

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

w

o

In this

. The PC contains 300, the address of the first instruction. This instruction (the value 1940 in

hexadecimal) is loaded into the instruction register IR, and the PC is incremented. Note that this
process involves the use of a memory address register and a memory buffer register. For
simplicity, these intermediate registers are ignored.

The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded. The
remaining 12 bits (three hexadecimal digits) specify the address (940) from which data are to be
loaded.

The next instruction (5941) is fetched from location 301, and the PC is incremented.

The old contents of the AC and the contents of location 941 are added, and the result is stored
in the AC.

The next instruction (2941) is fetched from location 302, and the PC is incremented.

The contents of the AC are stored in location 941.

example, three instruction cycles, each consisting of a fetch cycle and an execute cycle, are

needed to add the contents of location 940 to the contents of 941. With a more complex set of
instructions, fewer cycles would be needed. Some older processors, for example, included instructions
that contain more than one memory address. Thus, the execution cycle for a particular instruction on
such processors could involve more than one reference to memory. Also, instead of memory
references, an instruction may specify an I/O operation.

For ex

ample, the PDP-11 processor includes an instruction, expressed symbolically as ADD B,A, that

stores the sum of the contents of memory locations B and A into memory location A. A single
instruction cycle with the following steps occurs:

Fetch the ADD instruction.

Read the contents of memory location A into the processor.

Read the contents of memory location B into the processor. In order that the contents of A are not
lost, the processor must have at least two registers for storing memory values, rather than a single
accumulator.

Add the two values.

Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one reference to memory.
Also, instead of memory references, an instruction may specify an 1/0O operation. With these additional
considerations in mind, Figure 3.6 provides a more detailed look at the basic instruction cycle of
Figure 3.3. The figure is in the form of a state diagram. For any given instruction cycle, some states
may be null and others may be visited more than once. The states can be described as follows:

Instruction Operand Operand
fetch fetch store
A A
Multiple Multiple
operands results
Y
Instruction Instruction Operand Dt Operand
address operation —— address Sverationll address
calculation decoding calculation P calculation
Instruction complete, Return for string
fetch next instruction or vector data

Figure 3.6 Instruction Cycle State Diagram

Instruction address calculation (iac): Determine the address of the next instruction to be
executed. Usually, this involves adding a fixed number to the address of the previous instruction.
For example, if each instruction is 16 bits long and memory is organized into 16-bit words, then add
1 to the previous address. If instead memory is organized as individually addressable 8-bit bytes,
then add 2 to the previous address.

Instruction fetch (if): Read instruction from its memory location into the processor.

¢ Instruction operation decoding (iod): Analyze instruction to determine type of operation to be

performed and operand(s) to be used.

Operand address calculation (oac): If the operation involves reference to an operand in memory
or available via 1/O, then determine the address of the operand.

Operand fetch (of): Fetch the operand from memory or read it in from 1/O.

Data operation (do): Perform the operation indicated in the instruction.

e Operand store (0s): Write the result into memory or out to 1/O.
States in the upper part of Figure 3.6 involve an exchange between the processor and either memory

or an I/O module. States in the lower part of the diagram involve only internal processor operations.
The oac state appears twice, because an instruction may involve a read, a write, or both. However,

the action performed during that state is fundamentally the same in both cases, and so only a single
state identifier is needed.

Also note that the diagram allows for multiple operands and multiple results, because some
instructions on some machines require this. For example, the PDP-11 instruction ADD A,B results in
the following sequence of states: iac, if, iod, oac, of, oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be performed on a vector
(one-dimensional array) of numbers or a string (one-dimensional array) of characters. As Figure 3.6
indicates, this would involve repetitive operand fetch and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, memory) may interrupt the
normal processing of the processor. Table 3.1 lists the most common classes of interrupts. The
specific nature of these interrupts is examined later in this book, especially in Chapters 7 and 14.
However, we need to introduce the concept now to understand more clearly the nature of the
instruction cycle and the implications of interrupts on the interconnection structure. The reader need
not be concerned at this stage about the details of the generation and processing of interrupts, but
only focus on the communication between modules that results from interrupts.

Table 3.1 Classes of Interrupts

Program | Generated by some condition that occurs as a result of an instruction execution, such
as arithmetic overflow, division by zero, attempt to execute an illegal machine
instruction, or reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to
perform certain functions on a regular basis.

110 Generated by an 1/O controller, to signal normal completion of an operation, request
service from the processor, or to signal a variety of error conditions.

Hardware | Generated by a failure such as power failure or memory parity error.
Failure

Interrupts are provided primarily as a way to improve processing efficiency. For example, most
external devices are much slower than the processor. Suppose that the processor is transferring data
to a printer using the instruction cycle scheme of Figure 3.3. After each write operation, the processor
must pause and remain idle until the printer catches up. The length of this pause may be on the order
of many hundreds or even thousands of instruction cycles that do not involve memory. Clearly, this is
a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series of WRITE calls
interleaved with processing. Code segments 1, 2, and 3 refer to sequences of instructions that do not
involve I/O. The WRITE calls are to an I/O program that is a system utility and that will perform the
actual I/O operation. The 1/0O program consists of three sections:

User | @ |WRITE| @ | wriTE | @ |wriTE

Program | | | |
"""" 2N Skt S S
2 o] :
A P ﬁ"u_- :
N Al eeeenn fesiom> (a) No
L ::} interrupts
w | @D wo | ©, | &xp
Program Command
vser | (D 1@ o, @ 16 o, OB
P |—| WRITE | ¢ | WRITE | - - | WRITE
"""" > oA Ly R >
J'.r ’; . _ .}5:"'.:..- ‘_,."’ "’.-
'f .Fd":, '::.."_...-F *‘ .“‘ '*‘_d‘ "-—
<73 N . * (b) Interrupts,
s ; s short I/O wait

[y
1/O @ | 1/0 Interrupt | ® | END
Program Command Handler
User L|I.Jvm'rla: | 2) | WRITE | ©) |wriTE

Program I I I |
-------- A R S PTL
. £ - ..-"" e
. ’ e+ .
-"__..l- -'.'_',-r % "-\ "i J*f
P W Ch =T =~
- LY
<, T e H.‘ 4 __p.- (c) Interrupts,
! ; s, long 1/O wait
&
,.‘___},.r "‘.____i

vo | O | oo e (L
Program Command FI:::E::E— I—I END

x = interrupt occurs during course of execution of user program

Figure 3.7 Program Flow of Control without and with Interrupts

e A sequence of instructions, labeled 4 in the figure, to prepare for the actual 1/0 operation. This may
include copying the data to be output into a special buffer and preparing the parameters for a
device command.

e The actual I/O command. Without the use of interrupts, once this command is issued, the program
must wait for the I/O device to perform the requested function (or periodically poll the device). The
program might wait by simply repeatedly performing a test operation to determine if the I/O
operation is done.

e A sequence of instructions, labeled 5 in the figure, to complete the operation. This may include
setting a flag indicating the success or failure of the operation.

Because the 1/O operation may take a relatively long time to complete, the I/O program is hung up
waiting for the operation to complete; hence, the user program is stopped at the point of the WRITE

call for some considerable period of time.

INTERRUPTS AND THE INSTRUCTION CYCLE

With interrupts, the processor can be engaged in executing other instructions while an I/O operation is
in progress. Consider the flow of control in Figure 3.7b. As before, the user program reaches a point
at which it makes a system call in the form of a WRITE call. The 1/0 program that is invoked in this
case consists only of the preparation code and the actual I/O command. After these few instructions
have been executed, control returns to the user program. Meanwhile, the external device is busy
accepting data from computer memory and printing it. This /O operation is conducted concurrently
with the execution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is ready to accept more data
from the processor—the /O module for that external device sends an interrupt request signal to the
processor. The processor responds by suspending operation of the current program, branching off to
a program to service that particular 1/0 device, known as an interrupt handler, and resuming the
original execution after the device is serviced. The points at which such interrupts occur are indicated
by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program that contains two
WRITE commands. There is a segment of code at the beginning, then one WRITE command, then a
second segment of code, then a second WRITE command, then a third and final segment of code.
The WRITE command invokes the I/O program provided by the OS. Similarly, the I/O program
consists of a segment of code, followed by an I/O command, followed by another segment of code.
The I/O command invokes a hardware 1/O operation.

From the point of view of the user program, an interrupt is just that: an interruption of the normal
sequence of execution. When the interrupt processing is completed, execution resumes (Figure 3.8).
Thus, the user program does not have to contain any special code to accommodate interrupts; the
processor and the operating system are responsible for suspending the user program and then
resuming it at the same point.

User program Interrupt handler
1
2
i
Interrupt
occurs here it -
M

Figure 3.8 Transfer of Control via Interrupts

To accommodate interrupts, an interrupt cycle is added to the instruction cycle, as shown in Figure
3.9. In the interrupt cycle, the processor checks to see if any interrupts have occurred, indicated by the
presence of an interrupt signal. If no interrupts are pending, the processor proceeds to the fetch cycle
and fetches the next instruction of the current program. If an interrupt is pending, the processor does
the following:

Fetch cycle Execute cycle Interrupt cycle
-
Interrupts
disabled
Check for
(CsTaRT)—t—s [Ficnien - interrpt
" HeH Interrupts| ., cess interrupt
enabled

(HALT)

Figure 3.9 Instruction Cycle with Interrupts

e |t suspends execution of the current program being executed and saves its context. This means
saving the address of the next instruction to be executed (current contents of the program counter)
and any other data relevant to the processor’s current activity.

e |t sets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction in the interrupt handler
program, which will service the interrupt. The interrupt handler program is generally part of the
operating system. Typically, this program determines the nature of the interrupt and performs
whatever actions are needed. In the example we have been using, the handler determines which 1/0O
module generated the interrupt and may branch to a program that will write more data out to that 1/0
module. When the interrupt handler routine is completed, the processor can resume execution of the
user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions must be executed (in
the interrupt handler) to determine the nature of the interrupt and to decide on the appropriate action.
Nevertheless, because of the relatively large amount of time that would be wasted by simply waiting
on an I/O operation, the processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing diagram based on the flow
of control in Figures 3.7a and 3.7b. In this figure, user program code segments are shaded green,
and I/O program code segments are shaded gray. Figure 3.10a shows the case in which interrupts
are not used. The processor must wait while an I/O operation is performed.

Time

I/O operation
concurrent with
processor executing

I/O operation;
processor waits

I/O operation
concurrent with

processor executing
I/O operation;

processor waits

lejelejelole|ee

(b) With interrupts

ol
O
[
O
@
o}
[
ol
O

(a) Without interrupts

Figure 3.10 Program Timing: Short /O Wait

Figures 3.7b and 3.10b assume that the time required for the I/O operation is relatively short: less
than the time to complete the execution of instructions between write operations in the user program.
In this case, the segment of code labeled code segment 2 is interrupted. A portion of the code (2a)
executes (while the 1/0 operation is performed) and then the interrupt occurs (upon the completion of
the I/O operation). After the interrupt is serviced, execution resumes with the remainder of code
segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the 1/0 operation will take
much more time than executing a sequence of user instructions. Figure 3.7c indicates this state of
affairs. In this case, the user program reaches the second WRITE call before the 1/O operation
spawned by the first call is complete. The result is that the user program is hung up at that point.
When the preceding 1/O operation is completed, this new WRITE call may be processed, and a new
I/O operation may be started. Figure 3.11 shows the timing for this situation with and without the use
of interrupts. We can see that there is still a gain in efficiency because part of the time during which
the I/O operation is under way overlaps with the execution of user instructions.

Time

I/O operation;
processor waits

1/0) operation
concurrent with
processor executing;
then processor
waits

1/0) operation
concurrent with

I/O operation; processor executing;
processor waits then processor
waits

ol o}
5 gol
B E
© B
© BN
hal gol
i @
© =3
©),

(b) With interrupts

(a) Without interrupts

Figure 3.11 Program Timing: Long I/O Wait

Figure 3.12 shows a revised instruction cycle state diagram that includes interrupt cycle processing.

Instructi Operan Operand
fetch fetch store

Multiple Multiple
operands results
nstruct nstructi Operand rand
3 Data
address operation address Overati address
calculatio ecoding calculati ~ lculatio
Return for
string or

Instruction complete, vector data No
fetch next instruction interrupt -
check
' ' Interrupt
Interrupt

Figure 3.12 Instruction Cycle State Diagram, with Interrupts

MULTIPLE INTERRUPTS

The discussion so far has focused only on the occurrence of a single interrupt. Suppose, however,
that multiple interrupts can occur. For example, a program may be receiving data from a
communications line and printing results. The printer will generate an interrupt every time it completes
a print operation. The communication line controller will generate an interrupt every time a unit of data
arrives. The unit could either be a single character or a block, depending on the nature of the
communications discipline. In any case, it is possible for a communications interrupt to occur while a
printer interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is to disable interrupts while
an interrupt is being processed. A disabled interrupt simply means that the processor can and will
ignore that interrupt request signal. If an interrupt occurs during this time, it generally remains pending
and will be checked by the processor after the processor has enabled interrupts. Thus, when a user
program is executing and an interrupt occurs, interrupts are disabled immediately. After the interrupt
handler routine completes, interrupts are enabled before resuming the user program, and the
processor checks to see if additional interrupts have occurred. This approach is nice and simple, as
interrupts are handled in strict sequential order (Figure 3.13a).

Interrupt
User program handler X

(a) Sequential interrupt processing

Interrupt
User program handler X

L~ _

N

(b) Nested interrupt processing

Interrupt
handler Y

S —

/

Interrupt
handler Y

AIIIIIIIII(

Figure 3.13 Transfer of Control with Multiple Interrupts

The drawback to the preceding approach is that it does not take into account relative priority or time-
critical needs. For example, when input arrives from the communications line, it may need to be
absorbed rapidly to make room for more input. If the first batch of input has not been processed before
the second batch arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt of higher priority to
cause a lower-priority interrupt handler to itself be interrupted (Figure 3.13b). As an example of this
second approach, consider a system with three 1/O devices: a printer, a disk, and a communications
line, with increasing priorities of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible sequence.
A user program begins at 1 =0. At t =10, a printer interrupt occurs; user information is placed on the

system stack and execution continues at the printer interrupt service routine (ISR). While this
routine is still executing, at ¢t =15, a communications interrupt occurs. Because the communications

line has higher priority than the printer, the interrupt is honored. The printer ISR is interrupted, its state
is pushed onto the stack, and execution continues at the communications ISR. While this routine is
executing, a disk interrupt occurs (¢t =20). Because this interrupt is of lower priority, it is simply held,

and the communications ISR runs to completion.

Printer Communication
interrupt interrupt
User program service routine service routine
—t=0 / -
— ﬁ —
— 2 _
. Il Disk
rs interrupt
4 =25 P

service routine

/

/

{

Figure 3.14 Example Time Sequence of Multiple Interrupts

When the communications ISR is complete (1 =25), the previous processor state is restored, which is

the execution of the printer ISR. However, before even a single instruction in that routine can be
executed, the processor honors the higher-priority disk interrupt and control transfers to the disk ISR.
Only when that routine is complete (r =35) is the printer ISR resumed. When that routine completes

(t =40), control finally returns to the user program.

I/0O Function

Thus far, we have discussed the operation of the computer as controlled by the processor, and we
have looked primarily at the interaction of processor and memory.

The discussion has only alluded to the role of the I/O component. This role is discussed in detail in
Chapter 7, but a brief summary is in order here.

An 1/0O module (e.g., a disk controller) can exchange data directly with the processor. Just as the
processor can initiate a read or write with memory, designating the address of a specific location, the
processor can also read data from or write data to an I/O module. In this latter case, the processor
identifies a specific device that is controlled by a particular I/O module. Thus, an instruction sequence
similar in form to that of Figure 3.5 could occur, with 1/O instructions rather than memory-referencing
instructions.

In some cases, it is desirable to allow 1/0O exchanges to occur directly with memory. In such a case,
the processor grants to an 1/0O module the authority to read from or write to memory, so that the 1/0O-
memory transfer can occur without tying up the processor. During such a transfer, the 1/0O module
issues read or write commands to memory, relieving the processor of responsibility for the exchange.
This operation is known as direct memory access (DMA) and is examined in Chapter 7.

3.3 Interconnection Structures

A computer consists of a set of components or modules of three basic types (processor, memory, |/O)
that communicate with each other. In effect, a computer is a network of basic modules. Thus, there
must be paths for connecting the modules.

The collection of paths connecting the various modules is called the interconnection structure. The
design of this structure will depend on the exchanges that must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the major forms of input
and output for each module typeZ:

2 The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each narrow arrow

represents a single signal line.

Read

> Memory
Write
N words
Address > 0 LTI | Data >
Data > N—1 11110
Read
- > I/0 module F— >
Write data
i~
External >
Address > M ports inta
Internal
“d:tad > Interrupt >
External signals
data
[nstmcliuns> Address >
Control
Data > CPU signals >

Interrupt > Data >

signals

Figure 3.15 Computer Modules

Memory: Typically, a memory module will consist of N words of equal length. Each word is
assigned a unique numerical address (0,1, ... ,N —1). A word of data can be read from or written

into the memory. The nature of the operation is indicated by read and write control signals. The
location for the operation is specified by an address.

I/0 module: From an internal (to the computer system) point of view, 1/O is functionally similar to
memory. There are two operations; read and write. Further, an I/O module may control more than
one external device. We can refer to each of the interfaces to an external device as a port and give
each a unique address (e.g..,0.,1, ... ,M —1). In addition, there are external data paths for the

input and output of data with an external device. Finally, an I/O module may be able to send
interrupt signals to the processor.

Processor: The processor reads in instructions and data, writes out data after processing, and
uses control signals to control the overall operation of the system. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection structure must support the
following types of transfers:

Memory to processor: The processor reads an instruction or a unit of data from memory.
Processor to memory: The processor writes a unit of data to memory.

I/0 to processor: The processor reads data from an I/O device via an /O module.

Processor to 1/0: The processor sends data to the 1/0O device.

I/0 to or from memory: For these two cases, an I/O module is allowed to exchange data directly
with memory, without going through the processor, using direct memory access.

Over the years, a number of interconnection structures have been tried. By far the most common are
(1) the bus and various multiple-bus structures, and (2) point-to-point interconnection structures
with packetized data transfer. We devote the remainder of this chapter to a discussion of these
structures.

3.4 Bus Interconnection

The bus was the dominant means of computer system component interconnection for decades. For
general-purpose computers, it has gradually given way to various point-to-point interconnection
structures, which now dominate computer system design. However, bus structures are still commonly
used for embedded systems, particularly microcontrollers. In this section, we give a brief overview of
bus structure. Appendix A provides more detail.

A bus is a communication pathway connecting two or more devices. A key characteristic of a bus is
that it is a shared transmission medium. Multiple devices connect to the bus, and a signal transmitted
by any one device is available for reception by all other devices attached to the bus. If two devices
transmit during the same time period, their signals will overlap and become garbled. Thus, only one
device at a time can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each line is capable of
transmitting signals representing binary 1 and binary 0. Over time, a sequence of binary digits can be
transmitted across a single line. Taken together, several lines of a bus can be used to transmit binary
digits simultaneously (in parallel). For example, an 8-bit unit of data can be transmitted over eight bus
lines.

Computer systems contain a number of different buses that provide pathways between components at
various levels of the computer system hierarchy. A bus that connects major computer components
(processor, memory, 1/O) is called a system bus . The most common computer interconnection
structures are based on the use of one or more system buses.

A system bus consists, typically, of from about fifty to hundreds of separate lines. Each line is
assigned a particular meaning or function. Although there are many different bus designs, on any bus
the lines can be classified into three functional groups (Figure 3.16): data, address, and control lines.
In addition, there may be power distribution lines that supply power to the attached modules.

CPU Memory || *** | Memory 1/0 ses I/O

Control lines

L1 IR L] L 1]

Address lines Bus

Data lines

Figure 3.16 Bus Interconnection Scheme

The data lines provide a path for moving data among system modules. These lines, collectively, are
called the data bus . The data bus may consist of 32, 64, 128, or even more separate lines, the
number of lines being referred to as the width of the data bus. Because each line can carry only one
bit at a time, the number of lines determines how many bits can be transferred at a time. The width of
the data bus is a key factor in determining overall system performance. For example, if the data bus is
32 bits wide and each instruction is 64 bits long, then the processor must access the memory module
twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on the data bus. For
example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the
address of the desired word on the address lines. Clearly, the width of the address bus

determines the maximum possible memory capacity of the system. Furthermore, the address lines are
generally also used to address I/O ports. Typically, the higher-order bits are used to select a particular
module on the bus, and the lower-order bits select a memory location or 1/0O port within the module.
For example, on an 8-bit address bus, address 01111111 and below might reference locations in a
memory module (module 0) with 128 words of memory, and address 10000000 and above refer to
devices attached to an 1/0O module (module 1).

The control lines are used to control the access to and the use of the data and address lines.
Because the data and address lines are shared by all components, there must be a means of
controlling their use. Control signals transmit both command and timing information among system
modules. Timing signals indicate the validity of data and address information. Command signals
specify operations to be performed. Typical control lines include:

Memory write: causes data on the bus to be written into the addressed location.

Memory read: causes data from the addressed location to be placed on the bus.

I/0 write: causes data on the bus to be output to the addressed 1/O port.

I/0 read: causes data from the addressed /O port to be placed on the bus.

Transfer ACK: indicates that data have been accepted from or placed on the bus.

Bus request: indicates that a module needs to gain control of the bus.

Bus grant: indicates that a requesting module has been granted control of the bus.

Interrupt request: indicates that an interrupt is pending.

Interrupt ACK: acknowledges that the pending interrupt has been recognized.

Clock: is used to synchronize operations.

Reset: initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to another, it must do two
things: (1) obtain the use of the bus, and (2) transfer data via the bus. If one module wishes to request
data from another module, it must (1) obtain the use of the bus, and (2) transfer a request to the other
module over the appropriate control and address lines. It must then wait for that second module to
send the data.

3.5 Point-to-Point Interconnect

The shared bus architecture was the standard approach to interconnection between the processor
and other components (memory, 1/O, and so on) for decades. But contemporary systems increasingly
rely on point-to-point interconnection rather than shared buses.

The principal reason driving the change from bus to point-to-point interconnect was the electrical
constraints encountered with increasing the frequency of wide synchronous buses. At higher and
higher data rates, it becomes increasingly difficult to perform the synchronization and arbitration
functions in a timely fashion. Further, with the advent of multicore chips, with multiple processors and
significant memory on a single chip, it was found that the use of a conventional shared bus on the
same chip magnified the difficulties of increasing bus data rate and reducing bus latency to keep up
with the processors. Compared to the shared bus, the point-to-point interconnect has lower latency,
higher data rate, and better scalability.

In this section, we look at an important and representative example of the point-to-point interconnect
approach: Intel's QuickPath Interconnect (QPI), which was introduced in 2008.

The following are significant characteristics of QPI and other point-to-point interconnect schemes:

o Multiple direct connections: Multiple components within the system enjoy direct pairwise
connections to other components. This eliminates the need for arbitration found in shared
transmission systems.

e Layered protocol architecture: As found in network environments, such as TCP/IP-based data
networks, these processor-level interconnects use a layered protocol architecture, rather than the
simple use of control signals found in shared bus arrangements.

e Packetized data transfer: Data are not sent as a raw bit stream. Rather, data are sent as a
sequence of packets, each of which includes control headers and error control codes.

Figure 3.17 illustrates a typical use of QPI on a multicore computer. The QP! links (indicated by the
green arrow pairs in the figure) form a switching fabric that enables data to move throughout the
network. Direct QPI connections can be established between each pair of core processors. If core A in
Figure 3.17 needs to access the memory controller in core D, it sends its request through either cores
B or C, which must in turn forward that request on to the memory controller in core D. Similarly, larger
systems with eight or more processors can be built using processors with three links and routing traffic
through intermediate processors.

1/0 device
1/0 device

DRAM
DRAM

DRAM
DRAM

/O device

— -~ -
QPI PCI Express Memory bus

Figure 3.17 Multicore Configuration Using QPI

In addition, QPI is used to connect to an I/O module, called an I/O hub (IOH). The IOH acts as a
switch directing traffic to and from 1/O devices. Typically in newer systems, the link from the I0H to the
I/O device controller uses an interconnect technology called PCI Express (PCle), described later in
this chapter. The IOH translates between the QPI protocols and formats and the PCle protocols and
formats. A core also links to a main memory module (typically the memory uses dynamic access
random memory (DRAM) technology) using a dedicated memory bus.

QP is defined as a four-layer protocol architecture, encompassing the following layers (Figure 3.18):

Packets
Protocol - Protocol
Routing Routing
Flits
|
Phits
=3

Figure 3.18 QPI Layers

e Physical: Consists of the actual wires carrying the signals, as well as circuitry and logic to support
ancillary features required in the transmission and receipt of the 1s and Os. The unit of transfer at
the Physical layer is 20 bits, which is called a Phit (physical unit).

e Link: Responsible for reliable transmission and flow control. The Link layer’s unit of transfer is an
80-bit Flit (flow control unit).

e Routing: Provides the framework for directing packets through the fabric.

e Protocol: The high-level set of rules for exchanging packets of data between devices. A packet is
comprised of an integral number of Flits.

QPI Physical Layer

Figure 3.19 shows the physical architecture of a QPI port. The QPI port consists of 84 individual links
grouped as follows. Each data path consists of a pair of wires that transmits data one bit at a time; the
pair is referred to as a lane. There are 20 data lanes in each direction (transmit and receive), plus a
clock lane in each direction. Thus, QPI is capable of transmitting 20 bits in parallel in each direction.
The 20-bit unit is referred to as a phit. Typical signaling speeds of the link in current products calls for
operation at 6.4 GT/s (transfers per second). At 20 bits per transfer, that adds up to 16 GB/s, and
since QPI links involve dedicated bidirectional pairs, the total capacity is 32 GB/s.

COMPONENT A

Intel QuickPath Interconnect Port
— —|
O . . &
= Transmission Lanes Reception Lanes o
z &
IO) U IO PO UL PRI PO IWL PP IO PO P PO PO PO PO PO FE WY WY WY ST WY S wwwa

YYYYY YYYYY YYVYVYY YVYVY T G T G G L Gl Gl Ll

2 =L
O Reception Lanes Transmission Lanes g
5 5
= =5

Intel QuickPath Interconnect Port

COMPONENT B
Figure 3.19 Physical Interface of the Intel QPI Interconnect
The lanes in each direction are grouped into four quadrants of 5 lanes each. In some applications, the

link can also operate at half or quarter widths in order to reduce power consumption or work around
failures.

The form of transmission on each lane is known as differential signaling, or balanced
transmission. With balanced transmission, signals are transmitted as a current that travels down one
conductor and returns on the other. The binary value depends on the voltage difference. Typically,
one line has a positive voltage value and the other line has zero voltage, and one line is associated
with binary 1 and the other is associated with binary 0. Specifically, the technique used by QPI is
known as low-voltage differential signaling (LVDS). In a typical implementation, the transmitter injects
a small current into one wire or the other, depending on the logic level to be sent. The current passes
through a resistor at the receiving end, and then returns in the opposite direction along the other wire.
The receiver senses the polarity of the voltage across the resistor to determine the logic level.

Another function performed by the physical layer is that it manages the translation between 80-bit flits
and 20-bit phits using a technique known as multilane distribution. The flits can be considered as a
bit stream that is distributed across the data lanes in a round-robin fashion (first bit to first lane,
second bit to second lane, etc.), as illustrated in Figure 3.20. This approach enables QPI to achieve
very high data rates by implementing the physical link between two ports as multiple parallel channels.

byte stream
- " — T

#2n+l|| #2n | e & | #n42 || #n+l #fin (e e #2 #1

|

#1 2 [N N] n
Qr1 QPl QP
lane 0 lane 1 lane 19

Figure 3.20 QPI Multilane Distribution

QPI Link Layer

The QPI link layer performs two key functions: flow control and error control. These functions are
performed as part of the QP! link layer protocol, and operate on the level of the flit (flow control unit).
Each flit consists of a 72-bit message payload and an 8-bit error control code called a cyclic
redundancy check (CRC). We discuss error control codes in Chapter 5.

A flit payload may consist of data or message information. The data flits transfer the actual bits of data
between cores or between a core and an IOH. The message flits are used for such functions as flow
control, error control, and cache coherence. We discuss cache coherence in Chapters 5 and 17.

The flow control function is needed to ensure that a sending QPI entity does not overwhelm a
receiving QPI entity by sending data faster than the receiver can process the data and clear buffers for
more incoming data. To control the flow of data, QPI makes use of a credit scheme. During
initialization, a sender is given a set number of credits to send flits to a receiver. Whenever a flit is sent
to the receiver, the sender decrements its credit counters by one credit. Whenever a buffer is freed at
the receiver, a credit is returned to the sender for that buffer. Thus, the receiver controls that pace at
which data is transmitted over a QP! link.

Occasionally, a bit transmitted at the physical layer is changed during transmission, due to noise or
some other phenomenon. The error control function at the link layer detects and recovers from such
bit errors, and so isolates higher layers from experiencing bit errors. The procedure works as follows
for a flow of data from system A to system B:

1. As mentioned, each 80-bit flit includes an 8-bit CRC field. The CRC is a function of the value of
the remaining 72 bits. On transmission, A calculates a CRC value for each flit and inserts that
value into the flit.

2. When a flit is received, B calculates a CRC value for the 72-bit payload and compares this value
with the value of the incoming CRC value in the flit. If the two CRC values do not match, an
error has been detected.

3. When B detects an error, it sends a request to A to retransmit the flit that is in error. However,
because A may have had sufficient credit to send a stream of flits, so that additional flits have
been transmitted after the flit in error and before A receives the request to retransmit. Therefore,
the request is for A to back up and retransmit the damaged flit plus all subsequent flits.

QPI Routing Layer

The routing layer is used to determine the course that a packet will traverse across the available
system interconnects. Routing tables are defined by firmware and describe the possible paths that a
packet can follow. In small configurations, such as a two-socket platform, the routing options are
limited and the routing tables quite simple. For larger systems, the routing table options are more
complex, giving the flexibility of routing and rerouting traffic depending on how (1) devices are
populated in the platform, (2) system resources are partitioned, and (3) reliability events result in
mapping around a failing resource.

QPI Protocol Layer

In this layer, the packet is defined as the unit of transfer. The packet contents definition is
standardized with some flexibility allowed to meet differing market segment requirements. One key
function performed at this level is a cache coherency protocol, which deals with making sure that main
memory values held in multiple caches are consistent. A typical data packet payload is a block of data
being sent to or from a cache.

3.6 PCI Express

The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-independent
bus that can function as a mezzanine or peripheral bus. Compared with other common bus
specifications, PCI delivers better system performance for high-speed I/O subsystems (e.g., graphic
display adapters, network interface controllers, and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon released all the patents to
the public domain and promoted the creation of an industry association, the PCI Special Interest
Group (SIG), to develop further and maintain the compatibility of the PCI specifications. The result is
that PCI has been widely adopted and is finding increasing use in personal computer, workstation,
and server systems. Because the specification is in the public domain and is supported by a broad
cross-section of the microprocessor and peripheral industry, PCI products built by different vendors
are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI scheme has not been
able to keep pace with the data rate demands of attached devices. Accordingly, a new version, known
as PCI Express (PCle) has been developed. PCle, as with QPI, is a point-to-point interconnect
scheme intended to replace bus-based schemes such as PCI.

A key requirement for PCle is high capacity to support the needs of higher data rate 1/O devices, such
as Gigabit Ethernet. Another requirement deals with the need to support time-dependent data
streams. Applications such as video-on-demand and audio redistribution are putting real-time
constraints on servers too. Many communications applications and embedded PC control systems
also process data in real-time. Today’s platforms must also deal with multiple concurrent transfers at
ever-increasing data rates. It is no longer acceptable to treat all data as equal—it is more important,
for example, to process streaming data first since late real-time data is as useless as no data. Data
needs to be tagged so that an I/O system can prioritize its flow throughout the platform.

PCI Physical and Logical Architecture

Figure 3.21 shows a typical configuration that supports the use of PCle. A root complex device, also
referred to as a chipset or a host bridge, connects the processor and memory subsystem to the PCI
Express switch fabric comprising one or more PCle and PCle switch devices. The root complex acts
as a buffering device, to deal with differences in data rates between I/O controllers and memory and
processor components. The root complex also translates between PCle transaction formats and the
processor and memory signal and control requirements. The chipset will typically support multiple
PCle ports, some of which attach directly to a PCle device, and one or more that attach to a switch
that manages multiple PCle streams. PCle links from the chipset may attach to the following kinds of
devices that implement PCle:

Core Core

r© B [- r© n
Gigabit PCle
chere
% r \ .
Chipset
f’ B - i)
PCle-PCI || PCle
% r h A \ .
PCle
PCle 6 PCle
PCle PCle

) () (o) ()

Figure 3.21 Typical Configuration Using PCle

e Switch: The switch manages multiple PCle streams.

e PCle endpoint: An I/O device or controller that implements PCle, such as a Gigabit ethernet
switch, a graphics or video controller, disk interface, or a communications controller.

e Legacy endpoint: Legacy endpoint category is intended for existing designs that have been
migrated to PCI Express, and it allows legacy behaviors such as use of I1/0O space and locked
transactions. PCI Express endpoints are not permitted to require the use of I/O space at runtime
and must not use locked transactions. By distinguishing these categories, it is possible for a
system designer to restrict or eliminate legacy behaviors that have negative impacts on system
performance and robustness.

e PCle/PCl bridge: Allows older PCI devices to be connected to PCle-based systems.

As with QPI, PCle interactions are defined using a protocol architecture. The PCle protocol
architecture encompasses the following layers (Figure 3.22):

Transaction layer

packets (TLPs)
Transaction - Transaction

Data link layer

packets (DLLPs)
Data link [~ T Data link

Physical Physical

7 7

Figure 3.22 PCle Protocol Layers

e Physical: Consists of the actual wires carrying the signals, as well as circuitry and logic to support
ancillary features required in the transmission and receipt of the 1s and Os.
e Data link: Is responsible for reliable transmission and flow control. Data packets generated and
consumed by the DLL are called Data Link Layer Packets (DLLPs).
e Transaction: Generates and consumes data packets used to implement load/store data transfer
mechanisms and also manages the flow control of those packets between the two components on
a link. Data packets generated and consumed by the TL are called Transaction Layer Packets
(TLPs).
Above the TL are software layers that generate read and write requests that are transported by the
transaction layer to the I/O devices using a packet-based transaction protocol.

PCle Physical Layer

Similar to QPI, PCle is a point-to-point architecture. Each PCle port consists of a number of
bidirectional lanes (note that in QPI, the lane refers to transfer in one direction only). Transfer in each
direction in a lane is by means of differential signaling over a pair of wires. A PCI port can provide 1, 4,
6, 16, or 32 lanes. In what follows, we refer to the PCle 3.0 specification, introduced in late 2010.

As with QPI, PCle uses a multilane distribution technique. Figure 3.23 shows an example for a PCle
port consisting of four lanes. Data are distributed to the four lanes 1 byte at a time using a simple
round-robin scheme. At each physical lane, data are buffered and processed 16 bytes (128 bits) at a
time. Each block of 128 bits is encoded into a unique 130-bit codeword for transmission; this is
referred to as 128b/130b encoding. Thus, the effective data rate of an individual lane is reduced by a
factor of 128/130.

byte stream
B —

ee RB7 B6 BS B4 B3 B2 Bl BO

|

B4 BS B6 B7

BO B1 B2 B3

v v

Q;j':b Q;j.zb

PCle PCle PCle PCle
lane 0 lane 1 lane 2 lane 3

Figure 3.23 PCle Multilane Distribution

To understand the rationale for the 128b/130b encoding, note that unlike QPI, PCle does not use its
clock line to synchronize the bit stream. That is, the clock line is not used to determine the start and
end point of each incoming bit; it is used for other signaling purposes only. However, it is necessary
for the receiver to be synchronized with the transmitter, so that the receiver knows when each bit
begins and ends. If there is any drift between the clocks used for bit transmission and reception of the
transmitter and receiver, errors may occur. To compensate for the possibility of drift, PCle relies on
the receiver synchronizing with the transmitter based on the transmitted signal. As with QPI, PCle
uses differential signaling over a pair of wires. Synchronization can be achieved by the receiver
looking for transitions in the data and synchronizing its clock to the transition. However, consider that
with a long string of 1s or Os using differential signaling, the output is a constant voltage over a long
period of time. Under these circumstances, any drift between the clocks of the transmitter and receiver
will result in loss of synchronization between the two.

A common approach, and the one used in PCle 3.0, to overcoming the problem of a long string of bits
of one value is scrambling. Scrambling, which does not increase the number of bits to be transmitted,
is @ mapping technique that tends to make the data appear more random. At the receiving end, a
descrambling algorithm recovers the original data sequence. The scrambling tends to spread out the
number of transitions so that they appear at the receiver more uniformly spaced, which is good for
synchronization. Also, other transmission properties, such as spectral properties, are enhanced if the
data are more nearly of a random nature rather than constant or repetitive.

Another technique that can aid in synchronization is encoding, in which additional bits are inserted into
the bit stream to force transitions. For PCle 3.0, each group of 128 bits of input is mapped into a 130-
bit block by adding a 2-bit block sync header. The value of the header is 10 for a data block and 01 for
what is called an ordered set block, which refers to a link-level information block.

Figure 3.24 illustrates the use of scrambling and encoding. Data to be transmitted are fed into a
scrambler. The scrambled output is then fed into a 128b/130b encoder, which buffers 128 bits and
then maps the 128-bit block into a 130-bit block. This block then passes through a parallel-to-serial
converter and is transmitted one bit at a time using differential signaling.

D+ D-
Scerambler Dliferf:nua]
receiver
* 8h 1b CIMI{. recovery
L] circuit
128b/130b Encoding Data recovery | _
circuit
130b 1b
w
Parallel to serial Serial to parallel
130h
1b
Transmitter differential]
driver 128b/130b decoding
l l 128b
D+ D-
(a) Transmitter Descrambler

I

{(b) Receiver

Figure 3.24 PCle Transmit and Receive Block Diagrams

At the receiver, a clock is synchronized to the incoming data to recover the bit stream. This then

passes through a serial-to-parallel converter to produce a stream of 130-bit blocks. Each block is
passed through a 128b/130b decoder to recover the original scrambled bit pattern, which is then
descrambled to produce the original bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final detail to mention; each
transmission of a block of data over a PCI link begins and ends with an 8-bit framing sequence
intended to give the receiver time to synchronize with the incoming physical layer bit stream.

PCle Transaction Layer

The transaction layer (TL) receives read and write requests from the software above the TL and
creates request packets for transmission to a destination via the link layer. Most transactions use a
split transaction technique, which works in the following fashion. A request packet is sent out by a
source PCle device, which then waits for a response, called a completion packet. The completion
following a request is initiated by the completer only when it has the data and/or status ready for
delivery. Each packet has a unique identifier that enables completion packets to be directed to the
correct originator. With the split transaction technique, the completion is separated in time from the
request, in contrast to a typical bus operation in which both sides of a transaction must be available to
seize and use the bus. Between the request and the completion, other PCle traffic may use the link.

TL messages and some write transactions are posted fransactions, meaning that no response is
expected.

The TL packet format supports 32-bit memory addressing and extended 64-bit memory addressing.
Packets also have attributes such as “no-snoop,” “relaxed-ordering,” and “priority,” which may be used
to optimally route these packets through the I/O subsystem.

ADDRESS SPACES AND TRANSACTION TYPES

The TL supports four address spaces:

e Memory: The memory space includes system main memory. It also includes PCle I/O devices.
Certain ranges of memory addresses map into 1/0O devices.
e |/O: This address space is used for legacy PCI devices, with reserved memory address ranges
used to address legacy I/O devices.
e Configuration: This address space enables the TL to read/write configuration registers associated
with I/O devices.
e Message: This address space is for control signals related to interrupts, error handling, and power
management.
Table 3.2 shows the transaction types provided by the TL. For memory, /O, and configuration
address spaces, there are read and write transactions. In the case of memory transactions, there is
also a read lock request function. Locked operations occur as a result of device drivers requesting
atomic access to registers on a PCle device. A device driver, for example, can atomically read,
modify, and then write to a device register. To accomplish this, the device driver causes the processor
to execute an instruction or set of instructions. The root complex converts these processor instructions
into a sequence of PCle transactions, which perform individual read and write requests for the device
driver. If these transactions must be executed atomically, the root complex locks the PCle link while
executing the transactions. This locking prevents transactions that are not part of the sequence from
occurring. This sequence of transactions is called a locked operation. The particular set of processor
instructions that can cause a locked operation to occur depends on the system chip set and processor
architecture.

Table 3.2 PCle TLP Transaction Types

Address Space TLP Type Purpose
Memory Memory Read Transfer data to or from a location in the system
Request memory map.

Memory Read Lock
Request

Memory Write
Request

110 I/O Read Request | Transfer data to or from a location in the system

memory map for legacy devices.
I/O Write Request

Configuration Config Type 0 Transfer data to or from a location in the configuration
Read Request space of a PCle device.
Config Type 0

Write Request

Config Type 1
Read Request

Config Type 1
Write Request

Message Message Request | Provides in-band messaging and event reporting.

Message Request
with Data

Memory, /O, Completion Returned for certain requests.

Configuration
Completion with

Data

Completion Locked

Completion Locked
with Data

To maintain compatibility with PCI, PCle supports both Type 0 and Type 1 configuration cycles. A
Type 1 cycle propagates downstream until it reaches the bridge interface hosting the bus (link) that
the target device resides on. The configuration transaction is converted on the destination link from
Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, 1/O, and configuration
transactions.

TLP PACKET ASSEMBLY

PCle transactions are conveyed using transaction layer packets, which are illustrated in Figure 3.25a.

A TLP originates in the transaction layer of the sending device and terminates at the transaction layer
of the receiving device.

Number
of octets
1 STP framing |- 1 Start <
=
2 < [Sequence number]<———— 4 DLLP 3 - =z
\ 523
E5 B
2 CRC il -4
f=%
g -
12 or 16 { Header I End -
[i
] - 3
5 e =
2 A &
= > Z
- = =
= 'E]
0 to 4096 < Data T - L=
2 = o
= S [=%
2 » =
& s | =
Dord ECRC J
4 LCRC -—
1 STP framing |-
(a) Transaction Layer Packet (b) Data Link Layer Packet

Figure 3.25 PCle Protocol Data Unit Format

Upper layer software sends to the TL the information needed for the TL to create the core of the TLP,
which consists of the following fields:

e Header: The header describes the type of packet and includes information needed by the receiver
to process the packet, including any needed routing information. The internal header format is

discussed subsequently.

e Data: A data field of up to 4096 bytes may be included in the TLP. Some TLPs do not contain a
data field.

e ECRC: An optional end-to-end CRC field enables the destination TL layer to check for errors in the
header and data portions of the TLP.

PCle Data Link Layer

The purpose of the PCle data link layer is to ensure reliable delivery of packets across the PCle link.
The DLL participates in the formation of TLPs and also transmits DLLPs.

DATA LINK LAYER PACKETS

Data link layer packets originate at the data link layer of a transmitting device and terminate at the DLL
of the device on the other end of the link. Figure 3.25b shows the format of a DLLP. There are three
important groups of DLLPs used in managing a link: flow control packets, power management
packets, and TLP ACK and NAK packets. Power management packets are used in managing power
platform budgeting. Flow control packets regulate the rate at which TLPs and DLLPs can be
transmitted across a link. The ACK and NAK packets are used in TLP processing, discussed in the
following paragraphs.

TRANSACTION LAYER PACKET PROCESSING

The DLL adds two fields to the core of the TLP created by the TL (Figure 3.25a): a 16-bit sequence
number and a 32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only used
at the destination TL, the two fields added by the DLL are processed at each intermediate node on the
way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and LCRC fields and checks
the LCRC. There are two possibilities:

1. If no errors are detected, the core portion of the TLP is handed up to the local transaction layer.
If this receiving device is the intended destination, then the TL processes the TLP. Otherwise,
the TL determines a route for the TLP and passes it back down to the DLL for transmission over
the next link on the way to the destination.

2. If an error is detected, the DLL schedules an NAK DLL packet to return back to the remote
transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives a NAK for the TLP with this
sequence number, it retransmits the TLP. When it receives an ACK, it discards the buffered TLP.

3.7 Key Terms, Review Questions, and Problems

Key Terms

address bus

address lines

arbitration

balanced transmission

bus

control lines

data bus

data lines

differential signaling

disabled interrupt

distributed arbitration

error control function

execute cycle

fetch cycle

flit

flow control function
instruction cycle

interrupt

interrupt handler

interrupt service routine (ISR)
lane

memory address register (MAR)
memory buffer register (MBR)
multilane distribution

packets

PCI Express (PCle)

peripheral component interconnect (PCl)
phit

QuickPath Interconnect (QPI)

root complex

system bus

Review Questions

3.1 What general categories of functions are specified by computer instructions?

3.2 List and briefly define the possible states that define an instruction execution.

3.3 List and briefly define two approaches to dealing with multiple interrupts.

3.4 What types of transfers must a computer’s interconnection structure (e.g., bus) support?
3.5 List and briefly define the QPI protocol layers.

3.6 List and briefly define the PCle protocol layers.

Problems

3.1 The hypothetical machine of Fi%{fﬁ 3='4]9$%8 R%sf%% VB instructions:
0111 = Store AC to I/O

In these cases, the 12-bit address identifies a particular /0 device. Show the program
execution (using the format of Figure 3.5) for the following program:

1. Load AC from device 5.

2. Add contents of memory location 940.

3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains a value
of 2.
3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand this
description to show the use of the MAR and MBR.
3.3 Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two
fields: the first byte contains the opcode and the remainder the immediate operand or an
operand address.
a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has:
1. 32-bit local address bus and a 16-bit local data bus, or
2. 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?

3.4 Consider a hypothetical microprocessor generating a 16-bit address (for example, assume
that the program counter and the address registers are 16 bits wide) and having a 16-bit data
bus.
a. What is the maximum memory address space that the processor can access directly if it
is connected to a “16-bit memory”?
b. What is the maximum memory address space that the processor can access directly if it
is connected to an “8-bit memory”?
c. What architectural features will allow this microprocessor to access a separate “I/O
space”?
d. If an input and an output instruction can specify an 8-bit I/O port number, how many 8-bit
I/O ports can the microprocessor support? How many 16-bit /0O ports? Explain.

3.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz input
clock. Assume that this microprocessor has a bus cycle whose minimum duration equals four
input clock cycles. What is the maximum data transfer rate across the bus that this
microprocessor can sustain, in bytes/sec? To increase its performance, would it be better to
make its external data bus 32 bits or to double the external clock frequency supplied to the
microprocessor? State any other assumptions you make, and explain. Hint: Determine the
number of bytes that can be transferred per bus cycle.

3.6 Consider a computer system that contains an 1/0O module controlling a simple
keyboard/printer teletype. The following registers are contained in the processor and connected
directly to the system bus:

INPR: Input Register, 8 bits

OUTR: Output Register, 8 bits
FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit

IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled by the I/O
module. The teletype is able to encode an alphanumeric symbol to an 8-bit word and decode an
8-bit word into an alphanumeric symbol.
a. Describe how the processor, using the first four registers listed in this problem, can
achieve 1/0O with the teletype.
b. Describe how the function can be performed more efficiently by also employing IEN.

3.7 Consider two microprocessors having 8- and 16-bit-wide external data buses, respectively.
The two processors are identical otherwise and their bus cycles take just as long.
a. Suppose all instructions and operands are two bytes long. By what factor do the
maximum data transfer rates differ?
b. Repeat assuming that half of the operands and instructions are one byte long.

3.8 Figure 3.26 indicates a distributed arbitration scheme that can be used with an obsolete bus
scheme known as Multibus I. Agents are daisy-chained physically in priority order. The left-most
agent in the diagram receives a constant bus priority in (BPRN) signal indicating that no higher-
priority agent desires the bus. If the agent does not require the bus, it asserts its bus priority out
(BPRO) line. At the beginning of a clock cycle, any agent can request control of the bus by
lowering its BPRO line. This lowers the BPRN line of the next agent in the chain, which is in turn
required to lower its BPRO line. Thus, the signal is propagated the length of the chain. At the
end of this chain reaction, there should be only one agent whose BPRN is asserted and whose
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not busy
(BUSY inactive), the agent that has priority may seize control of the bus by asserting the BUSY
line.

Bus A y A Bus
terminator terminator

Y

L L : Y Y

BPRN BPRO BPRN BPRO BPRN BPRO
(highest priority) (lowest priority)
Master 1 Master 2 Master 3

Figure 3.26 Multibus | Distributed Arbitration

It takes a certain amount of time for the BPR signal to propagate from the highest-priority agent
to the lowest. Must this time be less than the clock cycle? Explain.

3.9 The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI device (i.e.,
processor, memory, /O module) has a unique priority and is assigned a unique transfer request
(TR) line. The SBI has 16 such lines (TRO, TR1, . . ., TR15), with TRO having the highest
priority. When a device wants to use the bus, it places a reservation for a future time slot by
asserting its TR line during the current time slot. At the end of the current time slot, each device
with a pending reservation examines the TR lines; the highest-priority device with a reservation
uses the next time slot.

A maximum of 17 devices can be attached to the bus. The device with priority 16 has no TR
line. Why not?

3.10 On the VAX SBI, the lowest-priority device usually has the lowest average wait time. For
this reason, the processor is usually given the lowest priority on the SBI. Why does the priority
16 device usually have the lowest average wait time? Under what circumstances would this not
be true?

3.11 For a synchronous read operation (Figure C.3 in Appendix C), the memory module must
place the data on the bus sufficiently ahead of the falling edge of the Read signal to allow for
signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read signal
begins to fall in the middle of the second half of 7.

a. Determine the length of the memory read instruction cycle.
b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the
settling of data lines.

3.12 Consider a microprocessor that has a memory read timing (Figure C.3 in Appendix C).
After some analysis, a designer determines that the memory falls short of providing read data
on time by about 180 ns.

a. How many wait states (clock cycles) need to be inserted for proper system operation if
the bus clocking rate is 8 MHz?

b. To enforce the wait states, a Ready status line is employed. Once the processor has
issued a Read command, it must wait until the Ready line is asserted before attempting
to read data. At what time interval must we keep the Ready line low in order to force the
processor to insert the required number of wait states?

3.13 A microprocessor has a memory write timing Figure A.3 in Appendix A . Its manufacturer
specifies that the width of the Write signal can be determined by T — 50, where T is the clock

period in ns.

a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?

b. The data sheet for the microprocessor specifies that the data remain valid for 20 ns after
the falling edge of the Write signal. What is the total duration of valid data presentation to
memory?

c. How many wait states should we insert if memory requires valid data presentation for at
least 190 ns?

3.14 A microprocessor has an increment memory direct instruction, which adds 1 to the value in
a memory location. The instruction has five stages: fetch opcode (four bus clock cycles), fetch
operand address (three cycles), fetch operand (three cycles), add 1 to operand (three cycles),
and store operand (three cycles).
a. By what amount (in percent) will the duration of the instruction increase if we have to
insert two bus wait states in each memory read and memory write operation?
b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure C.3, but
requires four processor clock cycles. The valid data is on the bus for an amount of time that
extends into the fourth processor clock cycle. Assume a processor clock rate of 8 MHz.

a. What is the maximum data transfer rate?

b. Repeat, but assume the need to insert one wait state per byte transferred.

3.16 The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086 uses
a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order byte has an even
address. However, the 8086 allows both even- and odd-aligned word operands. If an odd-
aligned word is referenced, two memory cycles, each consisting of four bus cycles, are required
to transfer the word. Consider an instruction on the 8086 that involves two 16-bit operands. How
long does it take to fetch the operands? Give the range of possible answers. Assume a clocking
rate of 4 MHz and no wait states.

3.17 Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a 16-bit
microprocessor. Assume that, on average, 20% of the operands and instructions are 32 bits
long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate the improvement achieved
when fetching instructions and operands with the 32-bit microprocessor.

3.18 The microprocessor of Problem 3.14 initiates the fetch operand stage of the increment
memory direct instruction at the same time that a keyboard activates an interrupt request line.
After how long does the processor enter the interrupt processing cycle? Assume a bus clocking
rate of 10 MHz.

Chapter 4 The Memory Hierarchy: Locality and Performance

4.1 Principle of Locality
4.2 Characteristics of Memory Systems

4.3 The Memory Hierarchy
Cost and Performance Characteristics

Typical Members of the Memory Hierarchy
The IBM z13 Memory Hierarchy

Design Principles for a Memory Hierarchy

4.4 Performance Modeling of a Multilevel Memory Hierarchy
Two-Level Memory Access

Multilevel Memory Access

4.5 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Present an overview of the principle of locality.

e Describe key characteristics of a memory system.

e Discuss how locality influences the development of a memory hierarchy.
e Understand the performance implications of multiple levels of memory.

Although seemingly simple in concept, computer memory exhibits perhaps the
widest range of type, technology, organization, performance, and cost of any
feature of a computer system. No single technology is optimal in satisfying the
memory requirements for a computer system. As a consequence, the typical
computer system is equipped with a hierarchy of memory subsystems, some
internal to the system (directly accessible by the processor) and some external
(accessible by the processor via an I/O module).

This chapter focuses on the performance factors that drive the development of a
computer memory system with multiple levels using different technologies.
Section 4.1 introduces the key concept of locality of reference, which has a
profound influence on both the organization of memory and on operating system
memory management software. Following a brief discussion of key characteristics
of memory systems, the chapter turns to a presentation of the concept of a
memory hierarchy and indicates the typical components in contemporary systems.
Finally, Section 4.4 develops a simple but illuminating model of memory access
performance.

The next three chapters look at specific aspects of memory systems, using the
insights provided in this chapter. Chapter 56 examines an essential element of all

modern computer systems: cache memory. Chapter 6 then looks at the
technology options for internal memory, including cache and main memory.
Chapter 7 is devoted to external memory.

4.1 Principle Of Locality

One of the most important concepts related to computer systems is principle of locality [DENNO05],
also referred to as the locality of reference. The principle reflects the observation that during the
course of execution of a program, memory references by the processor, for both instructions and data,
tend to cluster. Programs typically contain a number of iterative loops and subroutines. Once a loop or
subroutine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data words. Over a long period of
time, the clusters in use change, but over a short period of time, the processor is primarily working
with fixed clusters of memory references.

We can put these observations more specifically. As we discuss in Section 4.3, for different types of
memory, memory is accessed and retrieved in units of different sizes, ranging from individual words to
large blocks of cache memory to much larger segments of disk memory. Denning observed that
locality is based on three assertions [DENN72]:

1. During any interval of time, a program references memory locations non-uniformly. That is,
some units of memory are more likely to be accessed than others.

2. As a function of time, the probability that a given unit of memory is referenced tends to change
slowly. Put another way, the probability distribution of memory references across the entire
memory space tends to change slowly over time.

3. The correlation between immediate past and immediate future memory reference patterns is
high, and tapers off as the time interval increases.

Intuitively, the principle of locality makes sense. Consider the following line of reasoning:

1. Except for branch and call instructions, which constitute only a small fraction of all program
instructions, program execution is sequential. Hence, in most cases, the next instruction to be
fetched immediately follows the last instruction fetched.

2. ltis rare to have a long uninterrupted sequence of procedure calls followed by the
corresponding sequence of returns. Rather, a program remains confined to a rather narrow
window of procedure-invocation depth. Thus, over a short period of time, references to
instructions tend to be localized to a few procedures.

3. Most iterative constructs consist of a relatively small number of instructions repeated many
times. For the duration of the iteration, computation is therefore confined to a small contiguous
portion of a program.

4. In many programs, much of the computation involves processing data structures, such as
arrays or sequences of records. In many cases, successive references to these data structures
will be to closely located data items.

Numerous studies, stretching back to the early 1970s, confirm these observations. [FEIT15] provides
a summary of many of these studies.

A distinction is made in the literature between two forms of locality:

1. Temporal locality: Refers to the tendency of a program to reference in the near future those
units of memory referenced in the recent past. For example, when an iteration loop is executed,
the processor executes the same set of instructions repeatedly. Constants, temporary variables,
and working stacks are also constructs that lead to this principle.

2. Spatial locality: Refers to the tendency of a program to reference units of memory whose
addresses are near one another. That is, if a unit of memory x is referenced at time ¢, it is likely

that units in the range x — k through x + k will be referenced in the near future, for a relatively

small value of k. This reflects the tendency of a processor to access instructions sequentially.
Spatial location also reflects the tendency of a program to access data locations sequentially,
such as when processing a table of data.

A crude analogy may help illuminate the distinction between these two concepts (Figure 4.1).
Suppose that Bob is working in an office and spends much of his time dealing with documents in file
folders. Thousand of folders are stored in file cabinets in the next room, and for convenience Bob has
a file organizer on his desk that can hold a few dozen files. When Bob is working on a file and
temporarily is finished, it may be likely that he will need to read or write one of the documents in that
file in the near future, so he keeps it in his desk organizer. This is an example of exploiting temporal
locality. Bob also observes that when he retrieves a folder from the filing cabinets, it is likely that in the
near future he will need access to some of the nearby folders as well, so he retrieves the folder he
needs plus a few folders on either side at the same time. This is an example of exploiting spatial
locality. Of course, Bob's desktop file organizer soon fills up, so that when he goes to retrieve a folder
from the file cabinets, he needs to return folders from his desk. Bob needs some policy for replacing
folders. If he focuses on temporal locality, Bob could choose to replace only one folder at a time, on
the reasoning that he might need any of the folders currently on his desk in the near future. So Bob
could replace perhaps the folder that had been on the desk the longest or the one that had be the
least recently used. If Bob focuses on spatial locality, when he needs a folder not on his desk, he
could return and refile all the folders on his desk and retrieve a batch of contiguous folders that
includes the one he needs plus other nearby folders sufficient to fill up his desktop organizer. It is
likely that neither policy is optimal. In the first case, he might have to make frequent trips to the next
room to get one folder he doesn’t have but which is near one he does have. In the second case, he
might have to make frequent trips to the next room to get a folder that he had just recently put away.
So perhaps a policy of returning and retrieving in batches equal to 10% or 20% of his desktop capacity

would be closer to optimal.
F Wy

g:

=
.

?(/// il

Filing cabinets in next room

File organizer
on Bob’s desk

Figure 4.1 Moving File Folders Between Smaller, Faster-Access Storage and Larger, Slower-

Access Storage
Gualtiero boffi/Shutterstock

For cache memory, temporal locality is traditionally exploited by keeping recently used instruction and
data values in cache memory and by exploiting a cache hierarchy. Spatial locality is generally
exploited by using larger cache blocks and by incorporating prefetching mechanisms (fetching items of
anticipated use) into the cache control logic. Over the years, there has been considerable research on

refining these techniques to achieve greater performance, but the basic strategies remain the same.

Figure 4.2 provides a rough depiction of the behavior of programs that exhibit temporal locality. For a
unit of memory accessed at time ¢, the figure shows the distribution of probability of the time of the
next access to the same memory unit. Similarly, Figure 4.3 provides a rough depiction of the behavior
of programs that exhibit spatial locality. For spatial locality, the probability distribution curve is
symmetrical around the location of the most recent memory access address.

» time

i

Figure 4.2 Idealized Temporal Locality Behavior: Probability Distribution for Time of Next
Memory Access to Memory Unit Accessed at Time t

Data address
distribution

Instruction address
distribution

x zn-l

Memory address

Tt b mm m m om om o momomw om o omom oo om ome o e ==

Figure 4.3 Idealized Spatial Locality Behavior: Probability Distribution for Next Memory Access
(most recent data memory access at location x; most recent instruction fetch at location y)

Many programs exhibit both temporal and spatial locality for both instruction and data access. It has
been found that data access patterns generally show a greater variance than instruction access

patterns [AHOO7]. Figure 4.3 suggests this distinction between the distribution of data location
accesses (read or write) and instruction fetch addresses. Typically, each instruction execution involves
fetching the instruction from memory and, during execution, accessing one or more data operands
from one or more regions of memory. Thus, there is a dual locality of data spatial locality and
instruction spatial locality. And, of course, temporal locality exhibits this same dual behavior: data
temporal locality and instruction temporal locality. That is, when an instruction is fetched from a
unit of memory, it is likely that in the near future, additional instructions will be fetched from that same
memory unit; and when a data location is accessed, it is likely that in the near future, additional
instructions will be fetched from that same memory unit.

An example of data locality is illustrated in Figure 4.4 [BAEN97]. This shows the results of a study of
Web-based document access patterns, where the documents are distributed among a number of
servers. In this case, the unit of access is a single document and temporal locality is measured. The
access scheme makes use of a document cache at the browser that can temporarily retain a small
number of documents to facilitate reuse. The study covered 220,000 documents distributed over
11,000 servers. As shown in Figure 4.4, only a very small subset of pages incorporates a high
number of references while most documents are accessed relatively infrequently.

3']{"] I]] [}] I]
i i i [] i i i
] e e s S R SRR
” : : : : : | |
g 2000 ff------ - b h i h i fmm i
[=] I I] [}] I]
2 : !] !] : !
.:2]] 1 |] 1] 1
2 : | | : | | !
s 1500 p----- == e g S g == = e
z : : ! I : : :
£ : | | : | | |
= i i 1 i 1 i i
#1000 Fp----- R P ARk T G §T2TE IR
e G e B s
0 | i E ! : ! f
0 50 100 150 200 250 300 350 400

Web page number (sorted by decreasing number of references)

Figure 4.4 Data Locality of Reference for Web-Based Document Access Application

Figure 4.5 shows an example of instruction locality based on executing the integer benchmark
programs in the SPEC CPU2006 benchmark suite; similar results were obtained for the floating-point
programs. The following terms are used in the plot:

1. Static instruction: An instruction that exists in the code to be executed.
2. Dynamic instruction: Instructions that appear in the execution trace of a program.

100

90 ﬂIE
80—
70 —*

60 —

S0
40 -

30 /

20

Cumulative percentage of dynamic instructions

10

| | | | |
0 0 1 2 3 4 5

Cumulative static instruction count (x10 'SJ

Figure 4.5 Instruction Locality Based on Code Reuse in Eleven Benchmark Programs in SPEC
CPU2006

Thus, each static instruction is represented by zero or more instances of dynamic instructions when
the program is executed. Each line in the graph represents a separate benchmark program. In the
figure, the cumulative percentage of dynamic instructions executed by a program is shown on the y-
axis and the cumulative count of static instructions is shown on the x-axis. The first point in the line
plot for each benchmark represents the most frequently called subroutine, with the x coordinate
showing the number of static instructions in the routine and y coordinate showing the percentage of
dynamic instructions that it represents. The second, third, fourth, and fifth points respectively
represent the top 5, 10, 15, and 20 most frequently called subroutines. Many programs initially show a
steep upward climb as the static instruction count increases, which suggests very good instruction
locality.

4.2 Characteristics Of Memory Systems

The complex subject of computer memory is made more manageable if we classify memory systems
according to their key characteristics. The most important of these are listed in Table 4.1.

Table 4.1 Key Characteristics of Computer Memory Systems

Location Performance

Internal (e.g., processor registers, cache, main memory) Access time

External (e.g., optical disks, magnetic disks, tapes) Cycle time

Capacity Transfer rate

Number of words Physical Type
Number of bytes Semiconductor

Unit of Transfer Magnetic

Word Optical

Block Magneto-optical
Access Method Physical Characteristics
Sequential Volatile/nonvolatile
Direct Erasable/nonerasable
Random Organization
Associative Memory modules

The term location in Table 4.1 refers to whether memory is internal or external to the computer.
Internal memory is often equated with main memory, but there are other forms of internal memory.
The processor requires its own local memory, in the form of registers (e.g., see Figure 2.3). Further,
as we will see, the control unit portion of the processor may also require its own internal memory. We
will defer discussion of these latter two types of internal memory to later chapters. Cache is another
form of internal memory. External memory consists of peripheral storage devices, such as disk and
tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is typically expressed in
terms of bytes (1byte = 8bits) or words. Common word lengths are 8, 16, and 32 bits. External

memory capacity is typically expressed in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit of transfer is equal to the
number of electrical lines into and out of the memory module. This may be equal to the word length,

but is often larger, such as 64, 128, or 256 bits. To clarify this point, consider three related concepts
for internal memory:

e Word: The “natural” unit of organization of memory. The size of a word is typically equal to the
number of bits used to represent an integer and to the instruction length. Unfortunately, there are
many exceptions. For example, the CRAY C90 (an older model CRAY supercomputer) has a 64-bit
word length but uses a 46-bit integer representation. The Intel x86 architecture has a wide variety
of instruction lengths, expressed as multiples of bytes, and a word size of 32 bits.

e Addressable units: In some systems, the addressable unit is the word. However, many systems
allow addressing at the byte level. In any case, the relationship between the length in bits A of an
address and the number N of addressable unitsis 2 =N.

¢ Unit of transfer: For main memory, this is the number of bits read out of or written into memory at
a time. The unit of transfer need not equal a word or an addressable unit. For external memory,
data are often transferred in much larger units than a word, and these are referred to as blocks.
Another distinction among memory types is the method of accessing units of data. These include the
following:

e Sequential access: Memory is organized into units of data, called records. Access must be made
in a specific linear sequence. Stored addressing information is used to separate records and assist
in the retrieval process. A shared read—write mechanism is used, and this must be moved from its
current location to the desired location, passing and rejecting each intermediate record. Thus, the
time to access an arbitrary record is highly variable. Tape units, discussed in Chapter 7, are
sequential access.

e Direct access: As with sequential access, direct access involves a shared read—write mechanism.
However, individual blocks or records have a unique address based on physical location. Access is
accomplished by direct access to reach a general vicinity plus sequential searching, counting, or
waiting to reach the final location. Again, access time is variable. Disk units, discussed in Chapter
6, are direct access.

e Random access: Each addressable location in memory has a unique, physically wired-in
addressing mechanism. The time to access a given location is independent of the sequence of
prior accesses and is constant. Thus, any location can be selected at random and directly
addressed and accessed. Main memory and some cache systems are random access.

e Associative: This is a random access type of memory that enables one to make a comparison of
desired bit locations within a word for a specified match, and to do this for all words simultaneously.
Thus, a word is retrieved based on a portion of its contents rather than its address. As with ordinary
random-access memory, each location has its own addressing mechanism, and retrieval time is
constant independent of location or prior access patterns. Cache memories may employ
associative access.

From a user’s point of view, the two most important characteristics of memory are capacity and
performance. Three performance parameters are used:

e Access time (latency): For random-access memory, this is the time it takes to perform a read or
write operation, that is, the time from the instant that an address is presented to the memory to the
instant that data have been stored or made available for use. For non-random-access memory,
access time is the time it takes to position the read—write mechanism at the desired location.

e Memory cycle time: This concept is primarily applied to random-access memory and consists of
the access time plus any additional time required before a second access can commence. This
additional time may be required for transients to die out on signal lines or to regenerate data if they
are read destructively. Note that memory cycle time is concerned with the system bus, not the
processor.

e Transfer rate: This is the rate at which data can be transferred into or out of a memory unit. For
random-access memory, it is equal to 1/(cycle time). For non-random-access memory, the

following relationship holds:

n
T,=T,+R 4.1)
where
T, = Average time to read or writenbits
T, = Average access time
n = Number of bits
R = Transfer rate, in bits per second(bps)

A variety of physical types of memory have been employed. The most common today are
semiconductor memory, magnetic surface memory, used for disk and tape, and optical and magneto-
optical.

Several physical characteristics of data storage are important. In a volatile memory, information
decays naturally or is lost when electrical power is switched off. In a nonvolatile memory, information
once recorded remains without deterioration until deliberately changed; no electrical power is needed
to retain information. Magnetic-surface memories are nonvolatile. Semiconductor memory (memory on
integrated circuits) may be either volatile or nonvolatile. Nonerasable memory cannot be altered,
except by destroying the storage unit. Semiconductor memory of this type is known as read-only
memory (ROM). Of necessity, a practical nonerasable memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. In this context, organization
refers to the physical arrangement of bits to form words. The obvious arrangement is not always used,
as is explained in Chapter 6.

4.3 The Memory Hierarchy

The design constraints on a computer's memory can be summed up by three questions: How much?
How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there, applications will likely be
developed to use it. The question of how fast is, in a sense, easier to answer. To achieve greatest
performance, the memory must be able to keep up with the processor. That is, as the processor is
executing instructions, we would not want it to have to pause waiting for instructions or operands. The
final question must also be considered. For a practical system, the cost of memory must be
reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics of memory: capacity,
access time, and cost. A variety of technologies are used to implement memory systems, and across
this spectrum of technologies, the following relationships hold:

e Faster access time, greater cost per bit

e Greater capacity, smaller cost per bit

e Greater capacity, slower access time
The dilemma facing the designer is clear. The designer would like to use memory technologies that
provide for large-capacity memory, both because the capacity is needed and because the cost per bit
is low. However, to meet performance requirements, the designer needs to use expensive, relatively
lower-capacity memories with short access times.

Cost and Performance Characteristics

The way out of this dilemma is not to rely on a single memory component or technology, but to employ
a memory hierarchy. A typical hierarchy is illustrated in Figure 4.6. As one goes down the hierarchy,
the following occur:

a. Decreasing cost per bit

b. Increasing capacity

c. Increasing access time

d. Decreasing frequency of access of the memory by the processor

A 1
Registers

Cache

Multiple cache levels \
(SRAM, eDRAM) A

On-chip
storage

Main Memory Inboard
storage

DRAM, SDRAM, DDR-SDRAM, etc.

Y

Solid-State Memory I

Flash Memory (SSD, flash drive)

Outhoard
storage

Virtual Memory and File/Database Memory

Magnetic Disk

Offline Bulk Memory

Offline
Magnetic Tape storage

Figure 4.6 The Memory Hierarchy

Let us label the memory at level i of the memory hierarchy M , such that M is closer to the processor
1

l

than M. . If C..T;.R, and S, are respectively the cost per byte, average access time, average data

transfer rate, and total memory size at level i, then the following relationships typically hold between
levelsiand i + 1:

C,>Ciyy
T,' < Ti+1
Rl' > Ri+1
S; < Sis

Figure 4.7 (in a general way and not to scale) illustrates these relationships across the memory
hierarchy.

Increasing transfer rate (bps)
Increasing cost per bit

Off-line
storage (tape)

Increasing access time (s)

Increasing size (b)

Figure 4.7 Relative Cost, Size, and Speed Characteristics Across the Memory Hierarchy

Thus, smaller, more expensive, faster memories are supplemented by larger, cheaper, slower
memories. The key to the success of this organization is item (d): decreasing frequency of access,
which can be achieved by exploiting the principle of locality, described in Section 4.1. We discuss
techniques for exploiting locality in the treatment of cache, in Chapter 5, and virtual memory, in
Chapter 9. A general discussion is provided at this point.

It is possible to organize data across the hierarchy such that the percentage of accesses to each
successively lower level is substantially less than that of the level above. Consider the following
example:

EXAMPLE 4.1

Suppose that the processor has access to two levels of memory. Level 1 contains X words and
has an access time of 0.01us; level 2 contains 1000 x X words and has an access time of 0.1us.

Assume that if a word to be accessed is in level 1, then the processor accesses it directly. If it is in
level 2, then the word is first transferred to level 1 and then accessed by the processor. For
simplicity, we ignore the time required for the processor to determine whether the word is in level 1
or level 2. Figure 4.8 shows the general shape of the curve that covers this situation. The figure
shows the average access time to a two-level memory as a function of the hit ratio H, where H is
defined as the fraction of all memory accesses that are found in the faster memory (e.g., the

cache), T, is the access time to level 1, and T, is the access time to level 2.1 As can be seen, for

high percentages of level 1 access, the average total access time is much closer to that of level 1
than that of level 2.

' If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed

word is not found in the faster memory.

T,+T,

Average access time

Fraction of accesses involving only level 1 (hit ratio)

Figure 4.8 Performance of Accesses Involving only Level 1 (hit ratio)

In our example, suppose that 95% of the memory accesses are found in Level 1. Then the
average time to access a word can be expressed as

(0.95) (0.01us) + (0.05)(0.01us +0.1us) =0.0095 +0.0055 = 0.015us

The average access time is much closer to 0.01us than to 0.1us, as desired.

Let level 2 memory contain all program instructions and data. Currently used clusters can be
temporarily placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On average,
however, most references will be to instructions and data contained in level 1.

The use of two levels of memory to reduce average access time works in principle, but only if
conditions (a) through (d) apply. By employing a variety of technologies, a spectrum of memory
systems exists that satisfies conditions (a) through (c). Fortunately, condition (d) is also generally valid
due to the principle of locality.

This principle can be applied across multiple levels of memory, as suggested by the hierarchy shown

in Figure 4.6. In practice, the dynamic movement of chunks of data between levels during program
execution involves registers, one or more levels of cache, main memory, and virtual memory stored on
disk. This is shown in Figure 4.9, with an indication of the size of the chunks of data exchanged
between levels.

Registers
Words
(32 bits)
L1 cache

Cache blocks
(32 bytes)

L]
L]
L

Cache blocks
(32 bytes)

Ln cache

Cache blocks
(32 bytes)

Main memory

¢ Virtual memory pages
(1 kB)

Virtual memory

Figure 4.9 Exploiting Locality in the Memory Hierarchy (with typical transfer size)

Typical Members of the Memory Hierarchy

Table 4.2 lists some characteristics of key elements of the memory hierarchy. The fastest, smallest,
and most expensive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain hundreds of
registers. Next will be typically multiple layers of cache. Level 1 cache (L1 cache), closest to the
processor registers, is almost always divided into an instruction cache and a data cache. This split is
also common for L2 caches. Most contemporary machines also have an L3 cache and some have an
L4 cache; these two caches generally are not split between instruction and data and may be shared
by multiple processors. Traditionally, cache memory has been constructed using a technology called
static random access memory (SRAM). More recently, higher levels of cache on many systems have
been implemented using embedded dynamic RAM (eDRAM), which is slower than SRAM but faster
than the DRAM used to implement the main memory of the computer.

Table 4.2 Characteristics of Memory Devices in a Memory Architecture

Memory level | Typical technology Unit of transfer with next larger Managed by
level (typical size)

Registers CMOS Word (32 bits) Compiler
Cache Static RAM (SRAM); Cache block (32 bytes) Processor
hardware
Embedded dynamic RAM
(eDRAM)
Main memory | DRAM Virtual memory page (1 kB) Operating
system (OS)
Secondary Magnetic disk Disk sector (512 bytes) OS/user
memory
Offline bulk Magnetic tape OS/User
memory

Main memory is the principal internal memory system of the computer. Each location in main memory
has a unique address. Main memory is visible to the programmer, whereas cache memory is not. The
various levels of cache are controlled by hardware and are used for staging the movement of data
between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ semiconductor
technology. The use of three levels exploits the fact that semiconductor memory comes in a variety of
types, which differ in speed and cost. Data are stored more permanently on external mass storage
devices, of which the most common are hard disk and removable media, such as removable magnetic
disk, tape, and optical storage. External, nonvolatile memory is also referred to as secondary
memory or auxiliary memory. These are used to store program and data files and are usually
visible to the programmer only in terms of files and records, as opposed to individual bytes or words.
Disk is also used to provide an extension to main memory known as virtual memory, which is
discussed in Chapter 9. Other forms of secondary memory include optical disks and flash memory.

The IBM z13 Memory Hierarchy

Figure 4.10 illustrates the memory hierarchy for the IBM z13 mainframe computer [LASC16]. It
consists of the following levels:

PU chip
Core Core
L1 I-cache: 96 kB SRAM
= = I'Ll ’D'L4
s }D L]| 8 cores L1 D-cache: 128 kB SRAM
. e @ 1 per core,
8 per PU chip
I-L.2 | ID-L2 I-L2 [ID-L.2 L2 I-cache: 2 MB SRAM
L2 D-cache: 2MB SRAM
L3 cache L3 cache: 64 MB eDRAM 1 per PU chip
. 1 I.4 cache per node
SC d“p L4 cache 1 node contains 3 PU chips
480 MB eDRAM 2 nodes per drawer
Up to 8 nodes = 4 drawers in CPC

{central processing complex)

Main (physical) Memory
2.5TB DRAM per drawer
10 TB per CPC

Secondary (virtual) Memory
on disk array or storage network

Figure 4.10 IBM z13 Memory Hierarchy

e L1 and L2 caches use SRAM, and are private for each core (Figure 1.5).

e L3 cache uses eDRAM and is shared by all eight cores within the PU chip (Figure 1.4). Each CPC
drawer has six L3 caches. A four-CPC drawer system therefore has 24 of them, resulting in 1536
MB (24 x 64MB) of this shared PU chip-level cache.

e L4 cache also uses eDRAM, and is shared by all PU chips on the node of a CPC drawer. Each L4
cache has 480 MB for previously owned and some least recently used (LRU) L3-owned lines and
224 MB for a non-data inclusive coherent (NIC) directory that points to L3 owned lines that have
not been included in L4 cache. A four-CPC drawer system has 3840 MB (4 x 2 x 384MB) of

shared L4 cache and 1792 MB (4 x 2 x 224MB) of NIC directory.

e Main storage has up to 2.5 TB addressable memory per CPC drawer, using DRAM. A four-CPC
drawer system can have up to 10 TB of main storage.

e Secondary memory holds virtual memory and is stored in disks accessed by various 1/0
technologies.

Design Principles for a Memory Hierarchy

Three principles guide the design of a memory hierarchy and the supporting memory management
hardware and software:

1. Locality: Locality is the principle that makes effective use of a memory hierarchy possible.
2. Inclusion: This principle dictates that all information items are originally stored in level M,

where n is the level most remote from the processor. During the processing, subsets of M are
copied into M, _,. similarity, subsets of M, are copied into M, _,, and so on. This is
expressed concisely as M C M, . Thus, this is in contrast to our simple example of Figure

l

4.1, where Bob moved a folder from the file cabinet to his desk. With the memory hierarchy,

units of data are copied rather than moved, so that the data unit that is moved to M remains in
l
M Thus, if a word is found in M , then copies of the same word also exist in all subsequent
l
M M .
n

i+1°

layers M.

i+1°770i+20

3. Coherence: Copies of the same data unit in adjacent memory levels must be consistent. If a
word is modified in the cache, copies of that word must be updated immediately or eventually at
all higher levels.

Coherence has both vertical and horizontal implications, and is required because multiple memories at
one level may share the same memory at the next higher (greater value of i) level. For example, for
the IBMz13, eight L2 caches share the same L3 cache, and three L3 caches share the same L4
cache. This leads to two requirements:

e Vertical coherence: If one core makes a change to a cache block of data at L2, that update must
be returned to L3 before another L2 retrieves that block.

e Horizontal coherence: If two L2 caches that share the same L3 cache have copies of the same
block of data, then if the block in one L2 cache is updated, the other L2 cache must be alerted that
its copy is obsolete. The topic of coherence is discussed in future chapters.

4.4 Performance Modeling Of A Multilevel Memory Hierarchy

This section provides an overview of performance characteristics of memory access in a multilevel
memory hierarchy. To gain insight, we begin with a look at the simplest case of two levels, and then
develop models for multiple levels.

Two-Level Memory Access

In this chapter, reference is made to a cache that acts as a buffer between main memory and
processor, creating a two-level internal memory. In the simplest case, rarely implemented in modern
systems, there is a single level of cache to interact with main memory. This two-level architecture
exploits locality to provide improved performance over a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, implemented in hardware
and typically invisible to the operating system. There are two other instances of a two-level memory
approach that also exploit locality and that are, at least partially, implemented in the operating system:
virtual memory and the disk cache. Virtual memory is explored in Chapter 9; disk cache is beyond the
scope of this book but is examined in [STAL18]. In this subsection, we look at some of the
performance characteristics of two-level memories that are common to all three approaches.

OPERATION OF TWO-LEVEL MEMORY

The locality property can be exploited in the formation of a two-level memory. The upper-level memory
(M1) is smaller, faster, and more expensive (per bit) than the lower-level memory (M2). M1 is used as
a temporary store for part of the contents of the larger M2. When a memory reference is made, an
attempt is made to access the item in M1. If this succeeds, then a quick access is made. If not, then a
block of memory locations is copied from M2 to M1 and the access then takes place via M1. Because
of locality, once a block is brought into M1, there should be a number of accesses to locations in that
block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the speeds of the two
levels of memory, but also the probability that a given reference can be found in M1. We have

TS=HXT1+(1—H)X(T1+T2) 4.9
= T1+(1—H)XT2 ()
where
T, = average (system)access time
T, = access time of M1 (e. g . , cache)
T, = access time of M2 (e . g . , main memory)
H = hitratio (fraction of time reference is found in M1)

Figure 4.8 shows average access time as a function of hit ratio. As can be seen, for a high
percentage of hits, the average total access time is much closer to that of M1 than M2.

PERFORMANCE

Let us look at some of the parameters relevant to an assessment of a two-level memory mechanism.
First consider cost. We have

Ci$1+C,5,

where

C. = average cost per bit for the combined two-level memory

C, = average cost per bit of upper-level memory M 1
C, = average cost per bit of lower-level memory M2
S| = size of M1
S, = size of M2

We would like C. ~C,. Given that C; > C,, this requires S, <S,. Figure 4.11 shows the relationship.

1000 —
8
'_'II'_
¢
4 -
37 (C4/C5) = 1000
2 4 /
g
g 1'["}“—:
7 I
S 5 -
= 3
E r e {Cp’.Cz}:lm
]
—
10—
g 7]
¢
4
. (C,/C5) =10
—
D EET N EET R
5 10 -) i 100)) 1000

Relative size of two levels (54/5))

Figure 4.11 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

Next, consider access time. For a two-level memory to provide a significant performance
improvement, we need to have T, approximately equal to 7| (T, ~ T) . Given that T, is much less

than 7, (T; < <T,), a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the hit ratio and therefore the
performance. Is there a size of M1 that satisfies both requirements to a reasonable extent? We can
answer this question with a series of subquestions:

e What value of hit ratio is needed so that T, ~ T ?

e What size of M1 will assure the needed hit ratio?
e Does this size satisfy the cost requirement?
To get at this, consider the quantity 7,/ T,, which is referred to as the access efficiency. It is a

measure of how close average access time (7) is to M1 access time (7). From Equation (4.2),

T 1
I - r (4.4)
1+ (1-H)%

Figure 4.12 plots T,/ T, as a function of the hit ratio H, with the quantity 7,/ T, as a parameter.

Typically, on-chip cache access time is about 25 to 50 times faster than main memory access time
(i.e., T,/ T, is 25 to 50), off-chip cache access time is about 5 to 15 times faster than main memory

access time (i.e., T,/ T; is 5 to 15), and main memory access time is about 1000 times faster than
disk access time (7,/T;=1000) . Thus, a hit ratio in the range of near 0.9 would seem to be needed
to satisfy the performance requirement.

1

=
—

Access efficiency = T/T,

0.01

0.001 — I l l T |
0.0 0.2 0.4 0.6 0.8 1.0
Hit ratio=H

Figure 4.12 Access Efficiency as a Function of Hit Ratio (r =7,/T/)

We can now phrase the question about relative memory size more exactly. Is a hit ratio of, say, 0.8 or
better reasonable for S; < <S,? This will depend on a number of factors, including the nature of the

software being executed and the details of the design of the two-level memory. The main determinant
is, of course, the degree of locality. Figure 4.13 suggests the effect that locality has on the hit ratio.
Clearly, if M1 is the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always

also stored in M1. Now suppose that there is no locality; that is, references are completely random. In
that case, the hit ratio should be a strictly linear function of the relative memory size. For example, if
M1 is half the size of M2, then at any time half of the items from M2 are also in M1 and the hit ratio will
be 0.5. In practice, however, there is some degree of locality in the references. The effects of
moderate and strong locality are indicated in the figure. Note that Figure 4.13 is not derived from any
specific data or model; the figure suggests the type of performance that is seen with various degrees

of locality.

1.0

0.8

0.6 Moderate
£ locality
£
5

0.4

No locality
0.2
0.0 I I I I
0.0 0.2 0.4 0.6 0.8 1.0

Relative memory size (5,/52)

Figure 4.13 Hit Ratio as a Function of Relative Memory Size

So if there is strong locality, it is possible to achieve high values of hit ratio even with relatively small
upper-level memory size. For example, numerous studies have shown that rather small cache sizes
will yield a hit ratio above 0.75 regardless of the size of main memory (e.g., [AGAR89], [PRZY88],
[STRES83], and [SMIT82]). A cache in the range of 1K to 128K words is generally adequate, whereas
main memory is now typically in the gigabyte range. When we consider virtual memory and disk
cache, we will cite other studies that confirm the same phenomenon, namely that a relatively small M1
yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the two memories satisfy the
cost requirement? The answer is clearly yes. If we need only a relatively small upper-level memory to
achieve good performance, then the average cost per bit of the two levels of memory will approach
that of the cheaper lower-level memory.

Multilevel Memory Access>

2

I would like to thank Professor Roger Kieckhafer of Michigan Technological University for permission to use his

lecture notes in developing this section.

This subsection develops a model for memory access performance in a memory hierarchy that has
more than two levels. The following terminology is used:

M = Memory level (i) where 1 <i<n,with nlevels of memory.
S l-l = Size, or capacity of level M (Bytes)
t, = Total time needed to access data in level M

—1Is the sum of all times in the path to a hit in level M_
l

—DMay be an average (t;)
h, = Hit ratio of level M
Conditional probability that the data for a memory access is resident in
level M given that it is not resident in M, _,
T, = Mean time needed to access data

T, is the performance metric that is of most interest. It measures the average time to access data,

regardless of which level of the hierarchy needs to be accessed at the time of the access request. The
higher the hit ratio at each level, the lower will be the value of T;. Ideally, we would like %, to be very

close to 1.0, in which case T, will be very close to ¢;.

Figure 4.14 is a flowchart that provides a simplified memory access model for a memory hierarchy,
which we can use to develop a formula for the average access time. It can be described as follows:

1. The processor generates a memory address request. The first step is to determine if the cache
block containing that address resides in the L1 cache (memory level M,). The probability of that

is hy. If the desired word is present in the cache, that word is delivered to the processor. The
average time required for this operation is ¢,.
2. For subsequent levels i, 2 <i <n, if the addressed word is not found in M,_,, then the memory

management hardware checks to determine if it is in M , which occurs with a probability of #;. If
the desired word is present in M , the word is deliveredlfrom M to the processor, and the
appropriate size block containingl the word is copied to M, _,. Tlhe average time for this
operation is t; _.

3. In the typical memory hierarchy, M is a disk used in a virtual memory scheme. In this case, if
the word is not found in any of the preceding levels and is found in M, then the word must be
first moved as part of a page into main memory (M, _,) . from where it can be transferred to

the processor. We designate the total time for this operation as t,,.

Address from
CPU

I
Access M| | —
Move to M,
12
Access M, - >
Moveto M,,_»
In-1
Access M, >
!
AccessM, |yl MovetoM, | " 3

Figure 4.14 Multilevel Memory Access Performance Model

Each of the ¢, consists of a number of components, including checking for the presence of the

required word in level i, accessing the data if it is in level i, and transporting the data to the processor.

The total value of ¢; must also include the amount of time to check for a hit on all previous levels and
experiencing a miss. If we designate the time expended in determining a miss at level jas t,,;,;, then

t; mustinclude t,,;31 +t,;50+ .. +1,;5i 1. INn @ddition, Figure 4.14 indicates that the process of

accessing memory and delivering a word to the processor is performed parallel to the process of
copying the appropriate block of data to the preceding level in the hierarchy. If the two operations are
performed in sequence, then the extra time involved is added to 1.

Looking at Figure 4.14, there are a number of different paths from start to finish. The average time T
can be expressed as the weighted average of the time of each path:

T, = Y [Probability of taking a path x Duration of that a path]
all paths (45)

Y]] (All probabilities in the path) x) ('All times in that path)
all paths

T T (1 =k hyxy

i=1;=0

where h is assigned the value O.

For example, consider a simple system consisting of one level of cache (M1) , main memory (Mz) ,

and secondary memory (M3) . Then,

Ts: hl X
+ (1—]’l1)h2 X Iy
+ (1=hy) (1=hy) X 13

Note that Equation (4.5) works whether the time delays for a given path are constants or variables. If
the time delays are constant, then ¢, is a constant equal to the sum of all the time delays (e.g.

checking for presence, data access, and delivery to CPU). If one or more of the elements in the total
time delay are variable, then ¢, is the mean time delay calculated as the sum of the mean time delays

of the component delays.

To use this model in designing a memory hierarchy, estimates are needed for the 4, and ;. These

can be developed either by simulation or by setting up a real system and varying the sizes of the

various M .
1

4.5 Key Terms, Review Questions, and Problems

Key Terms

access time

addressable unit
associative memory
auxiliary memory

cache memory

coherence

data spatial locality

data temporal locality
direct access

dynamic instruction

hit ratio

horizontal coherence inclusion
instruction cache
instruction spatial locality
instruction temporal locality
L1 cache

L2 cache

L3 cache

L4 cache

locality

locality of reference
memory hierarchy
memory cycle time
multilevel cache
multilevel memory
random access
secondary memory
sequential access

spatial locality

static instruction
temporal locality
transfer rate

unit of transfer
vertical coherence

word

Review Questions

4.1 What are the differences among sequential access, direct access, and random access?

4.2 What is the general relationship among access time, memory cost, and capacity?
4.3 How does the principle of locality relate to the use of multiple memory levels?
4.4 What is the distinction between spatial locality and temporal locality?

4.5 In general, what are the strategies for exploiting spatial locality and temporal locality?
4.6 How do data locality and instruction locality relate to spatial locality and temporal locality?

Problems

4.1 Consider these terms: instruction spatial locality, instruction temporal locality, data spatial
locality, data temporal locality. Match each of these terms to one of the following definitions:

a. Locality is quantified by computing the average distance (in terms of number of operand
memory accesses) between two consecutive accesses to the same address, for every
unique address in the program. The evaluation is performed in four distinct window sizes,
analogous to cache block sizes.

b. Locality metric is quantified by computing the average distance (in terms of number of
instructions) between two consecutive accesses to the same static instruction, for every

unique static instruction in the program that is executed at least twice.

c. Locality for operand memory accesses is characterized by the ratio of the locality metric
for window sizes mentioned in (a).
d. Locality is characterized by the ratio of the locality metric for the window sizes mentioned

in (b).

4.2 Consider these two programs:

for (1 = 1; 1 < n; 1++) { for (1 =1; 1 < n; 1++) {
Z[1i] = X[1] — Y[1] Z[1i] = X[1] — Y[1]
Z[1] = z[1i] * Z[1] }
} for (1 =1; 1 < n; 1i++) {
Z[1i] = Z[1i] * Z[1]
}
Program A Program B

a. The two programs perform the same function. Describe it.
b. Which version performs better, and why?

4.3 Consider the following code:

for (1 = 0; 1 < 20; 1++)
for (j = 0; 7 < 10; j++)
ali] = ali] * j

a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

4.4 Consider a memory system with the following parameters:

T =100 —7
cZ C.=10 $/bit

1., = 1200UnS -5
& C, =10""$/bit

a. What is the cost of 1 MB of main memory?

What is the cost of 1 MB of main memory using cache memory technology?

c. If the effective access time is 10% greater than the cache access time, what is the hit
ratio H?

IS

4.5
a. Consider an L1 cache with an access time of 1 ns and a hit ratio of H =0.95. Suppose

that we can change the cache design (size of cache, cache organization) such that we
increase H to 0.97, but increase access time to 1.5 ns. What conditions must be met for
this change to result in improved performance?

b. Explain why this result makes intuitive sense.

4.6 Consider a single-level cache with an access time of 2.5 ns, a block size of 64 bytes, and a
hit ratio of H =0.95. Main memory uses a block transfer capability that has a first-word (4 bytes)

access time of 50 ns and an access time of 5 ns for each word thereafter.
a. What is the access time when there is a cache miss? Assume that the cache waits until
the line has been fetched from main memory and then re-executes for a hit.
b. Suppose that increasing the block size to 128 bytes increases the H to 0.97. Does this
reduce the average memory access time?

4.7 A computer has a cache, main memory, and a disk used for virtual memory. If a referenced
word is in the cache, 20 ns are required to access it. If it is in main memory but not in the cache,
60 ns are needed to load it into the cache, and then the reference is started again. If the word is
not in main memory, 12 ns are required to fetch the word from the disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9 and the
main memory hit ratio is 0.6. What is the average time in nanoseconds required to access a
referenced word on this system?

4.8 On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data
access from main memory over the bus to the processor takes three clock cycles in the case of
no wait state insertion; the data are delivered to the processor in parallel with delivery to the
cache.

a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a clocking
rate of 16.67 MHz.

b. Repeat the calculations assuming insertion of two wait states of one cycle each per
memory cycle. What conclusion can you draw from the results?

4.9 Assume a processor having a memory cycle time of 300 ns and an instruction processing
rate of 1 MIPS. On average, each instruction requires one bus memory cycle for instruction
fetch and one for the operand it involves.
a. Calculate the utilization of the bus by the processor.
b. Suppose that the processor is equipped with an instruction cache and the associated hit
ratio is 0.5. Determine the impact on bus utilization.

4.10 The performance of a single-level cache system for a read operation can be characterized
by the following equation: T,=T.+ (1-H)T,,

where T, is the average access time, T, is the cache access time, T,, is the memory access

time (memory to processor register), and H is the hit ratio. For simplicity, we assume that the
word in question is loaded into the cache in parallel with the load to processor register. This is
the same form as Equation (4.2) .

a. Define T}, =time to transfer a block between cache and main memory, and W = fraction of

write references. Revise the preceding equation to account for writes as well as reads,
using a write-through policy.
b. Define W, as the probability that a block in the cache has been altered. Provide an

equation for T, for the write-back policy.

4.11 For a system with two levels of cache, define T, =first-level cache access time;
T, =second-level cache access time; T,, = memory access time; H, = first-level cache hit ratio;

C

H, = combined first/second level cache hit ratio. Provide an equation for 7, for a read operation.

4.12 Assume the following performance characteristics on a cache read miss: one clock cycle to
send an address to main memory and four clock cycles to access a 32-bit word from main
memory and transfer it to the processor and cache.
a. If the cache block size is one word, what is the miss penalty (i.e., additional time required
for a read in the event of a read miss)?
b. What is the miss penalty if the cache block size is four words and a multiple, nonburst
transfer is executed?
c. What is the miss penalty if the cache block size is four words and a transfer is executed,
with one clock cycle per word transfer?

4.13 For the cache design of the preceding problem, suppose that increasing the line size from
one word to four words results in a decrease of the read miss rate from 3.2% to 1.1%. For both
the nonburst transfer and the burst transfer case, what is the average miss penalty, averaged
over all reads, for the two different line sizes?

4.14 Consider a two-level system with L1 instruction and data caches. For a given application,
assume the following: instruction cache miss ratio =0.02, data cache miss ratio =0.04, and the

fraction of instructions that are load / store =0.36. The ideal value of CPI (cycles per instruction)

without cache misses is 2.0. The penalty for a cache miss is 40 cycles. Calculate the CPI,
taking misses into account.

4.15 Define Hl_ = probability that the data for a memory access is resident in level M .

1

a. Equation 4.5 uses the conditional probabilities ;. Explain why in this form the equation
is correct with the conditional probabilities rather than the unconditional probabilities Hi.

That is, show that the following expression does not equal 7.

T T =hy) by <y

i-1j=1
b. Rewrite Equation 4.5 using H instead of ;.

4.16 Define the access frequency f; as the probability of successfully accessing (hit) M when

there are misses at the preceding i — 1 levels.

a. Derive an expression for f;.
b. Rewrite Equation 4.5 using f; instead of #..

Chapter 5 Cache Memory

5.1 Cache Memory Principles

5.2 Elements of Cache Design
Cache Addresses

Cache Size

Logical Cache Organization
Replacement Algorithms
Write Policy

Line Size

Number of Caches

Inclusion Policy

5.3 Intel x86 Cache Organization
5.4 The IBM z13 Cache Organization

5.5 Cache Performance Models
Cache Timing Model

Design Option for Improving Performance

5.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Discuss the key elements of cache design.

Distinguish among direct mapping, associative mapping, and set-associative mapping.
Understand the principles of content-addressable memory.

Explain the reasons for using multiple levels of cache.

Understand the performance implications of cache design decisions.

With the exception of smaller embedded systems, all modern computer systems
employ one or more layers of cache memory. Cache memory is vital to achieving
high performance. This chapter begins with an overview of the basic principles of
cache memory, then looks in detail at the key elements of cache design. This is
followed by a discussion of the cache structures used in the Intel x86 family and
the IBM z13 mainframe system. Finally, the chapter introduces some
straightforward performance models that provide insight into cache design.

5.1 Cache Memory Principles

Cache memory is designed to combine the memory access time of expensive, high-speed
memory combined with the large memory size of less expensive, lower-speed memory. The concept
is illustrated in Figure 5.1a. There is a relatively large and slow main memory together with a smaller,
faster cache memory. The cache contains a copy of portions of the main memory. When the
processor attempts to read a word of memory, a check is made to determine if the word is in the
cache. If so, the word is delivered to the processor. If not, a block of main memory, consisting of some
fixed number of words, is read into the cache and then the word is delivered to the processor.
Because of the phenomenon of locality of reference, when a block of data is fetched into the cache to
satisfy a single memory reference, it is likely that there will be future references to that same memory
location or to other words in the block.

Block transfer

Word transfer f\-'L—"\
‘-\—k_/‘\

CPU Cache Main memory

Fast Slow

(a) Single cache

= Level 1 » Level 2 » Level 3 = Main
«—— (L.1) cache|t——(L.2) cache|le (L.3) cache |« memory

CPU

Fastest Fast

Less Slow
fast

(b) Three-level cache organization

Figure 5.1 Cache and Main Memory

Figure 5.1b depicts the use of multiple levels of cache. The L2 cache is slower and typically larger
than the L1 cache, and the L3 cache is slower and typically larger than the L2 cache.

Figure 5.2 depicts the structure of a cache/main-memory system. Several terms are introduced:

Line Memory

number Tag Block address
0 0
1 1
2 2 Block 0
3 (K words)
Cc—-1
Block length
(K words) .
(a) Cache :
Block M-1
2"-1
Word
length

(b) Main memory

Figure 5.2 Cache/Main Memory Structure

Block: The minimum unit of transfer between cache and main memory. In most of the literature,
the term block refers both to the unit of data transferred and to the physical location in main
memory or cache.

Frame: To distinguish between the data transferred and the chunk of physical memory, the term
frame, or block frame, is sometimes used with reference to caches. Some texts and some literature
use the term with reference to the cache and some with reference to main memory. It use is not
necessary for purposes of this text.

Line: A portion of cache memory capable of holding one block, so-called because it is usually
drawn as a horizontal object (i.e., all bytes of the line are typically drawn in one row). A line also
includes control information.

Tag: A portion of a cache line that is used for addressing purposes, as explained subsequently. A
cache line may also include other control bits, as will be shown.

Main memory consists of up to 2" addressable words, with each word having a unique n-bit address.

For mapping purposes, this memory is considered to consist of a number of fixed-length blocks of K
words each. That is, there are M =2"/K blocks in main memory. The cache consists of m lines. Each

line contains K words, plus a tag. Each line also includes control bits (not shown), such as a bit to
indicate whether the line has been modified since being loaded into the cache. The length of a line,
not including tag and control bits, is the line size. That is, the term line size refers to the number of
data bytes, or block size, contained in a line. They may be as small as 32 bits, with each “word” being

a single byte; in this case the line size is 4 bytes. The number of lines is considerably less than the
number of main memory blocks (m <M). At any time, some subset of the blocks of memory resides

in lines in the cache. If a word in a block of memory is read, that block is transferred to one of the lines
of the cache. Because there are more blocks than lines, an individual line cannot be uniquely and
permanently dedicated to a particular block. Thus, each line includes a tag that identifies which
particular block is currently being stored. The tag is usually a portion of the main memory address, as
described later in this section.

Figure 5.3 illustrates the read operation. The processor generates the read address (RA) of a word to
be read. If the word is contained in the cache (cache hit), it is delivered to the processor.

START

Receive address
RA from CPU

Is block \ No Access main
containing RA memory for block
in cache? containing RA

Allocate cache
line for main
memory block

| |

Load main
memory block
into cache line

Fetch RA word
and deliver
to CPU

Deliver RA word
to CPU

DONE Y

Figure 5.3 Cache Read Operation

If a cache miss occurs, two things must be accomplished: the block containing the word must be
loaded in to the cache, and the word must be delivered to the processor. When a block is brought into
a cache in the event of a miss, the block is generally not transferred in a single event. Typically, the
transfer size between cache and main memory is less than the line size, with 128 bytes being a typical
line size and a cache-main memory transfer size of 64 bits (2 bytes). To improve performance, the
critical word first technique is commonly used. When there is a cache miss, the hardware requests
the missed word first from memory and sends it to the processor as soon as it arrives. This enables
the processor to continue execution while filling the rest of the words in the block. Figure 5.3 shows
these last two operations occurring in parallel and reflects the organization shown in Figure 5.4, which
is typical of contemporary cache organizations. In this organization, the cache connects to the
processor via data, control, and address lines. The data and address lines also attach to data and
address buffers, which attach to a system bus from which main memory is reached. When a cache hit
occurs, the data and address buffers are disabled and communication is only between processor and
cache, with no system bus traffic. When a cache miss occurs, the desired address is loaded onto the
system bus and the data are returned through the data buffer to both the cache and the processor.

Address
- [>
Address
buffer
Y
E
Control Control 'E
Processor * > Cache € 3
>,
o
A
Data
buffer
= Y e % e
Data

Figure 5.4 Typical Cache Organization

5.2 Elements of Cache Design

This section provides an overview of cache design parameters and reports some typical results. We
occasionally refer to the use of caches in high-performance computing (HPC) . HPC deals with
supercomputers and their software, especially for scientific applications that involve large amounts of
data, vector and matrix computation, and the use of parallel algorithms. Cache design for HPC is quite
different than for other hardware platforms and applications. Indeed, many researchers have found
that HPC applications perform poorly on computer architectures that employ caches [BAIL93]. Other
researchers have since shown that a cache hierarchy can be useful in improving performance if the
application software is tuned to exploit the cache [WANG99, PRES01].4

* For a general discussion of HPC, see [DOWD98].

Although there are a large number of cache implementations, there are a few basic design elements
that serve to classify and differentiate cache architectures. Table 5.1 lists key elements.

Table 5.1 Elements of Cache Design

Cache Addresses Write Policy
Logical Write through
Physical Write back

Cache Size Line Size

Mapping Function Number of Caches
Direct Single or two level
Associative Unified or split

Set associative
Replacement Algorithm

Least recently used (LRU)

First in first out (FIFO)

Least frequently used (LFU)

Random

Cache Addresses

Almost all nonembedded processors, and many embedded processors, support virtual memory, a
concept discussed in Chapter 9. In essence, virtual memory is a facility that allows programs to
address memory from a logical point of view, without regard to the amount of main memory physically
available. When virtual memory is used, the address fields of machine instructions contain virtual
addresses. For reads to and writes from main memory, a hardware memory management unit (MMU)
translates each virtual address into a physical address in main memory.

When virtual addresses are used, the system designer may choose to place the cache between the
processor and the MMU or between the MMU and main memory (Figure 5.5). A logical cache, also
known as a virtual cache, stores data using virtual addresses. The processor accesses the cache
directly, without going through the MMU. A physical cache stores data using main memory physical
addresses.

Logical address Physical address

» MMU
l Main
Cache memory
I Data
-
(a) Logical cache
Logical address > MMU Physical address .
l Main
Cache memory
Data I
=

(b) Physical cache
Figure 5.5 Logical and Physical Caches

One obvious advantage of the logical cache is that cache access speed is faster than for a physical
cache, because the cache can respond before the MMU performs an address translation. The
disadvantage has to do with the fact that most virtual memory systems supply each application with
the same virtual memory address space. That is, each application sees a virtual memory that starts at

address 0. Thus, the same virtual address in two different applications refers to two different physical
addresses. The cache memory must therefore be completely flushed with each application context
switch, or extra bits must be added to each line of the cache to identify which virtual address space
this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the scope of this text. For

a more in-depth discussion, see [CEKL97] and [JACOO08].

Cache Size

The second item in Table 5.1, cache size, has already been discussed. We would like the size of the
cache to be small enough so that the overall average cost per bit is close to that of main memory
alone and large enough so that the overall average access time is close to that of the cache alone.
There are several other motivations for minimizing cache size. The larger the cache, the larger the
number of gates involved in addressing the cache. The result is that large caches tend to be slightly
slower than small ones—even when built with the same integrated circuit technology and put in the
same place on a chip and circuit board. The available chip and board area also limits cache size.
Because the performance of the cache is very sensitive to the nature of the workload, it is impossible
to arrive at a single “optimum” cache size. Table 5.2 lists the cache sizes of some current and past

processors.

Table 5.2 Cache Sizes of Some Processors

Processor Type Year of L1 Cachea L2 cache L3
Introduction Cache
IBM 360/85 Mainframe 1968 16 to 32 kB — —
PDP-11/70 Minicomputer 1975 1 kB — —
IBM 3033 Mainframe 1978 64 kB — —
IBM 3090 Mainframe 1985 128 to 256 kB — —
Intel 80486 PC 1989 8 kB — —
Pentium PC 1993 8 kB/8 kB 256 to 512 kB —
PowerPC 620 PC 1996 32 kB/32 kB — —
IBM S/390 G6 Mainframe 1999 256 kB 8 MB —
Pentium 4 PC/server 2000 8 kB/8 kB 256 kB —
Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB
Itanium 2 PC/server 2002 32 kB 256 kB 6 MB
IBM POWERS5 | High-end server 2003 64 kB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1MB —

IBM POWERG6 PC/server 2007 64 kB/64 kB 4 MB 32 MB
IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24-48
MB
6 X 32kB732kB 6 X I.5MB
Intel Core i7 Workstaton/Server 2011 12 MB
EE 990
24 < 64kB7128kB 24 < 1T.5MB
IBM Mainframe/Server 2011 24 MB
zEnterprise L3
196
192
MB L4
24 < 96kB7128kB | 24 X 2MB72MB
IBM z13 Mainframe/server 2015 64 MB
L3
480
MB L4
8% 32kB732kB < TMB
Intel Core i0- Workstation/server 2017 14 MB
7900X

a Two values separated by a slash refer to instruction and data caches.

Logical Cache Organization

Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping
main memory blocks into cache lines. Further, a means is needed for determining which main memory
block currently occupies a cache line . The choice of the mapping function dictates how the cache
is logically organized. Three techniques can be used: direct, associative, and set-associative. We
examine each of these in turn. In each case, we look at the general structure and then a specific
example. Table 5.3 provides a summary of key characteristics of the three approaches.

Table 5.3 Cache Access Methods

Method Organization Mapping of Main Access using Main Memory Address
Memory Blocks to
Cache
Direct Sequence of mlines | Each block of main | Line portion of address used to access

Mapped memory maps to cache line; Tag portion used to check

one unique line of for hit on that line.
cache.
Fully Sequence of mlines | Each block of main | Tag portion of address used to check
Associative memory can map to | every line for hit on that line.
any line of cache.
Set Sequence of mlines | Each block of main | Line portion of address used to access
Associative | organized as v sets memory maps to cache set; Tag portion used to check
?’qu=li‘r}§§kgach one unique cache every line in that set for hit on that line.
set.
Example 5.1

For all three cases, the example includes the following elements:

e The cache can hold 64 kB.
e Data are transferred between main memory and the cache in blocks of 4 bytes each. This

means that the cache is organized as 16K = !

" lines of 4 bytes each.

o The main memory consists of 16 MB, with each byte directly addressable by a 24-bit address
(2 =16M). Thus, for mapping purposes, we can consider main memory to consist of 4M

blocks of 4 bytes each.

Direct Mapping

The simplest technique, known as direct mapping, maps each block of main memory into only one
possible cache line. The mapping is expressed as

where
i = cache line number
J = main memory block number

m = number of lines in the cache

i =j modulo m

Figure 5.6a shows the mapping for the first m blocks of main memory. Each block of main memory
maps into one unique line of the cache. The next m blocks of main memory map into the cache in the
same fashion; that is, block B,, of main memory maps into line L, of cache, block B,, , ; maps into

line L, and so on.

b b
- > >
B Ly A
L] L] ﬂ
L]] E
. . =
Bm—l '-": I"m—l Y
First m blocks of Cache memory
main memory
(equal to size of cache) b = length of block in bits

t = length of tag in bits
(a) Direct mapping

b >
Ly
- b a
| ™
One block of .
main memory
Lm-l

Cache memory
(b) Associative mapping

Figure 5.6 Mapping from Main Memory to Cache: Direct and Associative

The mapping function is easily implemented using the main memory address. Figure 5.7 illustrates
the general mechanism. For purposes of cache access, each main memory address can be viewed as
consisting of three fields. The least significant w bits identify a unique word or byte within a block of
main memory; in most contemporary machines, the address is at the byte level. The remaining s bits
specify one of the 2° blocks of main memory. The cache logic interprets these s bits as a tag of s — r

bits (most significant portion) and a line field of r bits. This latter field identifies one of the m =2 lines
of the cache. To summarize,

Offset

) Address
Tag Line number from CPU
s = r bits 4~ r bits {* w hits A
Lines
Tags Blocks
('_""-——--/k--—-""_"\r"_-"'-——-—-'A*—-—-"'-_“\
R

“"F‘IF“'IF"IF‘F YYy) 'IFY"IFF

Hit
{enahle)

Access Data to
main memory CPU
for data

Figure 5.7 Direct-Mapping Cache Organization

e Address length = (s +w) bits
e Number of addressable units=2" " words or bytes

: L w
e Block size =line size =2 words or bytes
s +w

2

e Number of blocks in main memory = = 2°

e Number of lines in cache=m =2"
o Size of cache=2"""words or bytes
e Size of tag = (s —r) bits
The effect of this mapping is that blocks of main memory are assigned to lines of the cache as follows:

Cache line Main memory blocks assigned
S

0 O,m,2m, ...,2° —m

1 l,m+1,2m+1,...,2" —m+1

((m—=1)) m—1,2m—-1,3m—-1,..,2° -1

Thus, the use of a portion of the address as a line number provides a unique mapping of each block of
main memory into the cache. When a block is actually read into its assigned line, it is necessary to tag
the data to distinguish it from other blocks that can fit into that line. The most significant s — r bits

serve this purpose.

Figure 5.7 indicates the logical structure of the cache hardware access mechanism. When the cache
hardware is presented with an address from the processor, the Line Number portion of the address is
used to index into the cache. A compare function compares the tag of that line with the Tag field of the
address. If there is a match (hit), an enable signal is sent to a select function, which uses the Offset
field of the address and the Line Number field of the address to read the desired word or byte from the
cache. If there is no match (miss) then the select function is not enabled and data is accessed from
main memory, or the next level of cache. Figure 5.7 illustrates the case in which the line number
refers to the third line in the cache and there is a match, as indicated by the heavier arrowed lines.

Example 5.1a

Figure 5.8 shows our example system using direct mapping.® In the example, m = 16K = 2" and
i =jmodulo 2" The mapping becomes

5 In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9 for a

basic refresher on number systems (decimal, binary, hexadecimal).

Cache Line Starting Memory Address of Block
0 000000, 010000, ..., FFO000
1 000004, 010004, ..., FF0004
271
- O00OFFFC, O1FFFC, ..., FFFFFC

Note that no two blocks that map into the same line number have the same tag number. Thus,
blocks with starting addresses 000000, 010000, ..., FFO000 have tag numbers 00, 01, ..., FF,
respectively.

Referring back to Figure 5.3, a read operation works as follows. The cache system is presented
with a 24-bit address. The 14-bit line number is used as an index into the cache to access a
particular line. If the 8-bit tag number matches the tag number currently stored in that line, then the
2-bit word number is used to select one of the 4 bytes in that line. Otherwise, the 22-bit
tag-plus-line field is used to fetch a block from main memory. The actual address that is used for
the fetch is the 22-bit tag-plus-line concatenated with two 0 bits, so that 4 bytes are fetched
starting on a block boundary.

Tag
(hex)

00
00

00
00

16
16

le

16

FF
FF

FF
FF

Main memory address (binary)

——

-~

Tag Line + Word

!

Figure 5.8 Direct Mapping Example

- ~— - - Data
' 0000000000000000 [13579246 |———— -
§88888863355888568830560 i
|
|
"""'h..f ﬁh—"’ |
|
|
|
000000001111111121111000 :
00000001111111131111100 |
- |
. : Line
. I Tag Data number
0001011000000 000,00000000 [77777777 b 00 [13579246 | 0000
0001,01100000000000000100'| 11235813 |——————————1 16 | 11235813 | 0001
000101100011001110011100 | FEDCBA98 |- —————————— 16 | FEDCBA98 | OCE7
______________ r————+1 FF | 11223344 | 3FFE
P00TL0110111131111111111001(12345678 |- ———— { ————— 16 | 12345678 | 3FFF
: | B
. | 8 bits 32 bits
1113311100000 00000000000 | .
G119 119000630900309109 | 16K line cache
|
|
L o |
|
|
|
|
TﬂJEIﬂEi_lﬂiiﬂlliIEiiﬂlﬁE: 11223344 [———— -
J11141111111011101111100 | 24682468 Note: Memory address values are
€ 32 hits ? in binary representation;
) other values are in hexadecimal.
16-Mb main memory
Tag Line Word
Main memory address =
- > -
8 hits 14 bits 2 bits

The direct mapping technique is simple and inexpensive to implement. lts main disadvantage is that
there is a fixed cache location for any given block. Thus, if a program happens to reference words
repeatedly from two different blocks that map into the same line, then the blocks will be continually
swapped in the cache, and the hit ratio will be low (a phenomenon known as thrashing).

neractive o
oy 'E"‘?-ﬂ

Aleksandr Lukin/123RF
Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded in case it is needed
again. Since the discarded data has already been fetched, it can be used again at a small cost. Such
recycling is possible using a victim cache. Victim cache was originally proposed as an approach to
reduce the conflict misses of direct mapped caches without affecting its fast access time. Victim cache
is a fully associative cache, whose size is typically 4 to 16 cache lines, residing between a direct
mapped L1 cache and the next level of memory. This concept is explored in Appendix B.

CONTENT-ADDRESSABLE MEMORY

Before discussing associative cache organization, we need to introduce the concept of content-
addressable memory (CAM), also known as associative storage [PAGI06]. Content-addressable
memory (CAM) is constructed of static RAM (SRAM) cells (see static RAM) but is considerably more
expensive and holds much less data than regular SRAM chips. Put another way, a CAM with the
same data capacity as a regular SRAM is about 60% larger [SHARO3].

A CAM is designed such that when a bit string is supplied, the CAM searches its entire memory in
parallel for a match. If the content is found, the CAM returns the address where the match is found
and, in some architectures, also returns the associated data word. This process takes only one clock
cycle.

Figure 5.9a is a simplified illustration of the search function of a small CAM with four horizontal words,
each word containing five bits, or cells. CAM cells contain both storage and comparison circuitry. The
is a match line corresponding to each word, feeding into match line sense amplifiers, and there is a
differential search line pair corresponding to each bit of the search word. The encoder maps the match
line of the matching location to its encoded address.

Mismartch

Muarch

Mismarch

Mismarch

n

Data Input 7"—}
Write Enable _}
Read Enable —}

Search Enable —}

Search data = 01101

Search line drivers

4

(during read operation)

(b) Logical organization of CAM

Figure 5.9 Content-Addressable Memory

Figure 5.9b shows a logical block diagram of a CAM cell array, consisting of m words of n bits each.
Search, read, and write enable pins are used to enable one of the three operating modes of the CAM.
For a search operation, the data to be searched is loaded in an n-bit search register that sets/resets
the logic states of the search lines. The logic within and between cells of a row is such that a match
lines is asserted if and only if all the cells in a row match the search line values. A simple read
operation, as opposed to a search, is performed to read the data stored in the storage nodes of CAM
cells using Read Enable control signal. The data words to be stored in CAM cell array are provided

during a write operation through data input port.

ASSOCIATIVE MAPPING

MLy
HITF 0 0 0 HIR D]) v
ML, 01 = | address
JUIRT RE ARURT I T
ML, |10 =
u—l—u n—ﬂ—u u—i—ll u—ﬂ—dh—l—“ L
ML, V
HOR O T HO 0 P
SLy SL;SL; SL,SL, SL,SL; SLiSL; SL,
(a) Simplified CAM circuitry
Search Data
‘ . M
Search data register
l tearch Lines
e o o
|
ENE RSN
1=
CAM cell array g é =
L] "E 'E' -é
o | T3 . P
(m words; n bits/word) % g % Match
* = 2 g address
Sa <
—» Z° —P
‘ n =
M:‘“"‘h Match line
Output Data Lines output

Associative mapping overcomes the disadvantage of direct mapping by permitting each main memory
block to be loaded into any line of the cache (Figure 5.6b). In this case, the cache control logic
interprets a memory address simply as a Tag and a Word field. The Tag field uniquely identifies a
block of main memory. To determine whether a block is in the cache, the cache control logic must
simultaneously examine every line’s tag for a match. Figure 5.10 illustrates the logic.

Offset

Address

Tag from CPU

s bits w bits 4

Tags (CAM) Blocks (SRAM)

A — A

Y
H;\ L
,'/""
v -?:
iy
¥ T
u;\ -%:
v S
%9
LJ L4 L L Y F v HF\HHFY LA
\ Check for hit / Fv——— Select
Mi.&s¢ {enable)
Access Data to
main memory CPU
for data

Figure 5.10 Fully Associative Cache Organization

Note that no field in the address corresponds to the line number, so that the number of lines in the
cache is not determined by the address format. Instead, if there is a hit, the line number of the hit is
sent to the select function by the cache hardware, as shown in Figure 5.9. To summarize,

e Address length = (s +w) bits
e Number of addressable units=2" " words or bytes

. . . W
e Block size =line size =2 words or bytes
s+w

2

e Number of blocks in main memory = "= 2°

e Number of lines in cache = undetermined
e Size of tag = sbits

Example 5.1b

Figure 5.11 shows our example using associative mapping. A main memory address consists of a
22-bit tag and a 2-bit byte number. The 22-bit tag must be stored with the 32-bit block of data for

each line in the cache. Note that it is the leftmost (most significant) 22 bits of the address that form
the tag. Thus, the 24-bit hexadecimal address 16339C has the 22-bit tag 058CE7. This is easily
seen in binary notation:

Memory address 0001 | 0110 | 0011 | 0011 | 1001 | 1100 | (binary)
1 6 3 3 9 C | (hex)

Tag (leftmost 22 bits) 00 | 0101 | 1000 | 1100 | 1110 | 0111 | (binary)
0 5 8 C E 7 | (hex)

Main memory address (binary)

.
— —

Tag (hex) _ EJ Word " pata
000000 1000000000000/0000,00000000 | 13579246 ————~
000001 ©000000000000000000000100 |
I
|
~_ L W) |
|
|
I
|
|
|
: Line
| Tag Data number
| ~--[3FFFFE[11223344 | 0000
i--_j'"-'_-_ 058CE7 | FEDCBA98 | 0001
~ ~ |
osscse 00OIOTIU01 0N 110011000 L]
056CET 000101100011001110011100 | FEDCEASS |- | | o
058CE8 000101100011001110100000 b
~ ~ (—-1-—1-—|3FFFFD| 33333333 | 3FFD
[— = =l—== 000000 | 13579246 | 3IFFE
: r——L__13FFFFF| 24682468 | 3FFF
' l[: =
-
: |[: 22 bits 32 bits
T : |[: 16K line cache
| | I
| | I
.
I SN
e Lo
e SEOATERORROOTIOONS |Smasmafcl 1l
| | Ll IR F———= T
3FFFFF M11111111111111111111100 | 24682468 | ———— a i‘"u’r)f;f: Memory addrc‘ss values are
— in binary representation;
32 bits other values are in hexadecimal.
16-Mb main memory
Tag Word
Main memory address =
= o

22 bits 2 bits

Figure 5.11 Associative Mapping Example

With associative mapping, there is flexibility as to which block to replace when a new block is read into
the cache. Replacement algorithms, discussed later in this section, are designed to maximize the hit
ratio. The principal disadvantage of associative mapping is the complex circuitry required to examine
the tags of all cache lines in parallel.

seractive o
oy 'S"‘?;

Aleksandr Lukin/123RF
Cache Time Analysis Simulator

SET-ASSOCIATIVE MAPPING

Set-associative mapping is a compromise that exhibits the strengths of both the direct and associative
approaches while reducing their disadvantages.

In this case, the cache consists of number sets, each of which consists of a number of lines. The
relationships are

v Xk
J modulo v

~

where
i = cache set number
J = main memory block number
m = number of lines in the cache
v = number of sets
k = number of lines in each set

This is referred to as k-way set-associative mapping. With set-associative mapping, block B]. can be

mapped into any of the lines of set j. Figure 5.12a illustrates this mapping for the first v blocks of main
memory. As with associative mapping, each word maps into multiple cache lines. For set-associative
mapping, each word maps into all the cache lines in a specific set, so that main memory block B,

maps into set 0, and so on. Thus, the set-associative cache can be physically implemented as v
associative caches, typically implemented as v CAM memories. It is also possible to implement the
set-associative cache as k direct mapping caches, as shown in Figure 5.12b. Each direct-mapped
cache is referred to as a way, consisting of v lines. The first v lines of main memory are direct mapped
into the v lines of each way; the next group of v lines of main memory are similarly mapped, and so
on. The direct-mapped implementation is typically used for small degrees of associativity (small values
of k) while the associative-mapped implementation is typically used for higher degrees of associativity
[JACOO08].

By Lo A
. g
. C -=
L
Lk-l
Cache memory-set 0
By_1 \
First v blocks of
main memory
(equal to number of sets)
L]
L]
L]
Cache memory-set v-1
(a) v associative—mapped caches
By f/ > Ly A
7 >
> -One

™ N . . . set £

™ . . " e 0 . . E

. . . - . :

NS
Br-l L"‘_] Y

Cache memory—way k

N\

First v blocks of \ Cache memory—way 1
main memory
sets)

(equal to number of

(b) k direct—-mapped caches
Figure 5.12 Mapping from Main Memory to Cache: k-Way Set Associative

For set-associative mapping, the cache control Iogic interprets a memory address as three fields: Tag,
Set, and Word. The d set bits specify one of v =2" sets. The s bits of the Tag and Set fields specify
one of the 2° blocks of main memory. Figure 5.13 illustrates the cache control logic. With fully
associative mapping, the tag in a memory address is quite large and must be compared to the tag of
every line in the cache. With k-way set-associative mapping, the tag in a memory address is much
smaller and is only compared to the k tags within a single set. As shown in Figure 5.12, if there is
match of tags on any of the lines in the set, the corresponding select function is enabled and retrieves
the desired work. If all comparisons report a miss, then the desired word is retrieved from main
memory.

To summarize,

e Address length = (s +w) bits
e Number of addressable units=2" " words or bytes

. . . W
e Block size =line size =2 words or bytes
s+w

2
e Number of blocks in main memory = "= 2°

e Number of lines in set =k

e Number of sets =v = 2°

e Number of lines in cache=m =kv =k X 2?
e Size of cache =k X 2d " words or bytes

e Size of tag= (s —d) bits

Offset

Address
Tag Set number from CPU
A s - d bits d bits w bits 4
Lines for Way 0 Lines for Way k-1
'S A — ~ A —
Tags Blocks Tags Blocks
—_— A A —_— A A
<€ >
L ® @
vyyyy ¥ ¥y yvwyy ¥ vy YYYYY ¥V YY
—Q\Cﬂpare —\Cﬂpﬂl‘e Select
Miss Miss
Data to Data to
CPU CPU

Access main
memory for data

Figure 5.13 k-Way Set Associative Cache Organization

Example 5.1¢c

Figure 5.14 shows our example using two-way set-associative mapping with two lines in each set.
The 13-bit set number identifies a uniqt{(%a set of two lines within the cache. It also gives the number
of the block in main memory, modulo 2 . This determines the mapping of blocks into lines. Thus,

blocks 000000, 008000, ..., FF8000 of main memory map into cache set 0. Any of those blocks
can be loaded into either of the two lines in the set. Note that no two blocks that map into the same
cache set have the same tag number. For a read operation, the 13-bit set number is used to
determine which set of two lines is to be examined. Both lines in the set are examined for a match
with the tag number of the address to be accessed.

Main memory address (binary)
Tag — —— —

(hex) Tag Set + Word Main memory address =
——— Data Tag Set Word
000 QQOODQQD_QDDOD)00/ 13579246 +----- 8]
000 QQOOQDOQQUUO'QQD_DJU_U_OQHJ;UU |
: = e =
~ A~ i 9 bits 13 bits 2 bits
|
I
I
000 000000001111111111111000; '
000 0000000011111111111T1100; S
. : : Set :
* L Tag Data pumber _Tag Data :
02c 000101100000000000000000:(77777777 |--' ‘------ 000 13579246 | 0000 [02€] 77777777 |-
02Cc 000101100000000000000100:| 11235813 ------—————~ 02C| 11235813 | 0001
02Cc 000101100011001110011100/ | FEDCBA98 [——————~——~~+ 02C| FEDCBA98 | OCE7
______________________________________ i—--|1FF| 11223344 | 1FFE
02C 000101100111111111111100/[12345678 |----~-~~-~ 1---102€C| 12345678 | 1FFF [1FF| 24682468 |- -
. | -— - -~ ————— |
: i 9 bits 32 bits 9 bits 32 bits !
I -
1FF IT1T711T1000000000000000 | 16K line cache :
1FF 111111111000000000000100: i |
]
I |
1 |
1 |
: |
1FF IIITT1ITATITIIITIT111000:) 11223344 -———————— 4 |
1FF Q111111113111 1111100!| 24682468 | —————— - ——— - - - - —
_—
32 bits
16-Mb main memory Note: Memory address values are

in binary representation;
other values are in hexadecimal.

Figure 5.14 Two-Way Set-Associative Mapping Example

In the extreme case of v =m ,k =1, the set-associative technique reduces to direct mapping, and for
v=1,k=m, it reduces to associative mapping. The use of two lines per set (v=m/2,k=2) is the

most common set-associative organization. It significantly improves the hit ratio over direct mapping.
Four-way set associative (v =m/4 ,k =4) makes a modest additional improvement for a relatively

small additional cost [MAYB84, HILL89]. Further increases in the number of lines per set have little
effect.

Figure 5.15 shows the results of one simulation study of set-associative cache performance as a
function of cache size [GENUO4]. The difference in performance between direct and two-way set
associative is significant up to at least a cache size of 64 kB. Note also that the difference between
two-way and four-way at 4 kB is much less than the difference in going from for 4 kB to 8 kB in cache
size. The complexity of the cache increases in proportion to the associativity, and in this case would
not be justifiable against increasing cache size to 8 or even 16 kB. A final point to note is that beyond
about 32 kB, increase in cache size brings no significant increase in performance.

1.0

0.9 - SRR
0.8 - |
0.7 1
e 0.6 -
£ 0.5
= 04-
0.3 -
0.2
0.1 1
{L[} T T I I I I T I | |
1k 2k 4k Sk 16k 32k 64k 128k 256k 512k 1M
Cache size (bytes)
[Direct
0 Two-way
E Four-way
3 Eight-way
Bl Sixteen-way

Figure 5.15 Varying Associativity over Cache Size

The results of Figure 5.15 are based on simulating the execution of a GCC compiler. Different
applications may yield different results. For example, [CANTO01] reports on the results for cache
performance using many of the CPU2000 SPEC benchmarks. The results of [CANTO1] in comparing
hit ratio to cache size follow the same pattern as Figure 5.15, but the specific values are somewhat
different.

For both associative and set-associative caches, there is an additional time element for comparing tag
fields. One way to reduce this time penalty in a set-associative cache is with way prediction. Way
prediction allows the data array and tag array to be accessed in parallel. If the predicted way was
correct (determined by a tag match), no penalty occurs. If the prediction was incorrect, additional
cycles are needed to find the data. The way predictor is a table that guesses which “way” a given
address should access, based on recent history. An implementation reported in [POWEO01], using a
number of SPEC CPU benchmark programs, found prediction rates that ranged from 50% to over
90% for a 4-way set associative cache. Another study [TSENO09] on a 4-way set associative cache
using SPEC CPU programs resulted in prediction rates ranging from 85% to 95%.

tive .
am\g,‘taﬂ Ve %

& 3

Aleksandr Lukin/123RF
Cache Simulator

Multitask Cache Simulator

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one of the existing blocks
must be replaced. For direct mapping, there is only one possible line for any particular block, and no
choice is possible. For the associative and set-associative techniques, a replacement algorithm is
needed. To achieve high speed, such an algorithm must be implemented in hardware. A number of
algorithms have been tried. We mention four of the most common. Probably the most effective is least
recently used (LRU): Replace that block in the set that has been in the cache longest with no
reference to it. For two-way set associative, this is easily implemented. Each line includes a USE bit.
When a line is referenced, its USE bit is set to 1 and the USE bit of the other line in that set is set to 0.
When a block is to be read into the set, the line whose USE bit is 0 is used. Because we are assuming
that more recently used memory locations are more likely to be referenced, LRU should give the best
hit ratio. LRU is also relatively easy to implement for a fully associative cache. The cache mechanism
maintains a separate list of indexes to all the lines in the cache. When a line is referenced, it moves to
the front of the list. For replacement, the line at the back of the list is used. Because of its simplicity of
implementation, LRU is the most popular replacement algorithm.

Another possibility is first-in-first-out (FIFO): Replace that block in the set that has been in the cache
longest. FIFO is easily implemented as a round-robin or circular buffer technique. Still another
possibility is least frequently used (LFU): Replace that block in the set that has experienced the fewest
references. LFU could be implemented by associating a counter with each line. A technique not based
on usage (i.e., not LRU, LFU, FIFO, or some variant) is to pick a line at random from among the
candidate lines. Simulation studies have shown that random replacement provides only slightly inferior
performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to consider. If the old
block in the cache has not been altered, then it may be overwritten with a new block without first
writing out the old block. If at least one write operation has been performed on a word in that line of
the cache, then main memory must be updated by writing the line of cache out to the block of memory
before bringing in the new block. A variety of write policies, with performance and economic trade-offs,
is possible. There are two problems to contend with. First, more than one device may have access to
main memory. For example, an I1/0O module may be able to read-write directly to memory. If a word
has been altered only in the cache, then the corresponding memory word is invalid. Further, if the 1/0
device has altered main memory, then the cache word is invalid. A more complex problem occurs
when multiple processors are attached to the same bus and each processor has its own local cache.
Then, if a word is altered in one cache, it could conceivably invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write operations are made to
main memory as well as to the cache, ensuring that main memory is always valid. Any other
processor—cache module can monitor traffic to main memory to maintain consistency within its own
cache. The main disadvantage of this technique is that it generates substantial memory traffic and
may create a bottleneck. An alternative technique, known as write back, minimizes memory writes.
With write back, updates are made only in the cache. When an update occurs, a dirty bit, or use bit,
associated with the line is set. Then, when a block is replaced, it is written back to main memory if and
only if the dirty bit is set. The problem with write back is that portions of main memory are invalid, and
hence accesses by I/O modules can be allowed only through the cache. This makes for complex
circuitry and a potential bottleneck. Experience has shown that the percentage of memory references
that are writes is on the order of 15% [SMIT82]. However, for HPC applications, this number may
approach 33% (vector-vector multiplication) and can go as high as 50% (matrix transposition).

Example 5.2

Consider a cache with a line size of 32 bytes and a main memory that requires 30 ns to transfer a
4-byte word. For any line that is written at least once before being swapped out of the cache, what
is the average number of times that the line must be written before being swapped out for a
write-back cache to be more efficient than a write-through cache?

For the write-back case, each dirty line is written back once, at swap-out time, taking
8 x 30 =240ns. For the write-through case, each update of the line requires that one word be

written out to main memory, taking 30 ns. Therefore, if the average line that gets written at least
once gets written more than 8 times before swap out, then write back is more efficient.

There is another dimension to the write policy when a miss occurs at a cache level. There are two
alternatives in the event of a write miss:

e Write Allocate: The block containing the word to be written is fetched from main memory (or next
level cache) into the cache and the processor proceeds with the write cycle.
e No Write Allocate: The block containing the word to be written is modified in the main memory
and not loaded into the cache.
Either of these policies can be used with either write through or write back. Most commonly, no write
allocate is used with write through. The reasoning is that even if locality holds and a write will be made
to the same block in the near future, the write-through policy will generate a write to main memory
anyway, so bringing the block into the cache does not seem efficient. For example, the ARM Cortex
processors can be configured to use write allocate or no write allocate with write back, but only no
write allocate with write through.

With write back, write allocate is most commonly used, although some systems, such as the ARM
Cortex, also allow no write allocate. The reasoning for using write allocate is that subsequent writes to
the same block, if the block originally caused a miss, will hit in the cache next time, setting the dirty bit
for the block. That will eliminate extra memory accesses and result in efficient execution. The write
back, no write allocate option eliminates the time spent in bringing a block into the cache. Depending
on locality patterns for reads and writes, there may be some advantage to this technique.

In a bus organization in which more than one device (typically a processor) has a cache and main
memory is shared, a new problem is introduced. If data in one cache are altered, this invalidates not
only the corresponding word in main memory, but also that same word in other caches (if any other
cache happens to have that same word). Even if a write-through policy is used, the other caches may
contain invalid data. A system that prevents this problem is said to maintain cache coherency.
Possible approaches to cache coherency include the following:

e Bus watching with write through: Each cache controller monitors the address lines to detect
write operations to memory by other bus masters. If another master writes to a location in shared
memory that also resides in the cache memory, the cache controller invalidates that cache entry.
This strategy depends on the use of a write-through policy by all cache controllers.

e Hardware transparency: Additional hardware is used to ensure that all updates to main memory
via cache are reflected in all caches. Thus, if one processor modifies a word in its cache, this
update is written to main memory. In addition, any matching words in other caches are similarly
updated.

e Noncacheable memory: Only a portion of main memory is shared by more than one processor,
and this is designated as noncacheable. In such a system, all accesses to shared memory are
cache misses, because the shared memory is never copied into the cache. The noncacheable
memory can be identified using chip-select logic or high-address bits.

Cache coherency is an active field of research. This topic is explored further in Part Five.

Line Size

Another design element is the line size. When a block of data is retrieved and placed in the cache, not
only the desired word but also some number of adjacent words are retrieved. As the block size
increases from very small to larger sizes, the hit ratio will at first increase because of the principle of
locality , which states that data in the vicinity of a referenced word are likely to be referenced in the
near future. As the block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of using the newly
fetched information becomes less than the probability of reusing the information that has to be
replaced. Two specific effects come into play:

e Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch
overwrites older cache contents, a small number of blocks results in data being overwritten shortly
after they are fetched.

e As a block becomes larger, each additional word is farther from the requested word and therefore
less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on the locality characteristics
of a particular program, and no definitive optimum value has been found. A size of from 8 to 64 bytes
seems reasonably close to optimum [SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64-
and 128-byte cache line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More recently, the use
of multiple caches has become the norm. Two aspects of this design issue concern the number of
levels of caches and the use of unified versus split caches.

MULTILEVEL CACHES

As logic density has increased, it has become possible to have a cache on the same chip as the
processor: the on-chip cache. Compared with a cache reachable via an external bus, the on-chip
cache reduces the processor’s external bus activity and therefore speeds up execution times and
increases overall system performance. When the requested instruction or data is found in the on-chip
cache, the bus access is eliminated. Because of the short data paths internal to the processor,
compared with bus lengths, on-chip cache accesses will complete appreciably faster than would even
zero-wait state bus cycles. Furthermore, during this period the bus is free to support other transfers.

The inclusion of an on-chip cache leaves open the question of whether an off-chip, or external, cache
is still desirable. Typically, the answer is yes, and most contemporary designs include both on-chip
and external caches. The simplest such organization is known as a two-level cache, with the internal
level 1 (L1) and the external cache designated as level 2 (L2). The reason for including an L2 cache is
the following: If there is no L2 cache and the processor makes an access request for a memory
location not in the L1 cache, then the processor must access DRAM or ROM memory across the bus.
Due to the typically slow bus speed and slow memory access time, this results in poor performance.
On the other hand, if an L2 SRAM (static RAM) cache is used, then frequently the missing information
can be quickly retrieved. If the SRAM is fast enough to match the bus speed, then the data can be
accessed using a zero-wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are noteworthy. First, for an off-chip
L2 cache, many designs do not use the system bus as the path for transfer between the L2 cache and
the processor, but use a separate data path, so as to reduce the burden on the system bus. Second,

with the continued shrinkage of processor components, a number of processors now incorporate the
L2 cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates in both the L1 and L2
caches. Several studies have shown that, in general, the use of a second-level cache does improve
performance (e.g., see [AZIM92], [NOVI93], [HAND98]). However, the use of multilevel caches does
complicate all of the design issues related to caches, including size, replacement algorithm, and write
policy; see [HAND98] and [PEIR99] for discussions.

Figure 5.16 shows the results of one simulation study of two-level cache performance as a function of
cache size [GENUO04]. The figure assumes that both caches have the same line size and shows the
total hit ratio. That is, a hit is counted if the desired data appears in either the L1 or the L2 cache. The
figure shows the impact of L2 on total hits with respect to L1 size. L2 has little effect on the total
number of cache hits until it is at least double the L1 cache size. Note that the steepest part of the
slope for an L1 cache of 8 kB is for an L2 cache of 16 kB. Again for an L1 cache of 16 kB, the
steepest part of the curve is for an L2 cache size of 32 kB. Prior to that point, the L2 cache has little, if
any, impact on total cache performance. The need for the L2 cache to be larger than the L1 cache to
affect performance makes sense. If the L2 cache has the same line size and capacity as the L1
cache, its contents will more or less mirror those of the L1 cache.

0.98 -
0.96 -
0.94 -
0.92 -
0.90 -

.88 -

Hit ratio

0.86

0.84

0.82 -

0.80 -

ﬂ-?ﬁ I I I I I I I I I I 1
Ik 2k 4k 8k 16k 32k 64k 128k 256k 512k 1M 2M

1.2 cache size (bytes)

Figure 5.16 Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1

With the increasing availability of on-chip area available for cache, most contemporary
microprocessors have moved the L2 cache onto the processor chip and added an L3 cache.
Originally, the L3 cache was accessible over the external bus. More recently, most microprocessors
have incorporated an on-chip L3 cache. In either case, there appears to be a performance advantage
to adding the third level (e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe
zEnterprise systems, incorporate 3 on-chip cache levels and a fourth level of cache shared across
multiple chips [BART15].

UNIFIED VERSUS SPLIT CACHES

When the on-chip cache first made an appearance, many of the designs consisted of a single cache
used to store references to both data and instructions. More recently, it has become common to split
the cache into two: one dedicated to instructions and one dedicated to data. These two caches both
exist at the same level, typically as two L1 caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction L1 cache, and when the processor
attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

e For a given cache size, a unified cache has a higher hit rate than split caches because it balances
the load between instruction and data fetches automatically. That is, if an execution pattern
involves many more instruction fetches than data fetches, then the cache will tend to fill up with
instructions, and if an execution pattern involves relatively more data fetches, the opposite will
occur.

e Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels, particularly for
superscalar machines, which emphasize parallel instruction execution and the prefetching of predicted
future instructions. The key advantage of the split cache design is that it eliminates contention for the
cache between the instruction fetch/decode unit and the execution unit. This is important in any design
that relies on the pipelining of instructions. Typically, the processor will fetch instructions ahead of time
and fill a buffer, or pipeline, with instructions to be executed. Suppose now that we have a unified
instruction/data cache. When the execution unit performs a memory access to load and store data,
the request is submitted to the unified cache. If, at the same time, the instruction prefetcher issues a
read request to the cache for an instruction, that request will be temporarily blocked so that the cache
can service the execution unit first, enabling it to complete the currently executing instruction. This
cache contention can degrade performance by interfering with efficient use of the instruction pipeline.
The split cache structure overcomes this difficulty.

Inclusion Policy

Recall from Chapter 4 that we defined the inclusion principle for memory hierarchies as follows: All
information items are originally stored in level Mn, where n is the level most remote from the processor
(lowest level). During the processing, subsets of Mn are copied into Mn — 1. Similarity, subsets of

Mn — 1 are copied into Mn —2, and so on. This is expressed concisely as Mi Mi + 1. Thus, if a word is
found in Mi, then copies of the same word also exist in all lower layers Mi+1,Mi+2, ... ,Mn.Ina

multilevel cache environment, in which there may be multiple caches at one level that share the same
cache at the next lower level, inclusion between these two levels may not always be desirable. Three
inclusion policies are found in contemporary cache systems:

The inclusive policy dictates that a piece of data in one cache is guaranteed to be also found in all
lower levels of caches. The advantage of the inclusive policy is that it simplifies searching for data
when there are multiple processors in the computing system. For example, if one processor wants to
know whether another processor has the data it needs, it does not need to search all levels of caches
of that other processor but only the lowest-level cache. This property is useful in enforcing cache
coherence, which is discussed in Chapter 20.

The exclusive policy dictates that a piece of data in one cache is guaranteed not to be found in all
lower levels of caches. The advantage of the exclusive policy is that it does not waste cache capacity
since it does not store multiple copies of the same data in all of the caches. The disadvantage is the

need to search multiple cache levels when invalidating or updating a block. To minimize the search
time, the higher-level tag sets are typically duplicated at the lowest cache level to centralize searching.

With the noninclusive policy, a piece of data in one cache may or may not be found in lower levels
of caches. This can be contrasted with the other two policies with the following examples. Suppose
that the L2 line size is a multiple of the L1 line size. For the inclusive policy, if a block is evicted from
the L2 cache, the corresponding multiple blocks will be evicted from the L1 cache. In contrast, with a
noninclusive policy, the L1 cache my retain portions of a block recently evicted from the L2 cache. For
the same difference in block size, if a portion of a block is promoted from the L2 cache to the L1
cache, the exclusive policy requires the entire L2 block be evicted. In contrast, the noninclusive policy
does not require this eviction. As with the exclusive policy, a noninclusive policy will generally maintain
all higher-level cache sets at the lowest cache level.

5.3 Intel x86 Cache Organization

The evolution of cache organization is seen clearly in the evolution of Intel microprocessors (Table
5.4). The 80386 does not include an on-chip cache. The 80486 includes a single on-chip cache of 8
kB, using a line size of 16 bytes and a four-way set-associative organization. All of the Pentium
processors include two on-chip L1 caches, one for data and one for instructions. For the Pentium 4,
the L1 data cache is 16 kB, using a line size of 64 bytes and a four-way set-associative organization.
The Pentium 4 instruction cache is described subsequently. The Pentium Il also includes an L2
cache that feeds both of the L1 caches. The L2 cache is eight-way set associative with a size of 512
kB and a line size of 128 bytes. An L3 cache was added for the Pentium Ill and became on-chip with

high-end versions of the Pentium 4.

Table 5.4 Intel Cache Evolution

processor chip.

Problem Solution Processor
on Which
Feature
First
Appears
External memory slower than the system bus. Add external cache using faster 386
memory technology.
Increased processor speed results in external bus Move external cache on-chip, 486
becoming a bottleneck for cache access. operating at the same speed as
the processor.
Internal cache is rather small, due to limited space Add external L2 cache using 486
on chip. faster technology than main
memory.
Contention occurs when both the Instruction Create separate data and Pentium
Prefetcher and the Execution Unit simultaneously instruction caches.
require access to the cache. In that case, the
Prefetcher is stalled while the Execution Unit’s data
access takes place.
Increased processor speed results in external bus Create separate back-side bus Pentium
becoming a bottleneck for L2 cache access. that runs at higher speed than Pro
the main (front-side) external
bus. The BSB is dedicated to
the L2 cache.
Move L2 cache on to the Pentium I

Some applications deal with massive databases
and must have rapid access to large amounts of
data. The on-chip caches are too small.

Add external L3 cache.

Pentium
1l

Move L3 cache on-chip.

Pentium 4

Figure 5.17 provides a simplified view of the Pentium 4 organization, highlighting the placement of the
three caches. This cache architecture is similar to those of more modern x86 systems. The processor

core consists of four major components:

e Fetch/decode unit: Fetches program instructions in order from the L2 cache, decodes these into a
series of micro-operations, and stores the results in the L1 instruction cache.

e Out-of-order execution logic: Schedules execution of the micro-operations subject to data
dependencies and resource availability; thus, micro-operations may be scheduled for execution in
a different order than they were fetched from the instruction stream. As time permits, this unit

schedules speculative execution of micro-operations that may be required in the future.

e Execution units: These units execute micro-operations, fetching the required data from the L1
data cache and temporarily storing results in registers.
e Memory subsystem: This unit includes the L2 and L3 caches and the system bus, which is used
to access main memory when the L1 and L2 caches have a cache miss and to access the system

I/0O resources.

Out-of-order |g L1 instruction < Instruction |

execution cache (12K p.ops) fetch/decode
logic unit
64 V
/)
bits
Integer register file -(T)' FP register file
v v Pt vt vty v t v ?
Load Store Simple Simple Complex FP/ FP
address address integer integer integer MMX move
unit unit ALU ALU ALU unit unit
L1 data cache (16 KB)
256 bits
L.2 cache(512 KB)
256 bits
L.3 cache(l1 MB)
System Bus

Figure 5.17 Pentium 4 Block Diagram

Unlike the organization used in all previous Pentium models, and in most other processors, the
Pentium 4 instruction cache sits between the instruction decode logic and the execution core. The
reasoning behind this design decision is as follows: As discussed more fully in Chapter 18, the
Pentium processor decodes, or translates, Pentium machine instructions into simple RISC-like
instructions called micro-operations. The use of simple, fixed-length micro-operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance. However, the Pentium
machine instructions are cumbersome to decode; they have a variable number of bytes and many
different options. It turns out that performance is enhanced if this decoding is done independently of
the scheduling and pipelining logic. We return to this topic in Chapter 18.

The data cache employs a write-back policy: Data are written to main memory only when they are

removed from the cache and there has been an update. The Pentium 4 processor can be dynamically
configured to support write-through caching.

The L1 data cache is controlled by two bits in one of the control registers, labeled the CD (cache
disable) and NW (not write-through) bits (Table 5.5). There are also two Pentium 4 instructions that
can be used to control the data cache: INVD invalidates (flushes) the internal cache memory and
signals the external cache (if any) to invalidate. WBINVD writes back and invalidates internal cache
and then writes back and invalidates external cache.

Table 5.5 Pentium 4 Cache Operating Modes
Note: CD=0;NW =1 is an invalid combination.

Control Bits Operating Mode
CD NW Cache Fills Write Throughs Invalidates
0 0 Enabled Enabled Enabled
1 0 Disabled Enabled Enabled
1 1 Disabled Disabled Disabled

Both the L2 and L3 caches are eight-way set-associative with a line size of 128 bytes.

5.4 The IBM z13 Cache Organization

The IBM z13 cache organization was introduced in Chapter 5. This section provides more detail.
Figure 5.18 illustrates the logical interconnections of the z13 cache system, showing the structure of a
single processor drawer. A maximum system, called a central processing complex (CPC) consists of
four drawers. Each drawer consists of two processor nodes, with each node containing 3 processor
unit (PU) chips and one storage control (SC) chip. Each PU includes up to 8 cores. The L1, L2, and L3
caches are contained on each PU chip, and a separate SC chip holds the L4 cache for a processor
node. Thus a maximum configuration contains 192 cores. Some key characteristics of each level are
as follows:

Processor Node 1 Processor Node ()
PU PU PU PU
8 x 224kB L1 8 x 224kB L1 8 x 224kB L1 8 x 224kB L1
8 x 4M L2 8 x AM L2 8 x AM L2 8 x 4M L2
64MB L3 64MB L3 64MB L3 64MB L3
X-Bus X-Bus
PU 1 -) - PU
8 x 224kB L1 SC S-Bus SC 8 x 224kB L1
Q% AM L2 480 MB L4 480 MB L4 Q% AM 12
64MB L3 64MB L3
A-Bus A-Bus

To other drawers To other drawers

Figure 5.18 IBM z13 CPC Drawer Logical Structure

e L1 cache: Each core contains a 96-kB L1 I-cache and a 128-kB D-cache, for a maximum total of
18 MB of L1 I-cache and 24 MB of L1 D-cache. The L1 caches are designed as write-through
caches.

e L2 cache: Each core contains a 2-MB L2 I-cache and a 2-MB L2 D-cache, for a maximum total of
384 MB of L2 I-cache and 384 MB of L2 D-cache. The L2 caches are designed as write-through
caches.

e L3 cache: Each PU chip contains a 64-MB L3 cache, for a maximum total of 1.5 GB of L3 cache.
The L3 cache is 16-way set associative and uses a line size of 256 bytes. The L3 cache uses the
write-back policy.

e L4 cache: Each processor node contains a 480-MB L4 cache for a maximum total of 3.75 GB of
L4 cache. The L4 cache is organized as a 30-way set-associative cache. The L4 cache uses the
write-back policy.

The use of an L3 cache that is shared by 8 cores on a chip facilitates low-latency cross-processor

cache line sharing and provides cache efficiency effects by elimination of redundant lines (single copy,
multiple users), which is not possible with private caches. Thus, there are efficiency gains by devoting
a substantial portion of each PU chip to a shared L3 cache as opposed to either increasing the size of

the L2 caches or providing private L3 caches for each core.

There are also efficiency benefits from providing an L4 cache chip on the same processor node, or
motherboard, as the PU chips. The L4 cache enables smooth scaling from a single processor chip to
a maximum system configuration by providing a significant buffer before main memory.

The interconnection design contributes to the overall efficiency of this arrangement. Within each PU
chip, 160-GB/s bus bandwidth is used between L1/L2 and L2/L3 cache boundaries. The 80-GB/s
XBus provides tightly coupled interconnection within a node at the L3/L4 cache boundary. The high-
speed S-Bus connects via L4 between the nodes of a drawer, and A-Bus connections are provide to
other drawers.

The cache write policy is tailored to the configuration. The L1 and L2 caches are write-through, taking
advantage of the high-speed on-chip connection to the next cache level. Further, the L3 cache is most
efficiently used if it always maintains the most recent version of any L2 cache line. Going from L3 to
L4 is a lower speed, off-chip transmission and here a write-back policy is preferred to minimize traffic.
Similarly, write-back is preferred going from L4 to main memory.

5.5 Cache Performance Models.6

¢ Used with permission from Professor Roger Kieckhafer of Michigan Technological University.

This section looks first at the cache timing of the different cache access organizations, then at a model
of design options for improving performance.

Cache Timing Model

We can derive some insight into the timing differences between the different cache access models by
developing equations that show the different time delays. The following parameters are needed:

t« = time needed to compare the tag field of an address with the tag value in a cache line.
tn = time needed to read a line from the cache to retrieve the data block in the cache.

tw = time needed to transmit byte or word to the processor; this includes extracting the desired bytes
from the fetched line and gating these bytes onto the bus to the processor.

tht = time expended at this cache level in the event of a hit.
tmiss = time expended at this cache level in the event of a miss.

First consider direct-mapped cache access. The first operation is checking the Tag field of an address
against the tag value in the line designated by the Line field. If there is not a match (miss), then the
operation is complete. If there is a match (hit), then the cache hardware reads the data block from the
line in the cache and then fetches the byte or word indicated by the Offset field of the address. The
timing equations therefore are:

Thit = Iy + Ixp + Lot Tmiss = I + Ieq (5.1)

One of the advantages of a direct-mapped cache is that it allows simple and fast speculation. Once
the address has been computed, the one cache line that might have a copy of that location in memory
is known. That cache entry can be read, and the processor can continue to work with that data before
it finishes checking that the tag actually matches the requested address. Thus checking and fetching
are performed in parallel. Assuming the fetch time is larger, the timing equations become:

Thit = I + Ixp Imiss = I + Ieq (5.2)

Next, consider a fully associative cache. In this case, the line number is not known until the tag
comparison is completed. So the hit time is the same as for direct-mapped. Because this is a content-
addressable memory, the miss time is simply the tag comparison time. That is, the tag comparison is
made without the need to read a line of data from the cache, but is made in parallel to all of the lines
of the cache internally to the cache. The equations in this case:

Thit = Iyl + Ixp + et Tmiss = Iy (5 3)

With set associative, it is not possible to transmit bytes and compare tags in parallel as can be done
with direct-mapped with speculative access. However, the circuitry can be designed so that the data
block from each line in a set can be loaded and then transmitted once the tag check is made. This
yields the equation pair of Equation 5.1.

If set associative is augmented with way prediction, then the following equations hold:
Thit =ty + Ixp + (1 _Fp) Iet Tmiss = Iy + Loy (5.4)
where F, is the fraction of time that the way prediction succeeds. Note that for ', =1, set associative

with way prediction reduces to the same equations as direct-mapped with speculative access, which is
the best case. For F,= 0, the results are the same as without way prediction, which is the worst case.

The prediction scheme typically used is to predict that the requested data is contained in the last block
used from this set. If there is a high degree of spatial locality, then F, will be close to 1.

Table 5.6 summarizes the cache timing equations.

Table 5.6 Cache Timing Equations

Time for hit Time for miss
] Thit =T+ Ixp + let Tmiss =] + I¢t
Direct-Mapped
: . . Thit = Il + Ixp Imiss = Iy + It
Direct-Mapped with Speculation
L. Thit = Ir] + Ixp + Iet Imiss = It
Fully Associative
o Thit = I+ Ixp T+ let Imiss =] + I¢t
Set-Associative
o _ o hit=In+t I+ (L =F,) 1 Imiss = I + It
Set-Associative with Way Prediction

Design Option for Improving Performance

Equation 4.5 expressed the mean time to access data in a memory hierarchy as follows:

T,= > [Probability of taking a path x Duration of that a path]
all paths

= Y [] (All probabilities in the path) x Y (All times in that path)
all paths

=% T A-h)hxy
i=1;=0

where

n = Number of levels of memory.

Total time needed to access data in level M
The sum of all times in the path to a hit in level M_
h, = Hit ratio of level M l

1

= Conditional probability that the data for a memory access is resident in
level M _given that it is not resident in M, _,
4

~
I

Ts = Mean time needed to access data

This can be rearranged to show the contribution of level M1 explicitly:
T. =
g (5.3)

hyxt;+ (1=hy) 22 I (1= hy) by X1,
i=2j=2
= hyxtp+ (1 _hl)tpenalty

where 7,.,,11y IS the mean time to access data if there is a miss at level M . Note that 7, is the same

quantity as 1, defined at the beginning of this section, because we are referring to level M .

Equation 5.3 provides insight into the approaches that can be taken to improve performance by

showing three distinct parameters that can be altered. The value of T, can be reduced by one of the
following methods: reduce the hit time 7, reduce the miss rate (1 —4;), and reduce the miss penalty
Ip
parameters (Table 5.7):

enalty- 1€ following is a list of widely used techniques that can be used to reduce one of these

Table 5.7 Cache Performance Improvement Techniques

Technique Reduce 1, Reduce Reduce 7penairy

Way Prediction

Cache Capacity Small Large
Line Size Small Large
Degree of Associativity Decrease Increase

More Flexible Replacement

Policies
Cache Unity Split I-cache and D- Unified cache
cache
Prefetching
Write Through Write allocate No write

allocate

Critical Word First

Victim Cache

Wider Busses

For a set-associative cache, the use of way prediction reduces #,;, (Table 5.6).
The access time for a smaller, more compact cache is less than for a larger cache, reducing #;;.

On the other hand, in general, the larger the cache, the smaller the miss rate.

Increasing the line size can decrease the miss rate because of spatial locality. However, a larger
line size means that more time is spent bringing in a line on a miss. But the chance that the
additional data brought into the cache by the larger line size will be used goes does down with the
increased distance between addresses in the line. At some point, the amount of time spent fetching
data that is not used into the cache becomes greater than the time saved through increasing the hit
rate.

The direct-mapped cache with speculation has the smallest value of 7, and the fully associative

cache has the largest (Table 5.6). On the other hand, increasing the associativity of a cache can
reduce its miss rate by reducing the number of conflict misses—misses that occur because more
lines compete for a set in the cache than can fit in the set.

If a cache is split between |-cache and D-cache, each cache is smaller, therefore reducing #;,. But

for the overall miss rate including instructions and data, a unified cache is likely to provide a
reduced miss rate.
The prefetching of blocks whose access is predicted for the near future can reduce #;;.

If write through is used with write allocate, the miss rate should be lower than write through, no
write allocate. This is because the block that caused the cache miss is now in the cache and it is
likely that future writes or perhaps reads will be to the same block. But, if no write allocate is used,
then the time to complete the operation is less, reducing 7 ity -

The use of the critical word first policy reduces the miss penalty by getting the request word to the
processor as quickly as possible, not waiting for a cache line to be filled.
As discussed in Section 5.2, a victim cache can be used to reduce the miss penalty.

A wider memory bus enables the transmission of more words in parallel between main memory and
the cache, reducing the number of transfers required to load an entire cache block. This reduces the
miss penalty time.

5.6 Key Terms, Review Questions, and Problems

Key Terms

associative mapping
cache block

cache hit

cache line

cache memory

cache miss

cache set
content-addressable memory
critical word first

data cache

direct mapping

dirty bit

frame

instruction cache

line

line size

logical cache
multilevel cache

no write allocate
physical cache
replacement algorithm
set-associative mapping
split cache

tag

unified cache

use bit

victim cache

virtual cache

write allocate

write back

write through

Review Questions

5.1 What are the differences among direct mapping, associative mapping, and set-associative
mapping?

5.2 What is the difference between associative cache memory and content-addressable
memory?

5.3 For a direct-mapped cache, a main memory address is viewed as consisting of three fields.
List and define the three fields.

5.4 For an associative cache, a main memory address is viewed as consisting of two fields. List
and define the two fields.

5.5 For a set-associative cache, a main memory address is viewed as consisting of three fields.
List and define the three fields.

5.6 What is the distinction between spatial locality and temporal locality?

5.7 In general, what are the strategies for exploiting spatial locality and temporal locality?

Problems

5.1 A cache has a line size of 64 bytes. To determine which byte within a cache line an address
points to, how many bits are in the Offset field?
5.2 A set-associative cache consists of 64 lines, or slots, divided into four-line sets. Main
memory contains 4K blocks of 128 words each. Show the format of main memory addresses.
5.3 A two-way set-associative cache has lines of 16 bytes and a total size of 8 kB. The 64-MB
main memory is byte addressable. Show the format of main memory addresses.
5.4 For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the
following information, in hexadecimal format:
a. Tag, Line, and Word values for a direct-mapped cache, using the format of Figure 5.7
b. Tag and Word values for an associative cache, using the format of Figure 5.10
c. Tag, Set, and Word values for a two-way set-associative cache, using the format of
Figure 5.13

5.5 List the following values:

a. For the direct cache example of Figure 5.7 : address length, number of addressable
units, block size, number of blocks in main memory, number of lines in cache, size of tag

b. For the associative cache example of Figure 5.10 : address length, number of
addressable units, block size, number of blocks in main memory, number of lines in
cache, size of tag

c. For the two-way set-associative cache example of Figure 5.13 : address length, number
of addressable units, block size, number of blocks in main memory, number of lines in
set, number of sets, number of lines in cache, size of tag

5.6 Consider a 32-bit microprocessor that has an on-chip 16-kB four-way set-associative cache.
Assume that the cache has a line size of four 32-bit words. Draw a block diagram of this cache
showing its organization and how the different address fields are used to determine a cache
hit/miss. Where in the cache is the word from memory location ABCDE8F8 mapped?

5.7 Given the following specifications for an external cache memory: four-way set associative;
line size of two 16-bit words; able to accommodate a total of 4K 32-bit words from main
memory; used with a 16-bit processor that issues 24-bit addresses. Design the cache structure

with all pertinent information and show how it interprets the processor’s addresses.

5.8 The Intel 80486 has an on-chip, unified cache. It contains 8 kB and has a four-way
set-associative organization and a block length of four 32-bit words. The cache is organized into
128 sets. There is a single “line valid bit” and three bits, BO, B1, and B2 (the “LRU” bits), per
line. On a cache miss, the 80486 reads a 16-byte line from main memory in a bus memory read
burst. Draw a simplified diagram of the cache and show how the different fields of the address
are interpreted. 6

5.9 Consider a machine with a byte addressable main memory of 2~ bytes and block size of 8
bytes. Assume that a direct mapped cache consisting of 32 lines is used with this machine.

a. How is a 16-bit memory address divided into tag, line number, and byte number?
b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011
1100 0011 0011 0100
1101 0000 0001 1101
1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are
the addresses of the other bytes stored along with it?

d. How many total bytes of memory can be stored in the cache?

e. Why is the tag also stored in the cache?

5.10 For its on-chip cache, the Intel 80486 uses a replacement algorithm referred to as pseudo
least recently used. Associated with each of the 128 sets of four lines (labeled LO, L1, L2, L3)
are three bits BO, B1, and B2. The replacement algorithm works as follows: When a line must
be replaced, the cache will first determine whether the most recent use was from LO and L1 or
L2 and L3. Then the cache will determine which of the pair of blocks was least recently used
and mark it for replacement. Figure 5.19 illustrates the logic.
a. Specify how the bits BO, B1, and B2 are set and then describe in words how they are
used in the replacement algorithm depicted in Figure 5.19 .
b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: Consider the
case in which the most recent order of usage is LO, L2, L3, L1.
c. Demonstrate that a true LRU algorithm would require 6 bits per set.

All four lines in No Replace
N -H . .
the set valid? nonvalid line

Yes 1

B0O=0?

Yes, LOor L1
least recently used

No, L2 or L3
least recently used

B1=0? B2=10?

Yes No

Replace Replace Replace Replace
L0 L1 1.2 L3

Figure 5.19 Intel 80486 On-Chip Cache Replacement Strategy

5.11 A set-associative cache has a block size of four 16-bit words and a set size of 2. The
cache can accommodate a total of 4096 words. The main memory size that is cacheable is
64K x 32 bits. Design the cache structure and show how the processor’s addresses are

interpreted.
5.12 Consider a memory system that uses a 32-bit address to address at the byte level, plus a
cache that uses a 64-byte line size.

a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the
address format and determine the following parameters: number of addressable units,
number of blocks in main memory, number of lines in cache, size of tag.

b. Assume an associative cache. Show the address format and determine the following
parameters: number of addressable units, number of blocks in main memory, number of
lines in cache, size of tag.

c. Assume a four-way set-associative cache with a tag field in the address of 9 bits. Show
the address format and determine the following parameters: number of addressable units,
number of blocks in main memory, number of lines in set, number of sets in cache,
number of lines in cache, size of tag.

5.13 Consider a computer with the following characteristics: total of 1 MB of main memory; word
size of 1 byte; block size of 16 bytes; and cache size of 64 kB.
a. For the main memory addresses of FO010, 01234, and CABBE, give the corresponding
tag, cache line address, and word offsets for a direct-mapped cache.
b. Give any two main memory addresses with different tags that map to the same cache slot
for a direct-mapped cache.
c. For the main memory addresses of FO010 and CABBE, give the corresponding tag and
offset values for a fully-associative cache.
d. For the main memory addresses of FO010 and CABBE, give the corresponding tag,
cache set, and offset values for a two-way set-associative cache.

5.14 Describe a simple technique for implementing an LRU replacement algorithm in a four-way
set-associative cache.

5.15 Consider again Example 5.2 . How does the answer change if the main memory uses a
block transfer capability that has a first-word access time of 30 ns and an access time of 5 ns
for each word thereafter?

A computer system contains a main memory of 32K 16-bit words. It also has a 4K word cache
divided into four-line sets with 64 words per line. Assume that the cache is initially empty. The
processor fetches words from locations 0, 1, 2, . . ., 4351 in that order. It then repeats this fetch
sequence nine more times. The cache is 10 times faster than main memory. Estimate the
improvement resulting from the use of the cache. Assume an LRU policy for block replacement.
5.16 Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of 16
bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now consider a
program that accesses memory in the following sequence of addresses:

Once: 63 through 70.

Loop ten times: 15 through 32; 80 through 95.

a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, and so on are
assigned to line 1; blocks 1, 5, and so on to line 2; and so on. Compute the hit ratio.

b. Suppose the cache is organized as two-way set associative, with two sets of two lines
each. Even-numbered blocks are assigned to set 0 and odd-numbered blocks are
assigned to set 1. Compute the hit ratio for the two-way set-associative cache using the
least recently used replacement scheme.

5.17 Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines in
the cache are dirty. A word consists of 8 bytes.

a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main memory
traffic, in terms of bytes per instruction for both write-through and write-back policies.
Memory is read into cache one line at a time. However, for write back, a single word can
be written from cache to main memory.

b. Repeat part a for a 5% rate.

Repeat part a for a 7% rate.
d. What conclusion can you draw from these results?

o

5.18 The level below a cache in the memory hierarchy requires 60 ns to read or write a word of
data. If the cache line size is 8 words, how many times does the average line have to be written
(counting only lines that are written at least once) before a write-back cache is more efficient
than a write-through cache?

Chapter 6 Internal Memory

6.1 Semiconductor Main Memory
Organization

DRAM and SRAM
Types of ROM

Chip Logic

Chip Packaging
Module Organization

Interleaved Memory

6.2 Error Correction

6.3 DDR DRAM
Synchronous DRAM

DDR SDRAM
6.4 eDRAM
IBM z13 eDRAM Cache Structure
Intel Core System Cache Structure
6.5 Flash Memory
Operation
NOR and NAND Flash Memory
6.6 Newer Nonvolatile Solid-State Memory Technologies
STT-RAM
PCRAM
ReRAM

6.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Present an overview of the principle types of semiconductor main memory.

Understand the operation of a basic code that can detect and correct single-bit errors in 8-bit
words.

Summarize the properties of contemporary DDR DRAM organizations.

Understand the difference between NOR and NAND flash memory.

Present an overview of the newer nonvolatile solid-state memory technologies.

We begin this chapter with a survey of semiconductor main memory subsystems,

including ROM, DRAM, and SRAM memories. Then we look at error control
techniques used to enhance memory reliability. Following this, we look at more
advanced DRAM architectures.

6.1 Semiconductor Main Memory

In earlier computers, the most common form of random-access storage for computer main memory
employed an array of doughnut-shaped ferromagnetic loops referred to as cores. Hence, main
memory was often referred to as core, a term that persists to this day. The advent of, and advantages
of, microelectronics has long since vanquished the magnetic core memory. Today, the use of
semiconductor chips for main memory is almost universal. Key aspects of this technology are
explored in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a variety of
electronic technologies are used, all semiconductor memory cells share certain properties:

e They exhibit two stable (or semistable) states, which can be used to represent binary 1 and 0.

e They are capable of being written into (at least once), to set the state.

e They are capable of being read to sense the state.

Figure 6.1 depicts the operation of a memory cell. Most commonly, the cell has three functional
terminals capable of carrying an electrical signal. The select terminal, as the name suggests, selects a
memory cell for a read or write operation. The control terminal indicates read or write. For writing, the
other terminal provides an electrical signal that sets the state of the cell to 1 or 0. For reading, that
terminal is used for output of the cell’s state. The details of the internal organization, functioning, and
timing of the memory cell depend on the specific integrated circuit technology used and are beyond
the scope of this book, except for a brief summary. For our purposes, we will take it as given that
individual cells can be selected for reading and writing operations.

Control Control
Select Data in Select Sense
— Cell — (el
(a) Write (b) Read

Figure 6.1 Memory Cell Operation

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is, individual
words of memory are directly accessed through wired-in addressing logic.

Table 6.1 lists the major types of semiconductor memory. The most common is referred to as
random-access memory (RAM) . This is, in fact, a misuse of the term, because all of the types
listed in the table are random access. One distinguishing characteristic of memory that is designated
as RAM is that it is possible both to read data from the memory and to write new data into the memory
easily and rapidly. Both the reading and writing are accomplished through the use of electrical signals.

Table 6.1 Semiconductor Memory Types

Memory Type Category Erasure Write Volatility
Mechanism
Random-access memory Read-write Electrically, byte- | Electrically Volatile
(RAM) memory level
Read-only memory (ROM) Read-only Not possible Masks Nonvolatile
memory
Programmable ROM (PROM) Electrically
Erasable PROM (EPROM) UV light, chip-
level
Electrically Erasable PROM Read-mostly Electrically, byte-
(EEPROM) memory level
Flash memory Electrically,
block-level

The other distinguishing characteristic of traditional RAM is that it is volatile. A RAM must be provided
with a constant power supply. If the power is interrupted, then the data are lost. Thus, RAM can be
used only as temporary storage. The two traditional forms of RAM used in computers are DRAM and
SRAM. Newer forms of RAM, discussed in Section 6.5, are nonvolatile.

DYNAMIC RAM

RAM technology is divided into two technologies: dynamic and static. A dynamic RAM (DRAM) is
made with cells that store data as charge on capacitors. The presence or absence of charge in a
capacitor is interpreted as a binary 1 or 0. Because capacitors have a natural tendency to discharge,
dynamic

RAMs require periodic charge refreshing to maintain data storage. The term dynamic refers to this
tendency of the stored charge to leak away, even with power continuously applied.

Figure 6.2a is a typical DRAM structure for an individual cell that stores one bit. The address line is
activated when the bit value from this cell is to be read or written. The transistor acts as a switch that
is closed (allowing current to flow) if a voltage is applied to the address line and open (no current
flows) if no voltage is present on the address line.

de voltage

‘

Address line T, T,

Ts C, C, Tg
! Transistor ! | \ /._LJ_.

Storage L
capacitor — [

Bit line Ground !
B Ground

Bit line Bit line

Address B

line
(a) Dynamic RAM (DRAM) cell (b} Static RAM (SRAM) cell

Figure 6.2 Typical Memory Cell Structures

For the write operation, a voltage signal is applied to the bit line; a high voltage represents 1, and a
low voltage represents 0. A signal is then applied to the address line, allowing a charge to be
transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns on and the charge
stored on the capacitor is fed out onto a bit line and to a sense amplifier. The sense amplifier
compares the capacitor voltage to a reference value and determines if the cell contains a logic 1 or a
logic 0. The readout from the cell discharges the capacitor, which must be restored to complete the
operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analog device. The
capacitor can store any charge value within a range; a threshold value determines whether the charge
is interpreted as 1 or 0.

STATIC RAM

In contrast, a static RAM (SRAM) s a digital device that uses the same logic elements used in the
processor. In a SRAM, binary values are stored using traditional flip-flop logic-gate configurations (see
Chapter 12 for a description of flip-flops). A static RAM will hold its data as long as power is supplied
to it.

Figure 6.2b is a typical SRAM structure for an individual cell. Four transistors (T,,T,,T3,T,) are

cross connected in an arrangement that produces a stable logic state. In logic state 1, point C, is high
and point C, is low; in this state, T, and T, are off and T, and T are on." In logic state 0, point C, is
low and point C, is high; in this state, T, and T, are on and T, and T; are off. Both states are stable

as long as the direct current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain
data.

' The circles associated with T, and T, in Figure 6.2b indicate signal negation.

As in the DRAM, the SRAM address line is used to open or close a switch. The address line controls
two transistors (T5 and T,). When a signal is applied to this line, the two transistors are switched on,

allowing a read or write operation. For a write operation, the desired bit value is applied to line B, while
its complement is applied to line B. This forces the four transistors (T, T,,T;,T,4) into the proper

state. For a read operation, the bit value is read from line B.

SRAM VERSUS DRAM

Both static and dynamic RAMs are volatile; that is, power must be continuously supplied to the
memory to preserve the bit values. A dynamic memory cell is simpler and smaller than a static
memory cell. Thus, a DRAM is more dense (smaller cells = more cells per unit area) and less expensive

than a corresponding SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For
larger memories, the fixed cost of the refresh circuitry is more than compensated for by the smaller
variable cost of DRAM cells. Thus, DRAMs tend to be favored for large memory requirements. A final
point is that SRAMs are somewhat faster than DRAMs. Because of these relative characteristics,
SRAM is used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern of data that
cannot be changed. A ROM is nonvolatile; that is, no power source is required to maintain the bit
values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An
important application of ROMs is microprogramming, discussed in Part Four. Other potential
applications include

e Library subroutines for frequently wanted functions

e System programs

e Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program is permanently in
main memory and need never be loaded from a secondary storage device.

A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as
part of the fabrication process. This presents two problems:

e The data insertion step includes a relatively large fixed cost, whether one or thousands of copies of
a particular ROM are fabricated.

e There is no room for error. If one bit is wrong, the whole batch of ROMs must be thrown out.
When only a small number of ROMs with a particular memory content is needed, a less expensive
alternative is the programmable ROM (PROM) . Like the ROM, the PROM is nonvolatile and may
be written into only once. For the PROM, the writing process is performed electrically and may be
performed by a supplier or customer at a time later than the original chip fabrication. Special
equipment is required for the writing or “programming” process. PROMs provide flexibility and
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is useful for applications in

which read operations are far more frequent than write operations but for which nonvolatile storage is
required. There are three common forms of read-mostly memory: EPROM, EEPROM, and flash
memory.

The optically erasable programmable read-only memory (EPROM) is read and written electrically,
as with PROM. However, before a write operation, all the storage cells must be erased to the same
initial state by exposure of the packaged chip to ultraviolet radiation. Erasure is performed by shining
an intense ultraviolet light through a window that is designed into the memory chip. This erasure
process can be performed repeatedly; each erasure can take as much as 20 minutes to perform.
Thus, the EPROM can be altered multiple times and, like the ROM and PROM, holds its data virtually
indefinitely. For comparable amounts of storage, the EPROM is more expensive than PROM, but it
has the advantage of the multiple update capability.

A more attractive form of read-mostly memory is electrically erasable programmable read-only
memory (EEPROM). This is a read-mostly memory that can be written into at any time without
erasing prior contents; only the byte or bytes addressed are updated. The write operation takes
considerably longer than the read operation, on the order of several hundred microseconds per byte.
The EEPROM combines the advantage of nonvolatility with the flexibility of being updatable in place,
using ordinary bus control, address, and data lines. EEPROM is more expensive than EPROM and
also is less dense, supporting fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because of the speed with which
it can be reprogrammed). First introduced in the mid-1980s, flash memory is intermediate between
EPROM and EEPROM in both cost and functionality. Like EEPROM, flash memory uses an electrical
erasing technology. An entire flash memory can be erased in one or a few seconds, which is much
faster than EPROM. In addition, it is possible to erase just blocks of memory rather than an entire
chip. Flash memory gets its name because the microchip is organized so that a section of memory
cells are erased in a single action or “flash.” However, flash memory does not provide byte-level
erasure. Like EPROM, flash memory uses only one transistor per bit, and so achieves the high density
(compared with EEPROM) of EPROM.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in packaged chips (Figure
1.10). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among speed, density, and cost.
These trade-offs also exist when we consider the organization of memory cells and functional logic on
a chip. For semiconductor memories, one of the key design issues is the number of bits of data that
may be read/written at a time. At one extreme is an organization in which the physical arrangement of
cells in the array is the same as the logical arrangement (as perceived by the processor) of words in
memory. The array is organized into W words of B bits each. For example, a 16-Mbit chip could be
organized as 1M 16-bit words. At the other extreme is the so-called 1-bit-per-chip organization, in
which data are read/written one bit at a time. We will illustrate memory chip organization with a DRAM;
ROM organization is similar, though simpler.

Figure 6.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits are read or written at a
time. Logically, the memory array is organized as four square arrays of 2048 by 2048 elements.
Various physical arrangements are possible. In any case, the elements of the array are connected by
both horizontal (row) and vertical (column) lines. Each horizontal line connects to the Select terminal
of each cell in its row; each vertical line connects to the Data-In/Sense terminal of each cell in its
column.

RAS CAS WE OE

L4

Timing and control

Y

Refresh
counter [MUX

Row =l Memor
y array
A0 address > P de- | e 5048 % 2048 % 4)
Al buffer coder o
L]
. yvyy A)
[] [] [] [] 1
YyYy Y Data input
A10 Column - buffer € _ E%
address Refresh circuitry D3
buffer 1 Data output L D4
buffer
r Eo]umn decﬂder

Figure 6.3 Typical 16-Mbit DRAM (4M x 4)

Address lines supply the address of the word to be selected. A total of log, W lines are needed. In our

example, 11 address lines are needed to select one of 2048 rows. These 11 lines are fed into a row
decoder, which has 11 lines of input and 2048 lines for output. The logic of the decoder activates a
single one of the 2048 outputs depending on the bit pattern on the 11 input lines (2 _2048)

An additional 11 address lines select one of 2048 columns of 4 bits per column. Four data lines are
used for the input and output of 4 bits to and from a data buffer. On input (write), the bit driver of each
bit line is activated for a 1 or 0 according to the value of the corresponding data line. On output (read),
the value of each bit line is passed through a sense amplifier and presented to the data lines. The row
line selects which row of cells is used for reading or writing.

Because only 4 bits are read/written to this DRAM, there must be multiple DRAMs connected to the
memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0O—A10), half the number you would expect for a
2048 x 2048 array. This is done to save on the number of pins. The 22 required address lines are

passed through select logic external to the chip and multiplexed onto the 11 address lines. First, 11
address signals are passed to the chip to define the row address of the array, and then the other 11
address signals are presented for the column address. These signals are accompanied by row
address select (RAS) and column address select (CAS) signals to provide timing to the chip.

The write enable (WE) and output enable (OE) pins determine whether a write or read operation is

performed. Two other pins, not shown in Figure 6.3, are ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a quadrupling of memory
size with each new generation of memory chips. One more pin devoted to addressing doubles the
number of rows and columns, and so the size of the chip memory grows by a factor of 4.

Figure 6.3 also indicates the inclusion of refresh circuitry. All DRAMs require a refresh operation. A
simple technique for refreshing is, in effect, to disable the DRAM chip while all data cells are
refreshed. The refresh counter steps through all of the row values. For each row, the output lines from
the refresh counter are supplied to the row decoder and the RAS line is activated. The data are read
out and written back into the same location. This causes each cell in the row to be refreshed.

Chip Packaging

As was mentioned in Chapter 2 , an An integrated circuit is mounted on a package that contains pins
for connection to the outside world.

Figure 6.4a shows an example EPROM package, which is an 8-Mbit chip organized as 1M x 8. In this

case, the organization is treated as a one-word-per-chip package. The package includes 32 pins,
which is one of the standard chip package sizes. The pins support the following signal lines:

e The address of the word being accessed. For 1M words, a total of 20(220: IM) pins are needed

(A0O-A19).
e The data to be read out, consisting of 8 lines (D0-D7).
e The power supply to the chip (V) .

e A ground pin (V) -

e A chip enable (CE) pin. Because there may be more than one memory chip, each of which is
connected to the same address bus, the CE pin is used to indicate whether or not the address is
valid for this chip. The CE pin is activated by logic connected to the higher-order bits of the address
bus (i.e., address bits above A19). The use of this signal is illustrated presently.

e A program voltage (Vpp) that is supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 6.4b , for a 16-Mbit chip organized as 4M x 4.

There are several differences from a ROM chip. Because a RAM can be updated, the data pins are
input/output. The write enable (WE) and output enable (OE) pins indicate whether this is a write or
read operation. Because the DRAM is accessed by row and column, and the addlress1 '18 muzltlplexed
only 11 address pins are needed to specify the 4M row/column combinations (2 x2 =2"=4M).

The functions of the row address select (RAS) and column address select (CAS) pins were discussed
previously. Finally, the no connect (NC) pin is provided so that there are an even number of pins.

Al19 —{]
Al —>{]
Al5 —
Al2 —{]
AT —>{]
A6 —]
A5 —{]
A4 —{]
A3 —{]
A2 —]
Al —»
AD —
D) ~—]
D] -—]
D2 -—]
Vgg —]

IM X 8

L L

4
5
6
7
8
9

10
11

12

0.6"

13
14
15

16 Top View

32
31
30
29
28
27
26
25

32-Pin Dip 24

23
22
21
20
19
18
17

—— Vece
e— AlB
e A17
e— Al4
e— A13
— A8
J=— A9
Je— All
J<— Vpp
J=— A10
J<«— CE
> D7
— D6
> D5
—— D4
+—— D3

(a) 8-Mbit EPROM

RAS —{]

Vee —]
DO]
D] =[]
WE —{]

NC —{]
A10 —{]
AD —{]
Al —{]
A2 —]
A3 —
Ve —]

fd b -

WO 00~ O W 4

10

4M X 4

24-Pin Dip

0.6"

24 [—— Vss

23 [l D3
22 [l D2
21 [l+— CAS
20 [l— OE
19 [J«=— A9
18 [le— A8
17 [le— A7
16 [l A6
15 [l A5
14 [le— A4

Figure 6.4 Typical Memory Package Pins and Signals

Module Organization

(b) 16-Mbit DRAM

If a RAM chip contains only one bit per word, then clearly we will need at least a number of chips
equal to the number of bits per word. As an example, Figure 6.5 shows how a memory module
consisting of 256K 8-bit words could be organized. For 256K words, an 18-bit address is needed and
is supplied to the module from some external source (e.g., the address lines of a bus to which the
module is attached). The address is presented to 8256K x 1-bit chips, each of which provides the

input/output of one bit.

512 words by
512 bits
Chip #1

Memory address
register (MAR) | o

Decode 1 of
512

dlem J| Decode 1 of
. 512 bit-sense Memory buffer

register (MBR)
e

=N S = LV S Y

512 words by
512 bits
Chip #8

Decode 1 of
512

Decode 1 of
512 bit-sense

Figure 6.5 256-KByte Memory Organization

This organization works as long as the size of memory in words equals the number of bits per chip. In
the case in which larger memory is required, an array of chips is needed. Figure 6.6 shows the
possible organization of a memory consisting of 1M word by 8 bits per word. In this case, we have four
columns of chips, each column containing 256K words arranged as in Figure 6.5 . For 1M word, 20
address lines are needed. The 18 least significant bits are routed to all 32 modules. The high-order 2
bits are input to a group select logic module that sends a chip enable signal to one of the four columns
of modules.

Memory
address
register
(MAR)

£

L Memory

buffer
register
E (MBR)

1

All chips 512 words by 2
512 bits, 2-terminal cells

B
> >

=1

Bit 8

Figure 6.6 1-MB Memory Organization

Interleaved Memory

Main memory is composed of a collection of DRAM memory chips. A number of chips can be grouped
together to form a memory bank. It is possible to organize the memory banks in a way known as
interleaved memory. Each bank is independently able to service a memory read or write request, so
that a system with K banks can service K requests simultaneously, increasing memory read or write
rates by a factor of K. If consecutive words of memory are stored in different banks, then the transfer
of a block of memory is speeded up. Appendix C explores the topic of interleaved memory.

spractive o
By 'E"".?

Aleksandr Lukin/123RF

Interleaved Memory Simulator

6.2 Error Correction

A semiconductor memory system is subject to errors. These can be categorized as hard failures and
soft errors. A hard failure is a permanent physical defect so that the memory cell or cells affected
cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1. Hard
errors can be caused by harsh environmental abuse, manufacturing defects, and wear. A soft error is
a random, nondestructive event that alters the contents of one or more memory cells without
damaging the memory. Soft errors can be caused by power supply problems or alpha particles. These
particles result from radioactive decay and are distressingly common because radioactive nuclei are
found in small quantities in nearly all materials. Both hard and soft errors are clearly undesirable, and
most modern main memory systems include logic for both detecting and correcting errors.

Figure 6.7 illustrates in general terms how the process is carried out. When data are to be written into
memory, a calculation, depicted as a function f, is performed on the data to produce a code. Both the
code and the data are stored. Thus, if an M-bit word of data is to be stored and the code is of length K
bits, then the actual size of the stored word is M + K bits.

Error signal

=
Data out M
< - Corrector |-
Data in f:"f {W K
" - % o B AF"‘
K Memory K Compare
f l\.\ - \\ -

Figure 6.7 Error-Correcting Code Function

When the previously stored word is read out, the code is used to detect and possibly correct errors. A
new set of K code bits is generated from the M data bits and compared with the fetched code bits. The
comparison yields one of three results:

e No errors are detected. The fetched data bits are sent out.
e An error is detected, and it is possible to correct the error. The data bits plus error correction bits
are fed into a corrector, which produces a corrected set of M bits to be sent out.
e An error is detected, but it is not possible to correct it. This condition is reported.
Codes that operate in this fashion are referred to as error-correcting codes . A code is
characterized by the number of bit errors in a word that it can correct and detect.

The simplest of the error-correcting codes is the Hamming code devised by Richard Hamming at Bell
Laboratories. Figure 6.8 uses Venn diagrams to illustrate the use of this code on 4-bit words (M =4).

With three intersecting circles, there are seven compartments. We assign the 4 data bits to the inner
compartments (Figure 6.8a). The remaining compartments are filled with what are called parity bits.
Each parity bit is chosen so that the total number of 1s in its circle is even (Figure 6.8b). Thus,
because circle A includes three data 1s, the parity bit in that circle is set to 1. Now, if an error changes
one of the data bits (Figure 6.8c), it is easily found. By checking the parity bits, discrepancies are
found in circle A and circle C but not in circle B. Only one of the seven compartments is in A and C but
not B (Figure 6.8d). The error can therefore be corrected by changing that bit.

(a) A B (b)

BAVANGA

(c)

o

(NN

Figure 6.8 Hamming Error-Correcting Code

To clarify the concepts involved, we will develop a code that can detect and correct single-bit errors in
8-bit words.

To start, let us determine how long the code must be. Referring to Figure 6.7, the comparison logic
receives as input two K-bit values. A bit-by-bit comparison is done by taking the exclusive-OR of the
two inputs. The result is called the syndrome word. Thus, each bit of the syndrome is 0 or 1
according to if there is or is not a match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and 2K —1. The value 0
indicates that no error was detected, leaving 2K — 1 values to indicate, if there is an error, which bit

was in error. Now, because an error could occur on any of the M data bits or K check bits, we must
have

K
2 —-1>M+K

This inequality gives the number of bits needed to correct a single bit error in a word containing M

data bits. For example, for a word of 8 data bits (M =8), we have

o K=3:2_1<8+3
e K=42"_1>8+4

Thus, eight data bits require four check bits. The first three columns of Table 6.2 lists the number of
check bits required for various data word lengths.

Table 6.2 Increase in Word Length with Error Correction

Single-Error Correction Single-Error Correction/ Double-Error Detection
Data Bits Check Bits % Increase Check Bits % Increase

8 4 50.0 5 62.5
16 5 31.25 6 37.5

32 6 18.75 7 21.875
64 7 10.94 8 12.5
128 8 6.25 9 7.03
256 9 3.52 10 3.91

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data word with the following
characteristics:

¢ |f the syndrome contains all 0s, no error has been detected.
¢ If the syndrome contains one and only one bit set to 1, then an error has occurred in one of the 4
check bits. No correction is needed.
¢ If the syndrome contains more than one bit set to 1, then the numerical value of the syndrome
indicates the position of the data bit in error. This data bit is inverted for correction.
To achieve these characteristics, the data and check bits are arranged into a 12-bit word as depicted
in Figure 6.9. The bit positions are numbered from 1 to 12. Those bit positions whose position
numbers are powers of 2 are designated as check bits. The check bits are calculated as follows,
where the symbol @ designates the exclusive-OR operation:

Cl=Dle®D2e&® D4 & D5 & D7
C2 =Dl @& D3 @ D4 @ D6 @ D7
C4 = D2 & D3 & D4 & D8
C8 = ® D5 & D6 & D7 @ D8

Each check bit operates on every data bit whose position number contains a 1 in the same bit position
as the position number of that check bit. Thus, data bit positions 3, 5, 7, 9, and 11 (D1, D2, D4, D5,
D7) all contain a 1 in the least significant bit of their position number as does C1; bit positions 3, 6, 7,
10, and 11 all contain a 1 in the second bit position, as does C2; and so on. Looked at another way,
bit position n is checked by those bits C such that ' =n. For example, position 7 is checked by bits

l i

in position4,2,and1;and 7=4+2+1.

Bit

2
position 12 1 10 9 8 7 6 5 4 3 2 I
Position 1100 | 1011 | 1010 | 1001 | 1000 | 0111 | 0110 | 0101 | 0100 | 0011 | 0010 | 0OOI
number
Data bit DS D7 D6 D5 D4 D3 D2 DI
Check bit C8 C4 & Cl

Figure 6.9 Layout of Data Bits and Check Bits

Let us verify that this scheme works with an example. Assume that the 8-bit input word is 00111001,
with data bit D1 in the rightmost position. The calculations are as follows:

Cl=101la160=1
C2=190016160=1
C4=0000p100=1
C8=19100600=20

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the check bits are
recalculated, we have

Cl =
C2
C4
C8 =

Il
O =

1
e N
DO DDD
—_— = O
® D DD
O = = =
S DDD
SO = =
1 e e
o O OO

When the new check bits are compared with the old check bits, the syndrome word is formed:

C8 C4 C2 Cl1
0O 1 1 1
@ 0 0 0 1
01 1 O

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.

Figure 6.10 illustrates the preceding calculation. The data and check bits are positioned properly in
the 12-bit word. Four of the data bits have a value 1 (shaded in the table), and their bit position values
are XORed to produce the Hamming code 0111, which forms the four check digits. The entire block
that is stored is 001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is
changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of 0001. An XOR of
the Hamming code and all of the bit position values for nonzero data bits results in 0110. The nonzero
result detects an error and indicates that the error is in bit position 6.

Bit

position 12 11 10 9 8 7 6 5 4 3 2 |
Position 1100 | 1011 | 1010 | 1001 | 1000 | o111 | o110 | 0101 | 0100 | 0O11 | 0010 | 0OOI
number

Data bit DS D7 D6 D5 D4 D3 D2 DI

Check bit C8 C4 C2 Cl
Word 0 0 1] 0] 0 0 1 | 1 |
stored as

Word

fetched as 0 0 1 1 0 1 1 0 1 |] |
Position 1100 | 1011 | 1010 | 1001 | 1000 | O111 | O110 | O101 | O100 | 0011 | QO10 | 0001
number

Check bit 0 0 0 [

Figure 6.10 Check Bit Calculation

The code just described is known as a single-error-correcting (SEC) code. More commonly,
semiconductor memory is equipped with a single-error-correcting, double-error-detecting (SEC-
DED) code. As Table 6.2 shows, such codes require one additional bit compared with SEC codes.

Figure 6.11 illustrates how such a code works, again with a 4-bit data word. The sequence shows that
if two errors occur (Figure 6.11c), the checking procedure goes astray (d) and worsens the problem
by creating a third error (e). To overcome the problem, an eighth bit is added that is set so that the
total number of 1s in the diagram is even. The extra parity bit catches the error (f).

(a) (b) (c)

BAVANGAVANGS

(d) (e) (f)

Q (o) Q
B OVANAAVANGTS

1 I 1

Figure 6.11 Hamming SEC-DEC Code

An error-correcting code enhances the reliability of the memory at the cost of added complexity. With
a 1-bit-per-chip organization, an SEC-DED code is generally considered adequate. For example, the
IBM 30xx implementations used an 8-bit SEC-DED code for each 64 bits of data in main memory.
Thus, the size of main memory is actually about 12% larger than is apparent to the user. The VAX
computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead. Contemporary

DRAM systems may have anywhere from 7% to 20% overhead [SHARO3].

6.3 DDR DRAM

As discussed in Chapter 1, One of the most critical system bottlenecks when using high-performance
processors is the interface to internal main memory. This interface is the most important pathway in
the entire computer system. The basic building block of main memory remains the DRAM chip, as it
has for decades; until recently, there had been no significant changes in DRAM architecture since the
early 1970s. The traditional DRAM chip is constrained both by its internal architecture and by its
interface to the processor’'s memory bus.

We have seen that one attack on the performance problem of DRAM main memory has been to insert
one or more levels of high-speed SRAM cache between the DRAM main memory and the processor.
But SRAM is much costlier than DRAM, and expanding cache size beyond a certain point yields
diminishing returns.

In recent years, a number of enhancements to the basic DRAM architecture have been explored. The
schemes that currently dominate the market are SDRAM and DDR-DRAM. We examine each of these
in turn.

Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM (SDRAM). Unlike the
traditional DRAM, which is asynchronous, the SDRAM exchanges data with the processor
synchronized to an external clock signal and running at the full speed of the processor/memory bus
without imposing wait states.

In a typical DRAM, the processor presents addresses and control levels to the memory, indicating that
a set of data at a particular location in memory should be either read from or written into the DRAM.
After a delay, the access time, the DRAM either writes or reads the data. During the access-time
delay, the DRAM performs various internal functions, such as activating the high capacitance of the
row and column lines, sensing the data, and routing the data out through the output buffers. The
processor must simply wait through this delay, slowing system performance.

With synchronous access, the DRAM moves data in and out under control of the system clock. The
processor or other master issues the instruction and address information, which is latched by the
DRAM. The DRAM then responds after a set number of clock cycles. Meanwhile, the master can
safely do other tasks while the SDRAM is processing the request.

Figure 6.12 shows the internal logic of a typical 256-Mb SDRAM typical of SDRAM organization, and
Table 6.3 defines the various pin assignments. The SDRAM employs a burst mode to eliminate the
address setup time and row and column line precharge time after the first access. In burst mode, a
series of data bits can be clocked out rapidly after the first bit has been accessed. This mode is useful
when all the bits to be accessed are in sequence and in the same row of the array as the initial
access. In addition, the SDRAM has a multiple-bank internal architecture that improves opportunities
for on-chip parallelism.

Table 6.3 SDRAM Pin Assignments

A0 to A13 Address inputs

BAO, BA1 Bank address lines

CLK Clock input
CKE Clock enable
CS _
Chip select
RAS
Row address strobe
CAS
Column address strobe
WE _
Write enable
DQO to DQ7 Data input/output
DQM Data mask
CLE— ¥ DOML
LKEF,—P- Command Data in DOMH
> decoder & 3 buffer | 16
RAS= clock Y fr ' T3
CAS—~ Refresh
g Mode
WE—>-] LA g controller ~<—DQO-15
[g: 5 + Al
Self- Data out
Al0 refresh T buffer |16
AL2 = controller
All —= y
::: Refresh
|
AT counter E |
A6 —= Y = 8492+ N lemory cell
3 e 8392 ry
A5 —> E B — .§ 81923 array
Ad—- Y % 13 S 819291 (4 Mb x 16)
A3 —> Row -] Row > = DRAM
A2-L | address »| & [—>-| address & |l BANKO | H]-<
Al —= 13]amh 13 buffer it S i
AD—= v A CNSCAMPS | g
BAD—>
BAl—>) >
I Column Bank control
address latch logic
|
Burst counter
|
Column
address buffer

Figure 6.12 256-Mb Synchronous Dynamic RAM (SDRAM)

The mode register and associated control logic is another key feature differentiating SDRAMs from
conventional DRAMs. It provides a mechanism to customize the SDRAM to suit specific system

needs. The mode register specifies the burst length, which is the number of separate units of data
synchronously fed onto the bus. The register also allows the programmer to adjust the latency
between receipt of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data sequentially, such as for
applications like word processing, spreadsheets, and multimedia.

Figure 6.13 shows an example of SDRAM operation, using a timing diagram. A timing diagram
shows the signal level on a line as a function of time. By convention, the binary 1 signal level is
depicted as a higher level than that of binary 0. Usually, binary O is the default value. That is, if no data
or other signal is being transmitted, then the level on a line is that which represents binary 0. A signal
transition from 0 to 1 is frequently referred to as the signal’s leading edge; a transition from 1 to O is
referred to as a trailing edge. Such transitions are not instantaneous, but this transition time is usually
small compared with the duration of a signal level. For clarity, the transition is usually depicted as an
angled line that exaggerates the relative amount of time that the transition takes. Signals are
sometimes represented in groups, shown as shaded areas in Figure 6.13. For example, if data are
transferred a byte at a time, then eight lines are required. Generally, it is not important to know the
exact value being transferred on such a group, but rather whether signals are present or not.

0
CLK —I
: : | : : | : : |
COMMAND -(RE!&DA}—{ NOP }—(NOP)—(NOP }—{ NOP }—(NOP)—(NOP }—{ NOP }—(NOP)—
| | | | | |
| | | | | |

| |\ I
; DOUT Ag{DOUT A, YDOUT A, {DOUT A3
l DOUT A)DOUT A1) DOUT Az DOUT Ag)-

T1 T2 T3 T4 T5 T6 T7 T8

DQs

Figure 6.13 SDRAM Read Timing (burstlength =4, CASlatency = 2)

For the SDRAM operation in Figure 6.13, the burst length is 4 and the latency is 2. The burst read
command is initiated by having CS and CAS low while holding RAS and WE high at the rising edge of

the clock. The address inputs determine the starting column address for the burst, and the mode
register sets the type of burst (sequential or interleave) and the burst length (1, 2, 4, 8, full page). The
delay from the start of the command to when the data from the first cell appears on the outputs is
equal to the value of the CAS latency that is set in the mode register.

DDR SDRAM

Although SDRAM is a significant improvement on asynchronous RAM, it still has shortcomings that
unnecessarily limit the 1/0 data rate that can be achieved. To address these shortcomings a newer
version of SDRAM, referred to as double-data-rate DRAM (DDR DRAM) provides several features
that dramatically increase the data rate. DDR DRAM was developed by the JEDEC Solid State
Technology Association, the Electronic Industries Alliance’s semiconductor-engineering-
standardization body. Numerous companies make DDR chips, which are widely used in desktop
computers and servers.

DDR achieves higher data rates in three ways. First, the data transfer is synchronized to both the
rising and falling edge of the clock, rather than just the rising edge. This doubles the data rate; hence

the term double data rate. Second, DDR uses higher clock rate on the bus to increase the transfer
rate. Third, a buffering scheme is used, as explained subsequently.

JEDEC has thus far defined four generations of the DDR technology (Table 6.4). The initial DDR
version makes use of a 2-bit prefetch buffer. The prefetch buffer is a memory cache located on the
SDRAM chip. It enables the SDRAM chip to preposition bits to be placed on the data bus as rapidly as
possible. The DDR 1I/O bus uses the same clock rate as the memory chip, but because it can handle
two bits per cycle, it achieves a data rate that is double the clock rate. The 2-bit prefetch buffer
enables the SDRAM chip to keep up with the 1/0O bus.

Table 6.4 DDR Characteristics

DDR1 DDR2 DDR3 DDR4
Prefetch buffer (bits) 2 4 8 8
Voltage level (V) 2.5 1.8 1.5 1.2
Front side bus data rates (Mbps) 200—400 400—1066 800—2133 2133—4266

To understand the operation of the prefetch buffer, we need to look at it from the point of view of a
word transfer. The prefetch buffer size determines how many words of data are fetched (across
multiple SDRAM chips) every time a column command is performed with DDR memories. Because the
core of the DRAM is much slower than the interface, the difference is bridged by accessing
information in parallel and then serializing it out the interface through a multiplexor (MUX). Thus, DDR
prefetches two words, which means that every time a read or a write operation is performed, it is
performed on two words of data, and bursts out of, or into, the SDRAM over one clock cycle on both
clock edges for a total of two consecutive operations. As a result, the DDR 1/O interface is twice as
fast as the SDRAM core.

Although each new generation of SDRAM results is much greater capacity, the core speed of the
SDRAM has not changed significantly from generation to generation. To achieve greater data rates
than those afforded by the rather modest increases in SDRAM clock rate, JEDEC increased the buffer
size. For DDR2, a 4-bit buffer is used, allowing for words to be transferred in parallel, increasing the
effective data rate by a factor of 4. For DDR3, an 8-bit buffer is used and a factor of 8 speedup is
achieved (Figure 6.14).

i - ~, i
VIN Memory array (100-150 MHz) |- > [I/O (100-150 MHz) J SDRAM |
N o
... 100-150Mbps E
1 -) 1
: Memory array (100-200 MHz) |<—>- :
[N 1 |Mux}<>{ o an-200 My | DDR
. Memory array (100-200 MHz) |<—> |
SR 200-400Mbps ______________ :
: Memory array (100-266 MHz) |<—- :
1 - = 1
: Memory array (100-266 MHz) |<=—> :
AN J MUX [1/0 (200533 MH2)] DDR2 |
I Memory array (100-266 MHz) |<—= '
: r 4 400-1066 Mbps :
i Memory array (100-266 MHz) |[<«——> X
P e -
T Memory array (100-266 MHz) |<—> :
Memory array (100-266 MHz) |<—> X
8N TIMUX [/O (400-1066 MHz}] DDR3 |
Memory array (100-266 MHz) |[<—> !
4 . 800-2133 Mbps .
Memory array (100-266 MHz) [<—> '

Memory array (100-266 MHz) |<—>] T
Memory array (100-266 MHz) <—

8N i MUX

Memory array (100-266 MHz) |-
Memory array (100-266 MHz) |<—>

A

YY

DDR4

MUX H[1/O (667-1600 MHz)]
1333-3200 Mbps

Memory array (100-266 MHz) |<—>
Memory array (100-266 MHz) |[<—
8N MUX
Memory array (100-266 MHz) |-=

Memory array (100-266 MHz) |<—>- |

Yy

Figure 6.14 DDR Generations

The downside to the prefetch is that it effectively determines the minimum burst length for the
SDRAMSs. For example, it is very difficult to have an efficient burst length of four words with DDR3’s
prefetch of eight. Accordingly, the JEDEC designers chose not to increase the buffer size to 16 bits for
DDR4, but rather to introduce the concept of a bank group [ALLA13]. Bank groups are separate
entities such that they allow a column cycle to complete within a bank group, but that column cycle
does not impact what is happening in another bank group. Thus, two prefetches of eight can be
operating in parallel in the two bank groups. This arrangement keeps the prefetch buffer size the same
as for DDR3, while increasing performance as if the prefetch is larger.

Figure 6.14 shows a configuration with two bank groups. With DDR4, up to 4 bank groups can be
used.

6.4 Edram

An increasingly widespread technology used in the memory hierarchy is the embedded DRAM
(eDRAM). eDRAM is a DRAM integrated on the same chip or MCM of an application-specific
integrated circuit (ASIC) or microprocessor. For a number of metrics, eDRAM is intermediate between
on-chip SRAM and off-chip DRAM:

e For the same surface area, eDRAM provides a larger size memory than SRAM but smaller than
off-chip DRAM.
e eDRAM’s cost-per-bit is higher when compared to equivalent stand-alone DRAM chips used as
external memory, but it has a lower cost-per-bit than SRAM.
e Access time to eDRAM is greater than SRAM but, because of its proximity and the ability to use
wider busses, eDRAM provides faster access than DRAM.
A variety of technologies are used in fabricating eDRAMs, but fundamentally they use the same
designs and architectures as DRAM.

[JACOO08] lists the following as trends that have led to increasing use of eDRAM:

e For larger systems and high-end applications, the spatial locality curves have become flatter and
wider, meaning that the likely area of memory for upcoming references is larger. This makes
DRAM-based caches attractive due to their bit density.

e On-chip or on-MCM eDRAM matches the performance of off-chip SRAM, so that greater cache
size can be achieved by replacing some on-chip area that would otherwise be dedicated to SRAM
with DRAM, avoiding or reducing the need for off-chip SRAM or DRAM.

e eDRAM generally dissipates less power than SRAM.

IBM z13 eDRAM Cache Structure

The IBM z13 system uses eDRAM at two levels of the cache hierarchy (see Figure 4.10). Each
processor unit (PU) chip, with up to eight cores, has a shared 64-MB eDRAM L3 cache. This is an
example of an eDRAM integrated on the same chip as the microprocessors. Three PU chips share a
480-MB eDRAM L4 cache (see Figure 5.18). The L4 cache is on a separate storage control (SC)
chip. This is an example of an eDRAM integrated on the same chip with other memory-related logic.
The L4 cache on each SC chip has 480 MB of noninclusive cache and a 224-MB Non-data Inclusive
Coherent (NIC) directory. The NIC directory consists of tags that point to L3-owned lines that have not
been included in L4 cache.

Figure 6.15 shows the physical layout of an SC chip. About 60% if the surface area of the SC chip is
devoted to the L4 cache and the NIC directory. The remainder of the chip includes L4 cache controller
logic and 1/O logic.

0 LA Cache
i Contraller:

L IOMBA o IOMBE

e SE_MB nﬂnmcluﬂwz e 5 nﬁ \-IB lmmncluﬁn'
cache. [llrecinry} o WPH‘E‘?"}FH S

Figure 6.15 IBM z13 Storage Control (SC) Chip Layout

Intel Core System Cache Structure

Intel has shipped a number of products with an eDRAM positioned as an L4 cache. Figure 6.16a
shows this arrangement. The eDRAM is accessed by a store of L4 tags contained within the L3 cache
of each core, and as a result acts more as a victim cache to the L3 rather than as a DRAM
implementation. Any instructions or hardware that requires data from the eDRAM has to go through
the L3 and do the L4 tag conversion, limiting its potential.

In more recent products, Intel removed the eDRAM from its position as an L4 cache, as shown in
Figure 6.16b. This removed an undesired dependency between the capacity of the eDRAM and the
number of cores. In this new arrangement, the eDRAM is effectively no longer a true L4 cache but
rather a memory side cache. This has a number of benefits such that each and every memory access
that goes through the memory controller gets looked up in the eDRAM. On a satisfied hit, the value is
obtained from there. On a miss, a value gets allocated and stored in the eDRAM. Thus, rather than
acting as a pseudo-L4 cache, the eDRAM becomes a DRAM buffer and automatically transparent to
any software (CPU or IGP) that requires DRAM access. As a result, other hardware that
communicates through the system agent (such as PCle devices or data from the chipset) and requires
information in DRAM does not need to navigate through the L3 cache on the processor.

S S Graphics Processor

L1 LID||LII|| e e e |[|LID||L1I

------- EECEEEE. . . - SETEEEEtE . Graphics
caches
L2 .2 L2
& Ea

------------ ¥------------TEEENEEEE T

L3 L3 <
"""""""""" L4Tags = le—>»{ eDRAM

] I _______________

Dtl‘mr -‘E»I System agent [« » MC |«» DDR
devices

(a) Original use of eDRAM

Core Lore Graphics Processor
L1 LID||L1I|[e e e |[|[LID||LILI
"""" '"I"";""""""$"""" Graphics
12 1.2 L2 caches
& L .
------------ 22l L X R RO T
L3 L3 B

Other Cache tags
devices ‘E»I System agent [« DR (€ MC [« DDR

control

¢

eDRAM

(b) More recent use of eDRAM
MC = memory controller

Figure 6.16 Use of eDRAM in Intel Core Systems

6.5 Flash Memory

Another form of semiconductor memory is flash memory. Flash memory is used both for internal
memory and external memory applications. Here, we provide a technical overview and look at its use
for internal memory.

First introduced in the mid-1980s, flash memory is intermediate between EPROM and EEPROM in
both cost and functionality. Like EEPROM, flash memory uses an electrical erasing technology. An
entire flash memory can be erased in one or a few seconds, which is much faster than EPROM. In
addition, it is possible to erase just blocks of memory, rather than an entire chip. Flash memory gets
its name because the microchip is organized so that a section of memory cells are erased in a single
action or “flash.” However, flash memory does not provide byte-level erasure. Like EPROM, flash
memory uses only one transistor per bit, and so achieves the high density (compared with EEPROM)
of EPROM.

Operation

Figure 6.17 illustrates the basic operation of a flash memory. For comparison, Figure 6.17a depicts
the operation of a transistor. Transistors exploit the properties of semiconductors so that a small
voltage applied to the gate can be used to control the flow of a large current between the source and
the drain.

Drain

(b) Flash memory cell in one state (¢) Flash memory cell in zero state

Figure 6.17 Flash Memory Operation

In a flash memory cell, a second gate—called a floating gate, because it is insulated by a thin oxide
layer—is added to the transistor. Initially, the floating gate does not interfere with the operation of the
transistor (Figure 6.17b). In this state, the cell is deemed to represent binary 1. Applying a large
voltage across the oxide layer causes electrons to tunnel through it and become trapped on the
floating gate, where they remain even if the power is disconnected (Figure 6.17c). In this state, the
cell is deemed to represent binary 0. The state of the cell can be read by using external circuitry to test
whether the transistor is working or not. Applying a large voltage in the opposite direction removes the
electrons from the floating gate, returning to a state of binary 1.

An important characteristic of flash memory is that it is persistent memory, which means that it retains
data when there is no power applied to the memory. Thus, it is useful for secondary (external) storage,
and as an alternative to random access memory in computers.

NOR and NAND Flash Memory

There are two distinctive types of flash memory, designated as NOR and NAND (Figure 6.18). In
NOR flash memory, the basic unit of access is a bit, referred to as a memory cell. Cells in NOR flash
are connected in parallel to the bit lines so that each cell can be read/write/erased individually. If any
memory cell of the device is turned on by the corresponding word line, the bit line goes low. This is
similar in function to a NOR logic gate.?

2 See Chapter 12 for a discussion of NOR and NAND gates.

Bit line

Word Word Word Word Word Word

line line 1 line 2 line 3 line 4 line 5

_l__ Memory _I__ _I__
- cell - -
(a) NOR flash structure
Bit line
Ground Bit-line
select Word Word Word Word Word Word Word Word select

transistor line 0 line 1 line 2 line 3 line 4 line 5 line 6 line 7 transistor

| | padess | | I | | |

I
! | |
Memory

—_ cell

(by NAND flash structure

Figure 6.18 Flash Memory Structures

NAND flash memory is organized in transistor arrays with 16 or 32 transistors in series. The bit line
goes low only if all the transistors in the corresponding word lines are turned on. This is similar in
function to a NAND logic gate.

Although the specific quantitative values of various characteristics of NOR and NAND are changing
year by year, the relative differences between the two types has remained stable. These differences
are usefully illustrated by the Kiviat graphs® shown in Figure 6.19.

3 A Kiviat graph provides a pictorial means of comparing systems along multiple variables [MORR74]. The variables
are laid out at as lines of equal angular intervals within a circle, each line going from the center of the circle to the
circumference. A given system is defined by one point on each line; the closer to the circumference, the better the
value. The points are connected to yield a shape that is characteristic of that system. The more area enclosed in the
shape, the “better” is the system.

Cost per bit Cost per bit

File storage
use

Lyw File storage

Stand b}’[mw use

power

Standby, ..

Easy

Low Easy Low : Easy
Active Code Active : _ Code
power execution power ' execution

High ligh
“High . High ' .
Read speed Capacity Read speed Capacity

High | High
Write speed Write speed

(a) NOR (b) NAND
Figure 6.19 Kiviat Graphs for Flash Memory

NOR flash memory provides high-speed random access. It can read and write data to specific
locations, and can reference and retrieve a single byte. NAND reads and writes in small blocks. NAND
provides higher bit density than NOR and greater write speed. NAND flash does not provide a
random-access external address bus, so the data must be read on a blockwise basis (also known as
page access), where each block holds hundreds to thousands of bits.

For internal memory in embedded systems, NOR flash memory has traditionally been preferred.
NAND memory has made some inroads, but NOR remains the dominant technology for internal
memory. It is ideally suited for microcontrollers where the amount of program code is relatively small
and a certain amount of application data does not vary. For example, the flash memory in Figure 1.16
is NOR memory.

NAND memory is better suited for external memory, such as USB flash drives, memory cards (in
digital cameras, MP3 players, etc.), and in what are known as solid-state disks (SSDs). We discuss
SSDs in Chapter 7.

6.6 Newer Nonvolatile Solid-State Memory Technologies
The traditional memory hierarchy has consisted of three levels (Figure 5.20):

e Static RAM (SRAM): SRAM provides rapid access time, but is the most expensive and the least
dense (bit density). SRAM is suitable for cache memory.
e Dynamic RAM (DRAM): Cheaper, denser, and slower than SRAM, DRAM has traditionally been
the choice for off-chip main memory.
o Hard disk: A magnetic disk provides very high bit density and very low cost per bit, with relatively
slow access times. It is the traditional choice for external storage as part of the memory hierarchy.
Into this mix, as we have seen, has been added flash memory. Flash memory has the advantage over
traditional memory that it is nonvolatile. NOR flash is best suited to storing programs and static
application data in embedded systems, while NAND flash has characteristics intermediate between
DRAM and hard disks.

Over time, each of these technologies has seen improvements in scaling: higher bit density, higher
speed, lower power consumption, and lower cost. However, for semiconductor memory, it is becoming
increasingly difficult to continue the pace of improvement [ITRS14].

Recently, there have been breakthroughs in developing new forms of nonvolatile semiconductor
memory that continue scaling beyond flash memory. The most promising technologies are spin-
transfer torque RAM (STT-RAM), phase-change RAM (PCRAM), and resistive RAM (ReRAM)
([ITRS14], [GOER12]). All of these are in volume production. However, because NAND Flash and to
some extent NOR Flash are still dominating the applications, these emerging memories have been
used in specialty applications and have not yet fulfilled their original promise to become dominating
mainstream high-density nonvolatile memory. This is likely to change in the next few years.

Figure 6.20 shows how these three technologies are likely to fit into the memory hierarchy.

Increasing performance
. and endurance Lemmmmm e

-

- =

PCRAM

- -

ReRAM
Y

Decreasing cost
per bit,

increasing capacity
or density

Figure 6.20 Nonvolatile RAM within the Memory Hierarchy

STT-RAM

STT-RAM is a new type of magnetic RAM (MRAM), which features non-volatility, fast writing/reading
speed (< 10ns), high programming endurance (> 10 ~cycles) and zero standby power [KULT13]. The

storage capability or programmability of MRAM arises from magnetic tunneling junction (MTJ), in
which a thin tunneling dielectric is sandwiched between two ferromagnetic layers. One ferromagnetic
layer (pinned or reference layer) is designed to have its magnetization pinned, while the magnetization
of the other layer (free layer) can be flipped by a write event. An MTJ has a low (high) resistance if the
magnetizations of the free layer and the pinned layer are parallel (anti-parallel). In first-generation
MRAM design, the magnetization of the free layer is changed by the current-induced magnetic field. In
STT-RAM, a new write mechanism, called polarization-current-induced magnetization switching, is
introduced. For STT-RAM, the magnetization of the free layer is flipped by the electrical current
directly. Because the current required to switch an MTJ resistance state is proportional to the MTJ cell
area, STT-RAM is believed to have a better scaling property than the first-generation MRAM. Figure
6.21a illustrates the general configuration.

Bit line Bit line
Perpendicular Perpendicular
F - F -
: "¢ | magnetic layer | | binary 0 "¢ | magnetic layert binary 1
ayer . layer .
Interface layer RN Interface layer T
___ Insulating I:yer [.'llreﬂl-:::n ﬂf __ Insulating Igyerl D'mﬂ“!“ “F
Interface layer) 'magnetlzatmn Interface layer) Pmagnetlzatmn
Reference , Reference e
layer Perpendicular . layer Perpendicular .
magnetic layer Electric magnetic layer Electric
current current
_____ Base electrode o Base electrode
(a) STT-RAM
Top electrode
1 Polyerystaline
| Polycrystaline Amorphﬂ.us vy ' cha::r{.'ﬂ;enide
: chalcogenide chalcogenide —';I Tv
—— Heater —— Heater
—= Insulator — Insulator
Bottom electrode Bottom electrode
(b) PCRAM
Top electrode Top electrode
Reduction: Oxidation:
Insulator {L low resistance Insulator —_ - high resistance
"_'_-—-__.___‘ E— -
Filament Filament
Metal oxide Metal oxide
Bottom electrode Bottom electrode
(c) ReRAM

Figure 6.21 Nonvolatile RAM Technologies

STT-RAM is a good candidate for either cache or main memory.

PCRAM

Phase-change RAM (pcram) is the most mature of the new technologies, with an extensive technical
literature ([RAOUQ9], [ZHOUO09], [LEE10]).

PCRAM technology is based on a chalcogenide alloy material, which is similar to those commonly

used in optical storage media (compact discs and digital versatile discs). The data storage capability is
achieved from the resistance differences between an amorphous (high-resistance) and a crystalline
(low-resistance) phase of the chalcogenide-based material. In SET operation, the phase change
material is crystallized by applying an electrical pulse that heats a significant portion of the cell above
its crystallization temperature. In RESET operation, a larger electrical current is applied and then
abruptly cut off in order to melt and then quench the material, leaving it in the amorphous state.
Figure 6.21b illustrates the general configuration.

PCRAM is a good candidate to replace or supplement DRAM for main memory.
ReRAM

ReRAM (also known as RRAM) works by creating resistance rather than directly storing charge. An
electric current is applied to a material, changing the resistance of that material. The resistance state
can then be measured and a 1 or O is read as the result. Much of the work done on ReRAM to date
has focused on finding appropriate materials and measuring the resistance state of the cells. ReRAM
designs are low voltage, endurance is far superior to flash memory, and the cells are much smaller—
at least in theory. Figure 6.21c shows one ReRam configuration.

ReRAM is a good candidate to replace or supplement both secondary storage and main memory.

6.7 Key Terms, Review Questions, and Problems

Key Terms

bank group

double data rate DRAM (DDR DRAM)
dynamic RAM (DRAM)

electrically erasable programmable ROM (EEPROM)
erasable programmable ROM (EPROM)
error correcting code (ECC)

error correction

flash memory

Hamming code

hard failure

magnetic RAM (MRAM)

NAND flash memory

nonvolatile memory

NOR flash memory

phase-change RAM (PCRAM)
programmable ROM (PROM)

random access memory (RAM)
read-mostly memory

read-only memory (ROM)

resistive RAM (ReRAM)
semiconductor memory
single-error-correcting (SEC) code
single-error-correcting, double-error-detecting (SEC-DED) code
soft error

spin-transfer torque RAM (STT-RAM)
static RAM (SRAM)

synchronous DRAM (SDRAM)
syndrome

timing diagram

volatile memory

Review Questions

6.1 What are the key properties of semiconductor memory?

6.2 What are two interpretations of the term random-access memory?

6.3 What is the difference between DRAM and SRAM in terms of application?

6.4 What is the difference between DRAM and SRAM in terms of characteristics such as speed,
size, and cost?

6.5 Explain why one type of RAM is considered to be analog and the other digital.
6.6 What are some applications for ROM?

6.7 What are the differences among EPROM, EEPROM, and flash memory?

6.8 Explain the function of each pin in Figure 5.4b .

6.9 What is a parity bit?

6.10 How is the syndrome for the Hamming code interpreted?

6.11 How does SDRAM differ from ordinary DRAM?

6.12 What is DDR RAM?

6.13 What is the difference between NAND and NOR flash memory?

6.14 List and briefly define three newer nonvolatile solid-state memory technologies.

Problems

6.1 Suggest reasons why RAMSs traditionally have been organized as only one bit per chip
whereas ROMs are usually organized with multiple bits per chip.

6.2 Consider a dynamic RAM that must be given a refresh cycle 64 times per ms. Each refresh
operation requires 150 ns; a memory cycle requires 250 ns. What percentage of the memory’s
total operating time must be given to refreshes?

6.3 Figure 6.22 shows a simplified timing diagram for a DRAM read operation over a bus. The
access time is considered to last from ¢, to 7,. Then there is a recharge time, lasting from ¢, to

t3, during which the DRAM chips will have to recharge before the processor can access them
again.

A‘dt}.m 58 —|< Row address >< Column address
nes |

Data out valid

~
> 7§--7-___,::____“_~;____\/

~
fad

Figure 6.22 Simplified DRAM Read Timing

a. Assume that the access time is 60 ns and the recharge time is 40 ns. What is the
memory cycle time? What is the maximum data rate this DRAM can sustain, assuming a
1-bit output?

b. Constructing a 32-bit wide memory system using these chips yields what data transfer
rate?

6.4 Figure 6.6 indicates how to construct a module of chips that can store 1 MB based on a
group of four 256-Kbyte chips. Let’s say this module of chips is packaged as a single 1-MB chip,
where the word size is 1 byte. Give a high-level chip diagram of how to construct an 8-MB
computer memory using eight 1-MB chips. Be sure to show the address lines in your diagram
and what the address lines are used for.

6.5 On a typical Intel 8086-based system, connected via system bus to DRAM memory, for a
read operation, RAS is activated by the trailing edge of the Address Enable signal (Figure A.1

in Appendix A). However, due to propagation and other delays, RAS does not go active until

50 ns after Address Enable returns to a low. Assume the latter occurs in the middle of the
second half of state T, (somewhat earlier than in Figure A.1). Data are read by the processor

at the end of T5. For timely presentation to the processor, however, data must be provided 60

ns earlier by memory. This interval accounts for propagation delays along the data paths (from
memory to processor) and processor data hold time requirements. Assume a clocking rate of 10
MHz.
a. How fast (access time) should the DRAMSs be if no wait states are to be inserted?
b. How many wait states do we have to insert per memory read operation if the access time
of the DRAMs is 150 ns?

6.6 The memory of a particular microcomputer is built from 64K x 1IDRAMs. According to the

data sheet, the cell array of the DRAM is organized into 256 rows. Each row must be refreshed
at least once every 4 ms. Suppose we refresh the memory on a strictly periodic basis.

a. What is the time period between successive refresh requests?

b. How long a refresh address counter do we need?

6.7 Figure 6.23 shows one of the early SRAMSs, the 16 x 4 Signetics 7489 chip, which stores 16
4-bit words.

A3 —>]1 16 [—— Vee Operating Inputs Outputs
CS — {12 15 Ne—— A2 Mode CS R/W Dn On
R'W —>{|3 Signetics 14 [l«=— Al e L L L L
D3 —>{| 4 7489 3 A0 L L H H
03 <——|5 12 [J«—— DO Read L H X Data
D2 ——>{16 16x4 H[}—>00 Inhibit H L L H
02 <17 SRAM ([}« DI e H L H L
GND —| 8 9 — 01 Store - disable H H X H
outputs
(a) Pin layout H = high voltage level
L = low voltage level
X =don’t care
(b) Truth table
| | | | | | | | | | | | I | |
AOT | |
I , |
Al : | : : I .
| 1 | | I | 1 | I | |
I N : SN
| I | | | I I | | I | |
A3l I | | | I I | | I | |
| = - . = = = - = = - |
s Uy UyuUTUy Uy U Uy U U
I'm ' m ¢ 1 ¢ k t j 1 it h 1 g1 f 1 e 1 d 1 ¢ 1 b I a I
| | I | | | I | | I | | I | |
RW. 1 1 1 11 I R
| I | | I | I I T T J T T !
| | 1 | I | I | 1 1 | 1
D3 | | | | ! | ! | I ! |
—— 1T | | | | I | | | | |
| | T 1 | T 1 |
D2 | | I | : | | | |
| | | I |] | | |
| | | | I | I | | |
DI | I | I l | I | I I
| |
DO o 1 0 1 0 1 0 1 0 1 0 1 0 1

(c) Pulse train

Figure 6.23 The Signetics 7489 SRAM

a. List the mode of operation of the chip for each CS input pulse shown in Figure 6.23c .

b. List the memory contents of word locations 0 through 6 after pulse n.
c. What is the state of the output data leads for the input pulses h through m?

6.8 Design a 16-bit memory of total capacity 8192 bits using SRAM chips of size 64 x 1 bit. Give

the array configuration of the chips on the memory board showing all required input and output
signals for assigning this memory to the lowest address space. The design should allow for both
byte and 16-bit word accesses.

6.9 A common unit of measure for failure rates of electronic components is the Failure unIT
(FIT), expressed as a rate of failures per billion device hours. Another well known but less used
measure is mean time between failures (MTBF), which is the average time of operation of a
particular component until it fails. Consider a 1 MB memory of a 16-bit microprocessor with
256K x 1 DRAMSs. Calculate its MTBF assuming 2000 FITS for each DRAM.

6.10 For the Hamming code shown in Figure 6.10 , show what happens when a check bit rather
than a data bit is in error?

6.11 Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming algorithm,
determine what check bits would be stored in memory with the data word. Show how you got
your answer.

6.12 For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose when
the word is read from memory, the check bits are calculated to be 1101. What is the data word
that was read from memory?

6.13 How many check bits are needed if the Hamming error correction code is used to detect
single bit errors in a 1024-bit data word?

6.14 Develop an SEC code for a 16-bit data word. Generate the code for the data word
0101000000111001. Show that the code will correctly identify an error in data bit 5.

Chapter 7 External Memory

7.1 Magnetic Disk
Magnetic Read and Write Mechanisms

Data Organization and Formatting
Physical Characteristics
Disk Performance Parameters
7.2 RAID
RAID Level 0
RAID Level 1
RAID Level 2
RAID Level 3
RAID Level 4
RAID Level 5
RAID Level 6
7.3 Solid State Drives
SSD Compared to HDD
SSD Organization
Practical Issues
7.4 Optical Memory
Compact Disk
Digital Versatile Disk
High-Definition Optical Disks

7.5 Magnetic Tape

7.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the key properties of magnetic disks.

Understand the performance issues involved in magnetic disk access.
Explain the concept of RAID and describe the various levels.

Compare and contrast hard disk drives and solid disk drives.

Describe in general terms the operation of flash memory.

Understand the differences among the different optical disk storage media.
Present an overview of magnetic tape storage technology.

This chapter examines a range of external memory devices and systems. We
begin with the most important device, the magnetic disk. Magnetic disks are the
foundation of external memory on virtually all computer systems. The next section
examines the use of disk arrays to achieve greater performance, looking
specifically at the family of systems known as RAID (Redundant Array of
Independent Disks). An increasingly important component of many computer
systems is the solid state disk, which is discussed next. Then, external optical
memory is examined. Finally, magnetic tape is described.

7.1 Magnetic Disk

A disk is a circular platter constructed of nonmagnetic material, called the substrate, coated with a
magnetizable material. Traditionally, the substrate has been an aluminum or aluminum alloy material.
More recently, glass substrates have been introduced. The glass substrate has a number of benéefits,
including the following:

Improvement in the uniformity of the magnetic film surface to increase disk reliability.
A significant reduction in overall surface defects to help reduce read-write errors.
Ability to support lower fly heights (described subsequently).

Better stiffness to reduce disk dynamics.

Greater ability to withstand shock and damage.

Magnetic Read and Write Mechanisms

Data are recorded on and later retrieved from the disk via a conducting coil named the head; in many
systems, there are two heads, a read head and a write head. During a read or write operation, the
head is stationary while the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil produces a magnetic field.
Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the
surface below, with different patterns for positive and negative currents. The write head itself is made
of easily magnetizable material and is in the shape of a rectangular doughnut with a gap along one
side and a few turns of conducting wire along the opposite side (Figure 7.1). An electric current in the
wire induces a magnetic field across the gap, which in turn magnetizes a small area of the recording
medium. Reversing the direction of the current reverses the direction of the magnetization on the
recording medium.

Read
current
MR l T T
SENSOr ¢ Write current

2 Shield

R iz
I

‘ ,}:I‘
Magnetization ‘h'

Recording
medium

Figure 7.1 Inductive Write/Magnetoresistive Read Head

The traditional read mechanism exploits the fact that a magnetic field moving relative to a coil
produces an electrical current in the coil. When the surface of the disk rotates under the head, it
generates a current of the same polarity as the one already recorded. The structure of the head for
reading is in this case essentially the same as for writing, and therefore the same head can be used
for both. Such single heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read mechanism, requiring a separate read head,
positioned for convenience close to the write head. The read head consists of a partially shielded
magnetoresistive (MR) sensor. The MR material has an electrical resistance that depends on the
direction of the magnetization of the medium moving under it. By passing a current through the MR
sensor, resistance changes are detected as voltage signals. The MR design allows higher-frequency
operation, which equates to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion of the platter
rotating beneath it. This gives rise to the organization of data on the platter in a concentric set of rings,
called tracks. Each track is the same width as the head. There are thousands of tracks per surface.

Figure 7.2 depicts this data layout. Adjacent tracks are separated by intertrack gaps. This prevents,
or at least minimizes, errors due to misalignment of the head or simply interference of magnetic fields.
Data are transferred to and from the disk in sectors. There are typically hundreds of sectors per track,
and these may be of either fixed or variable length. In most contemporary systems, fixed-length
sectors are used. To avoid imposing unreasonable precision requirements on the system, adjacent
sectors are separated by intersector gaps.

Rotation
Inter-track gap . Track

Inter-sector gap

Track sector

Read-write head
/ (1 per surface)

Platter ——

f S
Direction of
Cylinder Spindle arm motion Boom

Figure 7.2 Disk Data Layout

A bit near the center of a rotating disk travels past a fixed point (such as a read—write head) slower
than a bit on the outside. Therefore, some way must be found to compensate for the variation in
speed so that the head can read all the bits at the same rate. This can be done by defining a variable
spacing between bits of information recorded in locations on the disk, in a way that the outermost
tracks have sectors with bigger spacing. The information can then be scanned at the same rate by
rotating the disk at a fixed speed, known as the constant angular velocity (CAV). Figure 7.3a shows
the layout of a disk using CAV. The disk is divided into a number of pie-shaped sectors and into a
series of concentric tracks. The advantage of using CAV is that individual blocks of data can be
directly addressed by track and sector. To move the head from its current location to a specific

address, it only takes a short movement of the head to a specific track and a short wait for the proper
sector to spin under the head. The disadvantage of CAV is that the amount of data that can be stored
on the long outer tracks is the same as what can be stored on the short inner tracks.

Track Lone

(a) Constant angular velocity (b) Multiple zone recording

Figure 7.3 Comparison of Disk Layout Methods

Because the density, in bits per linear inch, increases in moving from the outermost track to the
innermost track, disk storage capacity in a straightforward CAV system is limited by the maximum
recording density that can be achieved on the innermost track. To maximize storage capacity, it would
be preferable to have the same linear bit density on each track. This would require unacceptably
complex circuitry. Modern hard disk systems use a simpler technique, which approximates equal bit
density per track, known as multiple zone recording (MZR), in which the surface is divided into a
number of concentric zones (16 is typical). Each zone contains a number of contiguous tracks,
typically in the thousands. Within a zone, the number of bits per track is constant. Zones farther from
the center contain more bits (more sectors) than zones closer to the center. Zones are defined in such
a way that the linear bit density is approximately the same on all tracks of the disk. MZR allows for
greater overall storage capacity at the expense of somewhat more complex circuitry. As the disk head
moves from one zone to another, the length (along the track) of individual bits changes, causing a
change in the timing for reads and writes.

Figure 7.3b is a simplified MZR layout, with 15 tracks organized into 5 zones. The innermost two
zones have two tracks each, with each track having nine sectors; the next zone has 3 tracks, each
with 12 sectors; and the outermost 2 zones have 4 tracks each, with each track having 16 sectors.

Some means is needed to locate sector positions within a track. Clearly, there must be some starting
point on the track and a way of identifying the start and end of each sector. These requirements are
handled by means of control data recorded on the disk. Thus, the disk is formatted with some extra
data used only by the disk drive and not accessible to the user.

Figure 7.4. shows two common sector formats used in contemporary hard disk drives. The standard
format used for many years divided the track into sectors, each containing 512 bytes of data. Each
sector also includes control information useful to the disk controller. The structure of the sector layout
for this format consists of the following:

S r
G yae Address
s 4 Mark ECC

N
il

512 byte:
15 bytes ytes 50 bytes

(a) Legacy 512-byte sector

ECC
- Data "

15 bytes 512 bytes 100 bytes

(b) Advanced Format 4k-byte sector

Figure 7.4 Legacy and Advanced Sector Formats

e Gap: Separates sectors.

e Sync: Indicates the beginning of the sector and provides timing alignment.

e Address mark: Contains data to identify the sector’'s number and location. It also provides status
about the sector itself.

e Data: The 512 bytes of user data.

e Error correction code (ECC): Used to correct data that might be damaged in the reading and
writing process.

Although this format has served the industry well for many years, it has become increasingly
inadequate for two reasons:

1. Applications common in modern computing systems use much greater amounts of data and
manage the data in large blocks. Compared to these requirements, the small blocks of
traditional sector formatting devote a considerable fraction of each sector to control information.
The overhead consists of 65 bytes, yielding a format efficiency of (512/512 +65) ~0.88.

2. Bit density on disks has increased substantially, so that each sector consumes less physical
space. Accordingly, a media defect or other error source can damage a higher percentage of
the total payload, requiring more error correction strength.

Accordingly, the industry has responded by standardizing a new Advanced Format for a 4096-byte
block, illustrated in Figure 7.4b. The leading overhead remains at 15 bytes and the ECC is expanded
to 100 bytes, yielding a format efficiency of (4096/4096+ 115) ~0.97, almost a 10% improvement in

efficiency. More significantly, doubling the ECC to 100 bytes enables the correction of longer
sequences of error bits.

Physical Characteristics

Table 7.1 lists the major characteristics that differentiate the various types of magnetic disks. First, the

head may either be fixed or movable with respect to the radial direction of the platter. In a fixed-head
disk, there is one read-write head per track. All of the heads are mounted on a rigid arm that extends
across all tracks; such systems are rare today. In a movable-head disk, there is only one read-write
head. Again, the head is mounted on an arm. Because the head must be able to be positioned above
any track, the arm can be extended or retracted for this purpose.

Table 7.1 Physical Characteristics of Disk Systems

Head Motion Platters
Fixed head (one per track) Single platter
Movable head (one per surface) Multiple platter
Disk Portability Head Mechanism
Nonremovable disk Contact (floppy)
Removable disk Fixed gap
Sides Aerodynamic gap (Winchester)
Single sided
Double sided

The disk itself is mounted in a disk drive, which consists of the arm, a spindle that rotates the disk, and
the electronics needed for input and output of binary data. A nonremovable disk is permanently
mounted in the disk drive; the hard disk in a personal computer is a nonremovable disk. A removable
disk can be removed and replaced with another disk. The advantage of the latter type is that unlimited
amounts of data are available with a limited number of disk systems. Furthermore, such a disk may be
moved from one computer system to another. Floppy disks and ZIP cartridge disks are examples of
removable disks.

For most disks, the magnetizable coating is applied to both sides of the platter, which is then referred
to as double sided. Some less expensive disk systems use single-sided disks.

Some disk drives accommodate multiple platters stacked vertically a fraction of an inch apart.
Multiple arms are provided (Figure 7.2). Multiple—platter disks employ a movable head, with one
read-write head per platter surface. All of the heads are mechanically fixed so that all are at the same
distance from the center of the disk and move together. Thus, at any time, all of the heads are
positioned over tracks that are of equal distance from the center of the disk. The set of all the tracks in
the same relative position on the platter is referred to as a cylinder. This is illustrated in Figure 7.2.

Finally, the head mechanism provides a classification of disks into three types. Traditionally, the
read-write head has been positioned a fixed distance above the platter, allowing an air gap. At the
other extreme is a head mechanism that actually comes into physical contact with the medium during
a read or write operation. This mechanism is used with the floppy disk, which is a small, flexible
platter and the least expensive type of disk.

To understand the third type of disk, we need to comment on the relationship between data density
and the size of the air gap. The head must generate or sense an electromagnetic field of sufficient
magnitude to write and read properly. The narrower the head is, the closer it must be to the platter
surface to function. A narrower head means narrower tracks and therefore greater data density, which
is desirable. However, the closer the head is to the disk, the greater the risk of error from impurities or
imperfections. To push the technology further, the Winchester disk was developed. Winchester heads
are used in sealed drive assemblies that are almost free of contaminants. They are designed to
operate closer to the disk’s surface than conventional rigid disk heads, thus allowing greater data
density. The head is actually an aerodynamic foil that rests lightly on the platter’s surface when the
disk is motionless. The air pressure generated by a spinning disk is enough to make the foil rise above
the surface. The resulting noncontact system can be engineered to use narrower heads that operate
closer to the platter’s surface than conventional rigid disk heads.

Disk Performance Parameters

The actual details of disk 1/0 operation depend on the computer system, the operating system, and
the nature of the 1/0 channel and disk controller hardware. A general timing diagram of disk 1/0
transfer is shown in Figure 7.5.

Disk

Block
Track

4 X
\
)

Direction of
rotation

Figure 7.5 Timing of a Disk I/O Transfer

When the disk drive is operating, the disk is rotating at constant speed. To read or write, the head
must be positioned at the desired track and at the beginning of the desired sector on that track. Track
selection involves moving the head in a movable-head system or electronically selecting one head on
a fixed-head system. On a movable-head system, the time it takes to position the head at the track is
known as seek time ;. In either case, once the track is selected, the disk controller waits until the

appropriate sector rotates to line up with the head. The time it takes for the beginning of the sector to
reach the head is known as rotational latency, or latency time ¢; . Once the head is in position, the

read or write operation is then performed as the sector moves under the head; this is the data transfer
portion of the operation; the time required for the transfer is the transfer time 7. The sum of the seek

time, if any, the latency time, and the transfer time equals the bloc access time ¢z, or simply access
time:
tB = tS + tL + tT

In addition to the access time, there are several queuing delays normally associated with a disk 1/0
operation. When a process issues an I/O request, it must first wait in a queue for the device to be
available. At that time, the device is assigned to the process. If the device shares a single I/O channel
or a set of /0O channels with other disk drives, then there may be an additional wait for the channel to
be available. At that point, the seek is performed to begin disk access.

In some high-end systems for servers, a technique known as rotational positional sensing (RPS) is
used. This works as follows: When the seek command has been issued, the channel is released to
handle other I/O operations. When the seek is completed, the device determines when the data will
rotate under the head. As that sector approaches the head, the device tries to reestablish the
communication path back to the host. If either the control unit or the channel is busy with another 1/O,
then the reconnection attempt fails and the device must rotate one whole revolution before it can
attempt to reconnect, which is called an RPS miss. This is an extra delay element that must be added
to the access time.

SEEK TIME

Seek time is the time required to move the disk arm to the required track. It turns out that this is a
difficult quantity to pin down. The seek time consists of two key components: the initial startup time,
and the time taken to traverse the tracks that have to be crossed once the access arm is up to speed.
Unfortunately, the traversal time is not a linear function of the number of tracks, but includes a settling
time (time after positioning the head over the target track until track identification is confirmed). A
mean value of ¢4 is typically provided by the manufacturer.

Much improvement comes from smaller and lighter disk components. Some years ago, a typical disk
was 14 inches (36 cm) in diameter, whereas the most common size today is 3.5 inches (8.9 cm),
reducing the distance that the arm has to travel. A typical average seek time on contemporary hard
disks is under 10 ms.

LATENCY TIME

Disks, other than floppy disks, rotate at speeds ranging from 3600 rpm (for handheld devices such as
digital cameras) up to, as of this writing, 20,000 rpm; at this latter speed, there is one revolution per 3
ms. Thus, on the average, the latency time 7, will be 1.5 ms.

TRANSFER TIME

The transfer time to or from the disk depends on the rotation speed of the disk in the following fashion:

b
tT = -FAL
where
b = number of bytes to be transferred
N = number of bytes on a track

r = rotation speed, in revolutions per second

Thus the total average block read or write time T,,,,; can be expressed as

1 b
tp=tg+2r + N (7.1)

where ¢, is the average seek time. Note that on a zoned drive, the number of bytes per track is
variable, complicating the calculation.’

T Compare the two preceding equations to Equation (4.1).

A TIMING COMPARISON

With the foregoing parameters defined, let us look at two different I/O operations that illustrate the
danger of relying on average values. Consider a disk with an advertised average seek time of 4 ms,
rotation speed of 15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish
to read a file consisting of 2500 sectors for a total of 1.28 Mbytes. We would like to estimate the total
time for the transfer.

First, let us assume that the file is stored as compactly as possible on the disk. That is, the file
occupies all of the sectors on 5 adjacent tracks (5tracks x 500sectors / track = 2500sectors) . This is

known as sequential organization. Now, the time to read the first track is as follows:

Average seek 4 ms

Average rotational delay 2ms
4ms

Read 500 sectors 10ms

Suppose that the remaining tracks can now be read with essentially no seek time. That is, the 1/0
operation can keep up with the flow from the disk. Then, at most, we need to deal with rotational delay
for the four remaining tracks. Thus each successive track is read in 2 + 4 =6ms. To read the entire file,

Total time = 10 + (4 X 6) = 34ms = 0.034seconds

Now let us calculate the time required to read the same data using random access rather than

sequential access; that is, accesses to the sectors are distributed randomly over the disk. For each
sector, we have

Average seek 4 ms

Rotational delay 2 ms
0.008ms

Read 1 sectors 6.008ms

Total time = 2500 x 6.008 = 15,020ms = 15.02seconds

It is clear that the order in which sectors are read from the disk has a tremendous effect on 1/0
performance. In the case of file access in which multiple sectors are read or written, we have some
control over the way in which sectors of data are deployed. However, even in the case of a file access,
in a multiprogramming environment, there will be 1/0 requests competing for the same disk. Thus, it is
worthwhile to examine ways in which the performance of disk 1/0 can be improved over that achieved
with purely random access to the disk. This leads to a consideration of disk scheduling algorithms,
which is the province of the operating system and beyond the scope of this book text (see [STAL18]
for a discussion).

Table 7.2 gives disk parameters for typical contemporary internal high-performance disks. The HGST
Ultrastar HE is intended for enterprise applications, such as use in servers and workstations. The
HGST Ultrastar C15K600 is designed for use in high-performance computing and mission critical data
center installations. The Toshiba L200 is an internal laptop hard disk drive.

Table 7.2 Typical Hard Disk Drive Parameters

Characteristics HGST Ultrastar HGST Ultrastar Toshiba
HE C15K600 L200
Application Enterprise Data Center Laptop
Capacity 12 TB 600 GB 500 GB
Average seek time 8.0 ms read 2.9 ms read 11 ms
8.6 ms write 3.1 ms write
Spindle speed 7200 rpm 15,030 rpm 5400 rpm
Average latency 4.16 <2ms 5.6 ms
Maximum sustained transfer rate 255 MB/s 1.2 GB/s 3 GB/s
Bytes per sector 512/4096 512/4096 4096

Tracks per cylinder (number of platter 8 6 4
surfaces)

Cache 256 MB 128 MB 16 MB

Diameter 3.51in (8.89 2.5in (6.35 cm) 2.5in (6.35
cm)s cm)

Maximum areal density (Gb/cmz) 134 82 66

We can make some useful observations on this table. The seek time depends in part on the power
and quality of the arm actuator. On the other end of the spectrum, a laptop disk needs to be small,
inexpensive, and low power, so that the attainable seek time is much greater. Seek time also depends
on physical characteristics. The Ultrastar C15K600 has a smaller diameter than the Ultrastar HE. With
less average distance to travel, the C15K600 achieves lower seek time. In addition, the C15K600 has
a lower bit density on the disk surface, so that less precision is needed in positioning the read/write
head, again contributing to lower seek time. Of course the penalty of achieving these lower seek times
is a much lower disk capacity. But the Ultrastar C15K600 is likely to be used in applications that call
for a high rate of accesses to the disk, so it is reasonable to invest in minimizing the seek time.

Note that for the two HGST disks, the average seek time is less for reads than for writes. For writes,
more precision is required to place the write head dead center on the track. Less precision is needed
simply to sense the data that is already there.

For the block size, or bytes per physical sector, the two HGST disks can be configured for 512 or 4096
bytes, and the laptop disk is offered only at 4096 bytes. As discussed previously, the larger block size
is more efficient in space and more effective in error correction.

Aleksandr Lukin/123RF

RAID Simulator

7.2 RAID

As discussed earlier, the rate in improvement in secondary storage performance has been
considerably less than the rate for processors and main memory. This mismatch has made the disk
storage system perhaps the main focus of concern in improving overall computer system
performance.

As in other areas of computer performance, disk storage designers recognize that if one component
can only be pushed so far, additional gains in performance are to be had by using multiple parallel
components. In the case of disk storage, this leads to the development of arrays of disks that operate
independently and in parallel. With multiple disks, separate 1/0O requests can be handled in parallel, as
long as the data required reside on separate disks. Further, a single 1/0 request can be executed in
parallel if the block of data to be accessed is distributed across multiple disks.

With the use of multiple disks, there is a wide variety of ways in which the data can be organized and
in which redundancy can be added to improve reliability. This could make it difficult to develop
database schemes that are usable on a number of platforms and operating systems. Fortunately,
industry has agreed on a standardized scheme for multiple-disk database design, known as RAID
(Redundant Array of Independent Disks). The RAID scheme consists of seven levels,2 zero through
six. These levels do not imply a hierarchical relationship, but designate different design architectures
that share three common characteristics:

2 Additional levels have been defined by some researchers and some companies, but the seven levels described in

this section are the ones universally agreed on.

—

. RAID is a set of physical disk drives viewed by the operating system as a single logical drive.

2. Data are distributed across the physical drives of an array in a scheme known as striping,
described subsequently.

3. Redundant disk capacity is used to store parity information, which guarantees data

recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID levels. RAID 0 and
RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers at the University of
California at Berkeley [PATT88].3 The paper outlined various RAID configurations and applications
and introduced the definitions of the RAID levels that are still used. The RAID strategy employs
multiple disk drives and distributes data in such a way as to enable simultaneous access to data from
multiple drives, thereby improving I/O performance and allowing easier incremental increases in
capacity.

% In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpensive was used

to contrast the small relatively inexpensive disks in the RAID array to the alternative, a single large expensive disk
(SLED). The SLED is essentially a thing of the past, with similar disk technology being used for both RAID and
non-RAID configurations. Accordingly, the industry has adopted the term independent to emphasize that the RAID

array creates significant performance and reliability gains.

The unique contribution of the RAID proposal is to address effectively the need for redundancy.
Although allowing multiple heads and actuators to operate simultaneously achieves higher I/O and
transfer rates, the use of multiple devices increases the probability of failure. To compensate for this
decreased reliability, RAID makes use of stored parity information that enables the recovery of data

lost due to a disk failure.

We now examine each of the RAID levels. Table 7.3 provides a rough guide to the seven levels. In
the table, I/O performance is shown both in terms of data transfer capacity, or ability to move data,
and I/O request rate, or ability to satisfy /0O requests, since these RAID levels inherently perform
differently relative to these two metrics. Each RAID level’s strong point is highlighted by darker
shading. Table 7.6 illustrates the use of the seven RAID schemes to support a data capacity requiring
four disks with no redundancy. The figures highlight the layout of user data and redundant data and
indicate the relative storage requirements of the various levels. We refer to these figures throughout
the following discussion. Of the seven RAID levels described, only four are commonly used: RAID
levels O, 1, 5, and 6.

Table 7.3 RAID Levels
Note: N =number of data disks; m proportional to log N

Category Level Description Disks Data Large I/O Small I/0
Required | Availability Data Request Rate
Transfer
Capacity
Striping 0 Nonredundant N Lower than | Very high Very high for
single disk both read and
write
Mirroring 1 Mirrored 2N Higher than | Higher than Up to twice
RAID 2, 3, | single disk that of a
4, or5; for read; single disk for
lower than similar to read; similar
RAID 6 single disk to single disk
for write for write
N¥m
Parallel 2 Redundant via Much Highest of all | Approximately
access Hamming code higher than | listed twice that of a
single disk; | alternatives single disk
comparable
to RAID 3,
4 0or5
NF1
3 Bit-interleaved Much Highest of all | Approximately
parity higher than | listed twice that of a
single disk; | alternatives single disk
comparable

to RAID 2,
4,0r5
NFT
Independent Block-interleaved Much Similar to Similar to
access parity higher than | RAID 0 for RAID 0 for
single disk; | read; read;
comparable | significantly significantly
to RAID 2, lower than lower than
3,or5 single disk single disk for
for write write
NFT
Block-interleaved Much Similar to Similar to
distributed parity higher than | RAID O for RAID 0 for
single disk; | read; lower read;
comparable | than single generally
to RAID 2, disk for write | lower than
3,or4 single disk for
write
NF2
Block-interleaved Highest of | Similar to Similar to
dual distributed all listed RAID 0 for RAID 0 for
parity alternatives | read; lower read;
than RAID 5 | significantly
for write lower than
RAID 5 for
write
RAID Level O

RAID level 0 is not a true member of the RAID family because it does not include redundancy to
improve performance. However, there are a few applications, such as some on supercomputers in
which performance and capacity are primary concerns and low cost is more important than improved

reliability.

For RAID 0, the user and system data are distributed across all of the disks in the array. This has a
notable advantage over the use of a single large disk: If two-different 1/0O requests are pending for two
different blocks of data, then there is a good chance that the requested blocks are on different disks.
Thus, the two requests can be issued in parallel, reducing the 1/0O queuing time.

But RAID 0, as with all of the RAID levels, goes further than simply distributing the data across a disk
array: The data are striped across the available disks. This is best understood by considering Figure
7.7. All of the user and system data are viewed as being stored on a logical disk. The logical disk is
divided into strips; these strips may be physical blocks, sectors, or some other unit. The strips are
mapped round robin to consecutive physical disks in the RAID array. A set of logically consecutive

strips that maps exactly one strip to each array member is referred to as a stripe. In an n-disk array,
the first n logical strips are physically stored as the first strip on each of the n disks, forming the first
stripe; the second n strips are distributed as the second strips on each disk; and so on. The advantage
of this layout is that if a single I/O request consists of multiple logically contiguous strips, then up to n
strips for that request can be handled in parallel, greatly reducing the 1/O transfer time.

Logical Disk
T,
S
strip 0
strip 1
strip 2 ' r
e A ' |
strip 3 ' |
P] 1 l
strip 4 B ' | p :
e _— B ' N I i s - : f T
Physical ' Physical | Physical Physical
disk 0 ! disk 1 : disk 2 : disk 3
] -
] l .
w ! |
! |
Array _t I
Management]
Software

Figure 7.7 Data Mapping for a RAID Level 0 Array

Figure 7.7 indicates the use of array management software to map between logical and physical disk
space. This software may execute either in the disk subsystem or in a host computer.

RAID 0 FOR HIGH DATA TRANSFER CAPACITY

The performance of any of the RAID levels depends critically on the request patterns of the host
system and on the layout of the data. These issues can be most clearly addressed in RAID 0, where
the impact of redundancy does not interfere with the analysis. First, let us consider the use of RAID O
to achieve a high data transfer rate. For applications to experience a high transfer rate, two
requirements must be met. First, a high transfer capacity must exist along the entire path between
host memory and the individual disk drives. This includes internal controller buses, host system 1/0
buses, I/0 adapters, and host memory buses.

The second requirement is that the application must make I/O requests that drive the disk array
efficiently. This requirement is met if the typical request is for large amounts of logically contiguous
data, compared to the size of a strip. In this case, a single I/O request involves the parallel transfer of

data from multiple disks, increasing the effective transfer rate compared to a single-disk transfer.

RAID 0 FOR HIGH I/O REQUEST RATE

In a transaction-oriented environment, the user is typically more concerned with response time than
with transfer rate. For an individual 1/0 request for a small amount of data, the I/O time is dominated
by the motion of the disk heads (seek time) and the movement of the disk (rotational latency).

In a transaction environment, there may be hundreds of I/O requests per second. A disk array can
provide high I/O execution rates by balancing the 1/0 load across multiple disks. Effective load
balancing is achieved only if there are typically multiple 1/0O requests outstanding. This, in turn, implies
that there are multiple independent applications or a single transaction-oriented application that is
capable of multiple asynchronous I/O requests. The performance will also be influenced by the strip
size. If the strip size is relatively large, so that a single I/O request only involves a single disk access,
then multiple waiting 1/0 requests can be handled in parallel, reducing the queuing time for each
request.

RAID Level 1

RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is achieved. In these
other RAID schemes, some form of parity calculation is used to introduce redundancy, whereas in
RAID 1, redundancy is achieved by the simple expedient of duplicating all the data. As Figure 7.6b
shows, data striping is used, as in RAID 0. But in this case, each logical strip is mapped to two
separate physical disks so that every disk in the array has a mirror disk that contains the same data.
RAID 1 can also be implemented without data striping, though this is less common.

strip 0 strip 1 strip 2 strip 3
e I e P]
strip 4 strip 5 strip 6 strip 7
e —] M] e
strip 8 strip 9 strip 10 strip 11
strip 12 strip 13 strip 14 strip 15
l""---..______...--“I I‘-.._______.-‘I I‘--.._______..--"l l“-._______..-“l
I \ I \ | W I

- P ——— pa Jr——

(a) RAID O (Nonredundant)

e

strip 0 strip 1 strip 2 strip 3 strip 0 strip 1 strip 2 strip 3
strip 4 strip 5 strip 6 strip 7 strip 4 strip 5 strip 6 strip 7
strip 8 strip 9 strip 10 strip 11 strip 8 strip 9 strip 10 strip 11
P 1 — R P 1 P 1 e 1 P 1 e 1
strip 12 strip 13 strip 14 strip 15 strip 12 strip 13 strip 14 strip 15
I“--..______...--'-"I I‘-.._______..-“I I""---.._______..--"I I“-.._______..--“I I‘-..______.-*] l"h-._____.-ﬁ"l I‘-._____.-“I I"'h-.._____.-"l
.) L) \ | . ! .) .) L) .)

e — e o — e — e —

(b) RAID 1 (Mirrored)

e e Mo] R o R e —

P] L S P e, P P
by by ba b3 fg(b) f1(b) fa(b)

e e e = S

|'--._______..-'I I*-._______,.-*I I*--.______...fl I'--.______...-'I I*--._ ..-f] l‘--._ _..-'I I\-.._ _.--"I

e e T e

(c) RAID 2 (Redundancy through Hamming code)
Figure 7.6 RAID Levels

-

T e o —

(e) RAID 4 (Block-level parity)

block 0
ey
block 4
Mo]

block 8

~—
block 12

P
P(16-19)
"--..____.-"'l

b -

o —

-

T o — =

block 1
block 5
M~

block 9
]

P(12-15)
"

block 16
—

b -

b ——

T

block 2
P]
block 6
block 10
block 14

block 2
~—

block 6
—
P(8-11)
o
block 13
e

block 17
""-.._____..-"'l
! |
. -

e P —

(f) RAID 5 (Block-level distributed parity)

-

o —

() RAID 6 (Dual redundancy)

block 1
block 5
P

block 9

]
P(12-15)
I‘-"""—-—_——-"".'Jl
' |

-

e ——

block 2
—]

block 6
Iy

P(8-11)
—

Q(12-15)
I“-._______..--"‘l
|

-

T e s —

o —

block 3
—

P(4-7)
"-u..___________.-"
block 10
‘\...__________...--‘
block 14
'\-..___________.-"

block 18

block 3
P4-7)
P
Q(8-11)
e

T —

P(0-3)
P(4-7)
"‘-._______..-F‘
P(8-11)
r—
P(12-15)
[

|
' I
L™ -

s o —

o —

There are a number of positive aspects to the RAID 1 organization:

1. A read request can be serviced by either of the two disks that contains the requested data,

whichever one involves the minimum seek time plus rotational latency.

2. A write request requires that both corresponding strips be updated, but this can be done in
parallel. Thus, the write performance is dictated by the slower of the two writes (i.e., the one that
involves the larger seek time plus rotational latency). However, there is no “write penalty” with
RAID 1. RAID levels 2 through 6 involve the use of parity bits. Therefore, when a single strip is
updated, the array management software must first compute and update the parity bits as well
as updating the actual strip in question.

3. Recovery from a failure is simple. When a drive fails, the data may still be accessed from the
second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice the disk space of the logical disk
that it supports. Because of that, a RAID 1 configuration is likely to be limited to drives that store
system software and data, and other highly critical files. In these cases, RAID 1 provides a real-time
copy of all data so that in the event of a disk failure, all of the critical data are still immediately
available.

In a transaction-oriented environment, RAID 1 can achieve high 1/0 request rates if the bulk of the
requests are reads. In this situation, the performance of RAID 1 can approach double of that of RAID
0. However, if a substantial fraction of the I/O requests are write requests, then there may be no
significant performance gain over RAID 0. RAID 1 may also provide improved performance over RAID
0 for data transfer intensive applications with a high percentage of reads. Improvement occurs if the
application can split each read request so that both disk members participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access array, all member
disks participate in the execution of every 1/O request. Typically, the spindles of the individual drives
are synchronized so that each disk head is in the same position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2 and 3, the strips are very
small, often as small as a single byte or word. With RAID 2, an error-correcting code is calculated
across corresponding bits on each data disk, and the bits of the code are stored in the corresponding
bit positions on multiple parity disks. Typically, a Hamming code is used, which is able to correct
single-bit errors and detect double-bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly. The number of redundant
disks is proportional to the log of the number of data disks. On a single read, all disks are
simultaneously accessed. The requested data and the associated error-correcting code are delivered
to the array controller. If there is a single-bit error, the controller can recognize and correct the error
instantly, so that the read access time is not slowed. On a single write, all data disks and parity disks
must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many disk errors occur. Given
the high reliability of individual disks and disk drives, RAID 2 is overkill and is not implemented.

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID 3 requires only a single
redundant disk, no matter how large the disk array. RAID 3 employs parallel access, with data
distributed in small strips. Instead of an error-correcting code, a simple parity bit is computed for the
set of individual bits in the same position on all of the data disks.

REDUNDANCY

In the event of a drive failure, the parity drive is accessed and data is reconstructed from the
remaining devices. Once the failed drive is replaced, the missing data can be restored on the new
drive and operation resumed.

Data reconstruction is simple. Consider an array of five drives in which X0 through X3 contain data
and X4 is the parity disk. The parity for the ith bit is calculated as follows:

X4(i)=X3(i) ®X2(i) & X1(i) & X0(i)

where @ is exclusive-OR function.

Suppose that drive X1 has failed. If we add X4 (i) @ X1(i) to both sides of the preceding equation, we

get
X1(i)=X4(i) d X3(i) @ X2(i) & X0(i)

Thus, the contents of each strip of data on X1 can be regenerated from the contents of the
corresponding strips on the remaining disks in the array. This principle is true for RAID levels 3
through 6.

In the event of a disk failure, all of the data are still available in what is referred to as reduced mode. In
this mode, for reads, the missing data are regenerated on the fly using the exclusive-OR calculation.
When data are written to a reduced RAID 3 array, consistency of the parity must be maintained for
later regeneration. Return to full operation requires that the failed disk be replaced and the entire
contents of the failed disk be regenerated on the new disk.

PERFORMANCE

Because data are striped in very small strips, RAID 3 can achieve very high data transfer rates. Any
I/0O request will involve the parallel transfer of data from all of the data disks. For large transfers, the
performance improvement is especially noticeable. On the other hand, only one I/O request can be
executed at a time. Thus, in a transaction-oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an independent access
array, each member disk operates independently, so that separate |/O requests can be satisfied in
parallel. Because of this, independent access arrays are more suitable for applications that require
high I/O request rates and are relatively less suited for applications that require high data transfer
rates.

As in the other RAID schemes, data striping is used. In the case of RAID 4 through 6, the strips are
relatively large. With RAID 4, a bit-by-bit parity strip is calculated across corresponding strips on each
data disk, and the parity bits are stored in the corresponding strip on the parity disk.

RAID 4 involves a write penalty when an I/O write request of small size is performed. Each time that a
write occurs, the array management software must update not only the user data but also the
corresponding parity bits. Consider an array of five drives in which X0 through X3 contain data and X4
is the parity disk. Suppose that a write is performed that only involves a strip on disk X1. Initially, for
each bit /, we have the following relationship:

X4(i) =X3(i) ® X2(i) ® X1(i) ® X0(i) 7.2)

After the update, with potentially altered bits indicated by a prime symbol:

X4 (i) = X3(i) @ X2(i) ® X1 (i1)X0(i)
= X3()@®X2(H)®X1'(H®X0(i) ®X1i)®X1(3)
= X3()@®X2(H)®X1(H®X0(i) ®X1(i)®XL' (i)
= X4(H) @ X1(i) ®X1' (i)

The preceding set of equations is derived as follows. The first line shows that a change in X1 will also
affect the parity disk X4. In the second line, we add the terms @®X1(i) @ X1(i)]. Because the

exclusive-OR of any quantity with itself is 0, this does not affect the equation. However, it is a
convenience that is used to create the third line, by reordering. Finally, Equation (7.2) is used to
replace the first four terms by X4().

To calculate the new parity, the array management software must read the old user strip and the old
parity strip. Then it can update these two strips with the new data and the newly calculated parity.
Thus, each strip write involves two reads and two writes.

In the case of a larger size |/O write that involves strips on all disk drives, parity is easily computed by
calculation using only the new data bits. Thus, the parity drive can be updated in parallel with the data
drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which therefore can become a
bottleneck.

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID 5 distributes the parity
strips across all disks. A typical allocation is a round-robin scheme, as illustrated in Figure 7.6f. For
an n-disk array, the parity strip is on a different disk for the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O bottle-neck found in RAID 4.
RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers [KATZ89]. In the RAID 6
scheme, two different parity calculations are carried out and stored in separate blocks on different
disks. Thus, a RAID 6 array whose user data require N disks consists of N +2 disks.

Figure 7.69 illustrates the scheme. P and Q are two different data check algorithms. One of the two is
the exclusive-OR calculation used in RAID 4 and 5. But the other is an independent data check
algorithm. This makes it possible to regenerate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability. Three disks would have to
fail within the MTTR (mean time to repair) interval to cause data to be lost. On the other hand, RAID 6
incurs a substantial write penalty, because each write affects two parity blocks. Performance
benchmarks [EISCO07] show a RAID 6 controller can suffer more than a 30% drop in overall write
performance compared with a RAID 5 implementation. RAID 5 and RAID 6 read performance is
comparable.

Table 7.4 is a comparative summary of the seven levels.

Table 7.4 RAID Comparison

Level | Advantages Disadvantages Applications
0 I/O performance is greatly improved The failure of just one drive | Video production
by spreading the I/O load across will result in all data in an and editing
many channels and drives array being lost
Image Editing
No parity calculation overhead is
involved Pre-press
applications
Very simple design
Any application
Easy to implement requiring high
bandwidth
1 100% redundancy of data means no Highest disk overhead of all | Accounting
rebuild is necessary in case of a disk RAID types (100%)—
failure, just a copy to the replacement | inefficient Payroll
disk Financial
Under certain circumstances, RAID 1 L
Any application
can sustain multiple simultaneous . .
requiring very high
drive failures N
availability
Simplest RAID storage subsystem
design
2 Extremely high data transfer rates Very high ratio of ECC disks | No commercial
possible to data disks with smaller implementations
_ word sizes—inefficient exist/not
The higher the data transfer rate commercially
required, the better the ratio of data Entry level cost very high viable
disks to ECC disks —requires very high transfer
rate requirement to justify
Relatively simple controller design
compared to RAID levels 3, 4, & 5
3 Very high read data transfer rate Transaction rate equal to Video production
. _ that of a single disk drive at | and live streaming
Very high write data transfer rate best (if spindles are
- Image editing
Disk failure has an insignificant impact synchronized)

on throughput

Low ratio of ECC (parity) disks to data
disks means high efficiency

Controller design is fairly
complex

Video editing

Prepress
applications

Any application
requiring high
throughput

Very high Read data transaction rate

Low ratio of ECC (parity) disks to data
disks means high efficiency

Quite complex controller
design

Worst write transaction rate
and Write aggregate
transfer rate

Difficult and inefficient data
rebuild in the event of disk
failure

No commercial
implementations
exist/not
commercially
viable

Highest Read data transaction rate

Low ratio of ECC (parity) disks to data
disks means high efficiency

Good aggregate transfer rate

Most complex controller
design

Difficult to rebuild in the
event of a disk failure (as
compared to RAID level 1)

File and application
servers

Database servers

Web, e-mail, and
news servers

Intranet servers

Most versatile
RAID level

Provides for an extremely high data
fault tolerance and can sustain
multiple simultaneous drive failures

More complex controller
design

Controller overhead to
compute parity addresses is
extremely high

Perfect solution for
mission critical
applications

7.3 Solid State Drives

One of the most significant developments in computer architecture in recent years is the increasing

use of solid state drives (SSDs) to complement or even replace hard disk drives (HDDs), both
as internal and external secondary memory. The term solid state refers to electronic circuitry built with
semiconductors. An SSD is a memory device made with solid state components that can be used as a
replacement to a hard disk drive. The SSDs now on the market and coming on line use NAND flash
memory, which is described in Chapter 5.

SSD Compared to HDD

As the cost of flash-based SSDs has dropped and the performance and bit density increased, SSDs
have become increasingly competitive with HDDs. Table 7.5 shows typical measures of comparison
at the time of this writing.

Table 7.5 Comparison of Solid State Drives and Disk Drives

NAND Flash Drives Seagate Laptop Internal HDD
File 200-550 Mbps 50-120 Mbps
copy/write
speed
Power Less power draw, averages 2—-3 More power draw, averages 6—7 watts and

draw/battery | watts, resulting in 30 + minute battery | therefore uses more battery

life boost

Storage Typically not larger than 1 TB for Typically around 500 GB and 2 TB max for

capacity notebook size drives; 4 max for notebook size drives; 10 TB max for
desktops desktops

Cost Approx. $0.20 per GB for a 1-TB Approx. $0.03 per GB for a 4-TB drive
drive

SSDs have the following advantages over HDDs:

e High-performance input/output operations per second (IOPS): Significantly increases
performance I/O subsystems.

Durability: Less susceptible to physical shock and vibration.

Longer lifespan: SSDs are not susceptible to mechanical wear.

Lower power consumption: SSDs use considerably less power than comparable-size HDDs.

enterprise.
e Lower access times and latency rates: Over 10 times faster than the spinning disks in an HDD.
Currently, HDDs enjoy a cost per bit advantage and a capacity advantage, but these differences are
shrinking.

Quieter and cooler running capabilities: Less space required, lower energy costs, and a greener

SSD Organization

Figure 7.8 illustrates a general view of the common architectural system component associated with
any SSD system. On the host system, the operating system invokes file system software to access
data on the disk. The file system, in turn, invokes 1/O driver software. The |I/O driver software provides
host access to the particular SSD product. The interface component in Figure 7.8 refers to the
physical and electrical interface between the host processor and the SSD peripheral device. If the
device is an internal hard drive, a common interface is PCle. For external devices, one common
interface is USB.

Host system

Operating system
software

File system software

1/0 driver software
[

Interface

. T T B T

Interface SSD

Controller

|
Addressing

| I
Data buffer/ Error

cache correction
[

I

I

|

|

I

I

I

I

I

I

I

I

I

|

I Flash
I memory
[
I
I
I
I
I
I
I
I
[
|
I
[
I
I
I

components

Flash
memory
components

Flash
memory
components

Flash
memory
components

T o o o o o o E m m m E m m o m mm mm mm mm mm mm mm

Figure 7.8 Solid State Drive Architecture

In addition to the interface to the host system, the SSD contains the following components:

e Controller: Provides SSD device level interfacing and firmware execution.
e Addressing: Logic that performs the selection function across the flash memory components.
e Data buffer/cache: High speed RAM memory components used for speed matching and to

increased data throughput.
e Error correction: Logic for error detection and correction.
e Flash memory components: Individual NAND flash chips.

Practical Issues

There are two practical issues peculiar to SSDs that are not faced by HDDs. First, SSD performance
has a tendency to slow down as the device is used. To understand the reason for this, you need to
know that files are stored on disk as a set of pages, typically 4 KB in length. These pages are not
necessarily, and indeed not typically, stored as a contiguous set of pages on the disk. The reason for
this arrangement is explained in our discussion of virtual memory in Chapter 9. However, flash
memory is accessed in blocks, with a typical block size of 512 KB, so that there are typically 128
pages per block. Now consider what must be done to write a page onto a flash memory.

1. The entire block must be read from the flash memory and placed in a RAM buffer. Then the
appropriate page in the RAM buffer is updated.

2. Before the block can be written back to flash memory, the entire block of flash memory must be
erased—it is not possible to erase just one page of the flash memory.

3. The entire block from the buffer is now written back to the flash memory.

Now, when a flash drive is relatively empty and a new file is created, the pages of that file are written
on to the drive contiguously, so that one or only a few blocks are affected. However, over time,
because of the way virtual memory works, files become fragmented, with pages scattered over
multiple blocks. As the drive becomes more occupied, there is more fragmentation, so the writing of a
new file can affect multiple blocks. Thus, the writing of multiple pages from one block becomes slower,
the more fully occupied the disk is. Manufacturers have developed a variety of techniques to
compensate for this property of flash memory, such as setting aside a substantial portion of the SSD
as extra space for write operations (called overprovisioning), then to erase inactive pages during idle
time used to defragment the disk. Another technique is the TRIM command, which allows an operating
system to inform an SSD which blocks of data are no longer considered in use and can be wiped
internally.4

4 While TRIM is frequently spelled in capital letters, it is not an acronym; it is merely a command name.

A second practical issue with flash memory drives is that a flash memory becomes unusable after a
certain number of writes. As flash cells are stressed, they lose their ability to record and retain values.
A typical limit is 100,000 writes [GSOEOQ8]. Techniques for prolonging the life of an SSD drive include
front-ending the flash with a cache to delay and group write operations, using wear-leveling algorithms
that evenly distribute writes across block of cells, and sophisticated bad-block management
techniques. In addition, vendors are deploying SSDs in RAID configurations to further reduce the
probability of data loss. Most flash devices are also capable of estimating their own remaining
lifetimes, so systems can anticipate failure and take preemptive action.

7.4 Optical Memory

In 1983, one of the most successful consumer products of all time was introduced: the compact disk
(CD) digital audio system. The CD is a nonerasable disk that can store more than 60 minutes of
audio information on one side. The huge commercial success of the CD enabled the development of
low-cost optical-disk storage technology that has revolutionized computer data storage. A variety of
optical-disk systems have been introduced (Table 7.6). We briefly review each of these.

Table 7.6 Optical Disk Products

CD

Compact Disk. A nonerasable disk that stores digitized audio information. The standard system
uses 12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-ROM

Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The
standard system uses 12-cm disks and can hold more than 650 Mbytes.

CD-R

CD Recordable. Similar to a CD-ROM. The user can write to the disk only once.

CD-RW

CD Rewritable. Similar to a CD-ROM. The user can erase and rewrite to the disk multiple times.

DVD

Digital Versatile Disk. A technology for producing digitized, compressed representation of video
information, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used,
with a double-sided capacity of up to 17 Gbytes. The basic DVD is read-only (DVD-ROM).

DVD-R

DVD Recordable. Similar to a DVD-ROM. The user can write to the disk only once. Only one-sided
disks can be used.

DVD-RW

DVD Rewritable. Similar to a DVD-ROM. The user can erase and rewrite to the disk multiple times.
Only one-sided disks can be used.

Blu-ray DVD

High-definition video disk. Provides considerably greater data storage density than DVD, using a
405-nm (blue-violet) laser. A single layer on a single side can store 25 Gbytes.

Compact Disk

CD-ROM

Both the audio CD and the CD-ROM (compact disk read-only memory) share a similar technology.
The main difference is that CD-ROM players are more rugged and have error correction devices to
ensure that data are properly transferred from disk to computer. Both types of disk are made the same
way. The disk is formed from a resin, such as polycarbonate. Digitally recorded information (either
music or computer data) is imprinted as a series of microscopic pits on the surface of the
polycarbonate. This is done, first of all, with a finely focused, high-intensity laser to create a master
disk. The master is used, in turn, to make a die to stamp out copies onto polycarbonate. The pitted
surface is then coated with a highly reflective surface, usually aluminum or gold. This shiny surface is
protected against dust and scratches by a top coat of clear acrylic. Finally, a label can be silkscreened
onto the acrylic.

Information is retrieved from a CD or CD-ROM by a low-powered laser housed in an optical-disk
player, or drive unit. The laser shines through the clear polycarbonate while a motor spins the disk
past it (Figure 7.9). The intensity of the reflected light of the laser changes as it encounters a pit.
Specifically, if the laser beam falls on a pit, which has a somewhat rough surface, the light scatters
and a low intensity is reflected back to the source. The areas between pits are called lands. A land is
a smooth surface, which reflects back at higher intensity. The change between pits and lands is
detected by a photosensor and converted into a digital signal. The sensor tests the surface at regular
intervals. The beginning or end of a pit represents a 1; when no change in elevation occurs between
intervals, a O is recorded.

Protective
acrylic Label
| |
\ / N/ N~
\ ./ A) |
J' | 1l Land
I : | Pit
g .
Polycarbonate Jf | 11 Aluminum
plastic I : \
| |
iy
|

Laser transmit/
receive

Figure 7.9 CD Operation

Recall that on a magnetic disk, information is recorded in concentric tracks. With the simplest constant
angular velocity (CAV) system, the number of bits per track is constant. An increase in density is
achieved with multiple zone recording, in which the surface is divided into a number of zones, with

zones farther from the center containing more bits than zones closer to the center. Although this
technique increases capacity, it is still not optimal.

To achieve greater capacity, CDs and CD-ROMSs do not organize information on concentric tracks.
Instead, the disk contains a single spiral track, beginning near the center and spiraling out to the outer
edge of the disk. Sectors near the outside of the disk are the same length as those near the inside.
Thus, information is packed evenly across the disk in segments of the same size and these are
scanned at the same rate by rotating the disk at a variable speed. The pits are then read by the laser
at a constant linear velocity (CLV). The disk rotates more slowly for accesses near the outer edge
than for those near the center. Thus, the capacity of a track and the rotational delay both increase for
positions nearer the outer edge of the disk. The data capacity for a CD-ROM is about 680 MB.

Data on the CD-ROM are organized as a sequence of blocks. A typical block format is shown in
Figure 7.10. It consists of the following fields:

1]
Z 12| s Layered
12 bytes P 4 bytes < 2048 bytes e 288 hytesh
SYNC " ID " Data " | L-ECC
2352 bytes
— -

Figure 7.10 CD-ROM Block Format

e Sync: The sync field identifies the beginning of a block. It consists of a byte of all Os, 10 bytes of all
1s, and a byte of all Os.

e Header: The header contains the block address and the mode byte. Mode 0 specifies a blank data
field; mode 1 specifies the use of an error-correcting code and 2048 bytes of data; mode 2
specifies 2336 bytes of user data with no error-correcting code.

e Data: User data.

e Auxiliary: Additional user data in mode 2. In mode 1, this is a 288-byte error-correcting code.

With the use of CLV, random access becomes more difficult. Locating a specific address involves
moving the head to the general area, adjusting the rotation speed and reading the address, and then
making minor adjustments to find and access the specific sector.

CD-ROM is appropriate for the distribution of large amounts of data to a large number of users.
Because of the expense of the initial writing process, it is not appropriate for individualized
applications. Compared with traditional magnetic disks, the CD-ROM has two advantages:

e The optical disk together with the information stored on it can be mass replicated inexpensively
—unlike a magnetic disk. The database on a magnetic disk has to be reproduced by copying one
disk at a time using two disk drives.

e The optical disk is removable, allowing the disk itself to be used for archival storage. Most
magnetic disks are nonremovable. The information on nonremovable magnetic disks must first be
copied to another storage medium before the disk drive/disk can be used to store new information.

The disadvantages of CD-ROM are as follows:

e |tis read-only and cannot be updated.
e |t has an access time much longer than that of a magnetic disk drive, as much as half a second.

CD RECORDABLE

To accommodate applications in which only one or a small number of copies of a set of data is
needed, the write-once read-many CD, known as the CD recordable (CD-R), has been developed.
For CD-R, a disk is prepared in such a way that it can be subsequently written once with a laser beam
of modest intensity. Thus, with a somewhat more expensive disk controller than for CD-ROM, the
customer can write once as well as read the disk.

The CD-R medium is similar but not identical to that of a CD or CD-ROM. For CDs and CD-ROMs,
information is recorded by the pitting of the surface of the medium, which changes reflectivity. For a
CD-R, the medium includes a dye layer. The dye is used to change reflectivity and is activated by a
high-intensity laser. The resulting disk can be read on a CD-R drive or a CD-ROM drive.

The CD-R optical disk is attractive for archival storage of documents and files. It provides a permanent
record of large volumes of user data.

CD REWRITABLE

The CD-RW optical disk can be repeatedly written and overwritten, as with a magnetic disk. Although
a number of approaches have been tried, the only pure optical approach that has proved attractive is
called phase change. The phase change disk uses a material that has two significantly different
reflectivities in two different phase states. There is an amorphous state, in which the molecules exhibit
a random orientation that reflects light poorly; and a crystalline state, which has a smooth surface that
reflects light well. A beam of laser light can change the material from one phase to the other. The
primary disadvantage of phase change optical disks is that the material eventually and permanently
loses its desirable properties. Current materials can be used for between 500,000 and 1,000,000
erase cycles.

The CD-RW has the obvious advantage over CD-ROM and CD-R that it can be rewritten and thus
used as a true secondary storage. As such, it competes with magnetic disks. A key advantage of the
optical disk is that the engineering tolerances for optical disks are much less severe than for
high-capacity magnetic disks. Thus, they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last found an
acceptable replacement for the analog VHS video tape. The DVD has replaced the videotape used in
video cassette recorders (VCRs) and, more important for this discussion, replaced the CD-ROM in
personal computers and servers. The DVD takes video into the digital age. It delivers movies with
impressive picture quality, and it can be randomly accessed like audio CDs, which DVD machines can
also play. Vast volumes of data can be crammed onto the disk, currently seven times as much as a
CD-ROM. With DVD’s huge storage capacity and vivid quality, PC games have become more realistic
and educational software incorporates more video. Following in the wake of these developments has
been a new crest of traffic over the Internet and corporate intranets, as this material is incorporated
into Web sites.

The DVD’s greater capacity is due to three differences from CDs (Figure 7.11):

1. Bits are packed more closely on a DVD. The spacing between loops of a spiral on a CD is
1.6um and the minimum distance between pits along the spiral is 0.834um.

The DVD uses a laser with shorter wavelength and achieves a loop spacing of 0.74 ym and a
minimum distance between pits of 0.4um. The result of these two improvements is about a

seven-fold increase in capacity, to about 4.7 GB.
Label

Protective layer

(acrylic)

1.2 mm

Reflective layer thick

(aluminum) /

Polycarbonate substrate Laser focuses on polycarbonate
(plastic) pits in front of reflective layer

(a) CD-ROM—Capacity 682 MB

Polycarbonate substrate, side 2

Semireflective layer, side 2
Polycarbonate layer, side 2

N . . A
Fully reflective layer, side lx

M,
Fully reflective layer, side 1 7 y 1.2 mm
thick

Polycarbonate layer, side 1

Semireflective layer, side 1 Laser focuses on pits in one layer
on one side at a time. Disk must
Polycarbonate substrate, side 1 be flipped to read other side

(b) DVD-ROM, double-sided, dual-layer—Capacity 17 GB

Figure 7.11 CD-ROM and DVD-ROM

2. The DVD employs a second layer of pits and lands on top of the first layer. A dual-layer DVD
has a semireflective layer on top of the reflective layer, and by adjusting focus, the lasers in
DVD drives can read each layer separately. This technique almost doubles the capacity of the
disk, to about 8.5 GB. The lower reflectivity of the second layer limits its storage capacity, so
that a full doubling is not achieved.

3. The DVD-ROM can be two sided, whereas data are recorded on only one side of a CD. This
brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as read-only versions (Table 7.6).

High-Definition Optical Disks

High-definition optical disks are designed to store high-definition videos and to provide significantly
greater storage capacity compared to DVDs. The higher bit density is achieved by using a laser with a
shorter wavelength, in the blue-violet range. The data pits, which constitute the digital 1s and Os, are
smaller on the high-definition optical disks compared to DVDs because of the shorter laser
wavelength.

Two competing disk formats and technologies initially competed for market acceptance: HD DVD and
Blu-ray DVD. The Blu-ray scheme ultimately achieved market dominance. The HD DVD scheme can
store 15 GB on a single layer on a single side. Blu-ray positions the data layer on the disk closer to the
laser (shown on the right-hand side of each diagram in Figure 7.12). This enables a tighter focus and
less distortion, and thus smaller pits and tracks. Blu-ray can store 25 GB on a single layer. Three
versions are available: read only (BD-ROM), recordable once (BD-R), and rerecordable (BD-RE).

cD :Z.IIym:
L - S - Data layer
Beam spot Land |
- a - n = |
Pit 1.2 gm
- - s v ~ 0.58 pgm
Blu-ra
Track _____"” _____ e
T e > & o | —mam—aam I
_____________________ Laser wavelength gl | g | progiepietpiyaiiign
=780nm = [femesccam-aad Er T TP
- R [[y [
B 1 O [- o o oy oy e o o o {I.l,um

DVD] L

T . 000 e —

L L L L L T T T

s s e - e s = == a ——r 405 nm
Y. T T T 650 nm

Figure 7.12 Optical Memory Characteristics

7.5 Magnetic Tape

Tape systems use the same reading and recording techniques as disk systems. The medium is
flexible polyester (similar to that used in some clothing) tape coated with magnetizable material. The
coating may consist of particles of pure metal in special binders or vapor-plated metal films. The tape
and the tape drive are analogous to a home tape recorder system. Tape widths vary from 0.38 cm
(0.15inch) to 1.27 cm (0.5 inch). Tapes used to be packaged as open reels that have to be threaded
through a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running lengthwise. Earlier tape
systems typically used nine tracks. This made it possible to store data one byte at a time, with an
additional parity bit as the ninth track. This was followed by tape systems using 18 or 36 tracks,
corresponding to a digital word or double word. The recording of data in this form is referred to as
parallel recording. Most modern systems instead use serial recording, in which data are laid out as
a sequence of bits along each track, as is done with magnetic disks. As with the disk, data are read
and written in contiguous blocks, called physical records, on a tape. Blocks on the tape are separated
by gaps referred to as interrecord gaps. As with the disk, the tape is formatted to assist in locating
physical records.

The typical recording technique used in serial tapes is referred to as serpentine recording. In this
technique, when data are being recorded, the first set of bits is recorded along the whole length of the
tape. When the end of the tape is reached, the heads are repositioned to record a new track, and the
tape is again recorded on its whole length, this time in the opposite direction. That process continues,
back and forth, until the tape is full (Figure 7.13a). To increase speed, the read-write head is capable
of reading and writing a number of adjacent tracks simultaneously (typically two to eight tracks). Data
are still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks,
as suggested by Figure 7.13b.

wct [[[TLHELELELELELELELTT —
S T
weco [[LLLELELELELELELETETT —
/ Direction of
Bottom read-write
edge of tape
(a) Serpentine reading and writing
Track3 | 4 8 12 16 20
Track 2 3 7 11 15 19
Track 1 2 6 10 14 18
Track 0 1 5 9 13 17

Direction of
tape motion

(b) Block layout for system that reads—writes four tracks simultaneously

Figure 7.13 Typical Magnetic Tape Features

A tape drive is a sequential-access device. If the tape head is positioned at record 1, then to read
record N, it is necessary to read physical records 1 through N — 1, one at a time. If the head is

currently positioned beyond the desired record, it is necessary to rewind the tape a certain distance
and begin reading forward. Unlike the disk, the tape is in motion only during a read or write operation.

In contrast to the tape, the disk drive is referred to as a direct-access device. A disk drive need not
read all the sectors on a disk sequentially to get to the desired one. It must only wait for the
intervening sectors within one track and can make successive accesses to any track.

Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest-cost,
slowest-speed member of the memory hierarchy.

The dominant tape technology today is a cartridge system known as linear tape-open (LTO). LTO was
developed in the late 1990s as an open-source alternative to the various proprietary systems on the
market. Table 7.7 shows parameters for the various LTO generations.

Table 7.7 LTO Tape Drives

LTO-1 | LTO-2 | LTO-3 | LTO-4 | LTO-5 | LTO-6 | LTO-7 | LTO-8
Release date 2000 | 2003 2005 2007 2010 2012 TBA TBA
Compressed 200 400 800 1600 3.2TB 8TB 16 TB 32TB
capacity GB GB GB GB
Compressed 40 80 160 240 280 400 788 1.18
transfer rate MB/s | MB/s MB/s MB/s MB/s MB/s MB/s GB/s
Linear density 4880 | 7398 9638 13,250 | 15,142 | 15,143 | 19,094
(bits/mm)
Tape tracks 384 512 704 896 1280 2176 3,584
Tape length (m) 609 609 680 820 846 846 960
Tape width (cm) 1.27 1.27 1.27 1.27 1.27 1.27 1.27
Write elements 8 8 16 16 16 16 32
WORM? No No Yes Yes Yes Yes Yes Yes
Encryption No No No Yes Yes Yes Yes Yes
Capable?
Partitioning? No No No No Yes Yes Yes Yes

7.6 Key Terms, Review Questions, and Problems

Key Terms

access time

Blu-ray

CD

CD-R

CD-ROM

CD-RW

constant angular velocity (CAV)
constant linear velocity (CLV)
cylinder

DVD

DVD-R

DVD-ROM

DVD-RW

fixed-head disk

flash memory

floppy disk

gap

hard disk drive (HDD)
head

land

magnetic disk
magnetic tape
magnetoresistive
movable-head disk
multiple zone recording
nonremovable disk
optical memory

pit

platter

RAID

removable disk
rotational delay
sector

seek time

serpentine recording
solid state drive (SSD)
striped data

substrate

track

transfer time

Review Questions

7.1 What are the advantages of using a glass substrate for a magnetic disk?

7.2 How are data written onto a magnetic disk?

7.3 How are data read from a magnetic disk?

7.4 Explain the difference between a simple CAV system and a multiple zone recording system.
7.5 Define the terms frack, cylinder, and sector.

7.6 What is the typical disk sector size?

7.7 Define the terms seek time, rotational delay, access time, and transfer time.

7.8 What common characteristics are shared by all RAID levels?

7.9 Briefly define the seven RAID levels.

7.10 Explain the term striped data.

7.11 How is redundancy achieved in a RAID system?

7.12 In the context of RAID, what is the distinction between parallel access and independent
access?

7.13 What is the difference between CAV and CLV?

7.14 What differences between a CD and a DVD account for the larger capacity of the latter?
7.15 Explain serpentine recording.

Problems

7.1 Justify Equation 7.1 . That is, explain how each of the three terms on the right-hand side of
the equation contributes to the value on the left-hand side.
7.2 Consider a disk with N tracks numbered from 0 to (N — 1) and assume that requested

sectors are distributed randomly and evenly over the disk. We want to calculate the average
number of tracks traversed by a seek.

a. First, calculate the probability of a seek of length j when the head is currently positioned
over track t. Hint: This is a matter of determining the total number of combinations,
recognizing that all track positions for the destination of the seek are equally likely.

b. Next, calculate the probability of a seek of length K. Hint: This involves the summing over
all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek, using the formula for
expected value N1

E[x]=) ixPr[x=i]
i=0

nn+1) 5 nn+1)2n+1)
Hint: Use the equalities: ¥ i=—2—; ¥ i"= 6
i=1 i=1
d. Show that for large values of N, the average number of tracks traversed by a seek
approaches N/3.

7.3 Define the fO”OWingsfgrsgegiﬁir(n@,{%%@ége time to position head over track

r =rotation speed of the disk, in revolutions per second
n =number of bits per sector

N = capacity of a track, in bits
tsector = time to access a sector

Develop a formula for ¢,,.,,, as a function of the other parameters.

7.4 Consider a magnetic disk drive with 8 surfaces, 512 tracks per surface, and 64 sectors per
track. Sector size is 1 kB. The average seek time is 8 ms, the track-to-track access time is 1.5
ms, and the drive rotates at 3600 rpm. Successive tracks in a cylinder can be read without head
movement.

a. What is the disk capacity?

b. What is the average access time? Assume this file is stored in successive sectors and

tracks of successive cylinders, starting at sector 0, track 0, of cylinder .
c. Estimate the time required to transfer a 5-MB file.
d. What is the burst transfer rate?

7.5 Consider a single-platter disk with the following parameters: rotation speed: 7200 rpm;
number of tracks on one side of platter: 30,000; number of sectors per track: 600; seek time:
one ms for every hundred tracks traversed. Let the disk receive a request to access a random
sector on a random track and assume the disk head starts at track O.

a. What is the average seek time?

b. What is the average rotational latency?

c. What is the transfer time for a sector?

d. What is the total average time to satisfy a request?

7.6 A distinction is made between physical records and logical records. A logical record is a
collection of related data elements treated as a conceptual unit, independent of how or where
the information is stored. A physical record is a contiguous area of storage space that is
defined by the characteristics of the storage device and operating system. Assume a disk
system in which each physical record contains thirty 120-byte logical records. Calculate how
much disk space (in sectors, tracks, and surfaces) will be required to store 300,000 logical
records if the disk is fixed-sector with 512 bytes/sector, with 96 sectors/track, 110 tracks per
surface, and 8 usable surfaces. Ignore any file header record(s) and track indexes, and assume
that records cannot span two sectors.
7.7 Consider a disk that rotates at 3600 rpm. The seek time to move the head between adjacent
tracks is 2 ms. There are 32 sectors per track, which are stored in linear order from sector 0
through sector 31. The head sees the sectors in ascending order. Assume the read/write head
is positioned at the start of sector 1 on track 8. There is a main memory buffer large enough to
hold an entire track. Data is transferred between disk locations by reading from the source track
into the main memory buffer and then writing the data from the buffer to the target track.

a. How long will it take to transfer sector 1 on track 8 to sector 1 on track 9?

b. How long will it take to transfer all the sectors of track 8 to the corresponding sectors of
track 97

7.8 It should be clear that disk striping can improve data transfer rate when the strip size is
small compared to the 1/O request size. It should also be clear that RAID 0 provides improved
performance relative to a single large disk, because multiple 1/0 requests can be handled in
parallel. However, in this latter case, is disk striping necessary? That is, does disk striping
improve /O request rate performance compared to a comparable disk array without striping?
7.9 Consider a 4-drive, 200 GB-per-drive RAID array. What is the available data storage
capacity for each of the RAID levels 0, 1, 3, 4, 5, and 67

7.10 For a compact disk, audio is converted to digital with 16-bit samples, and is treated as a
stream of 8-bit bytes for storage. One simple scheme for storing this data, called direct
recording, would be to represent a 1 by a land and a 0 by a pit. Instead, each byte is fxpanded
into a 14-bit binary number. It turns out that exactly 256(2) of the total of 16, 134(2) 14-bit

numbers have at least two Os between every pair of 1s, and these are the numbers selected for
the expansion from 8 to 14 bits. The optical system detects the presence of 1s by detecting a
transition for pit to land or land to pit. It detects Os by measuring the distances between intensity
changes. This scheme requires that there are no 1s in succession; hence the use of the 8-to-14
code.
The advantage of this scheme is as follows. For a given laser beam diameter, there is a
minimume-pit size, regardless of how the bits are represented. With this scheme, this
minimume-pit size stores 3 bits, because at least two Os follow every 1. With direct recording, the
same pit would be able to store only one bit. Considering both the number of bits stored per pit
and the 8-to-14 bit expansion, which scheme stores the most bits and by what factor?
7.11 Design a backup strategy for a computer system. One option is to use plug-in external
disks, which cost $150 for each 500 GB drive. Another option is to buy a tape drive for $2500,
and 400 GB tapes for $50 apiece. (These were realistic prices in 2008.) A typical backup
strategy is to have two sets of backup media onsite, with backups alternately written on them so
in case the system fails while making a backup, the previous version is still intact. There's also a
third set kept offsite, with the offsite set periodically swapped with an on-site set.

a. Assume you have 1 TB (1000 GB) of data to back up. How much would a disk backup

system cost?
b. How much would a tape backup system cost for 1 TB?
c. How large would each backup have to be in order for a tape strategy to be less
expensive?
d. What kind of backup strategy favors tapes?

Chapter 8 Input/Output

8.1 External Devices

8.2 1/0 Modules

8.3 Programmed 1/O

8.4 Interrupt-Driven 1/O

8.5 Direct Memory Access

8.6 Direct Cache Access

8.7 1/0 Channels and Processors

8.8 External Interconnection Standards
8.9 IBM zEnterprise EC12 I/O Structure

8.10 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Explain the use of I/O modules as part of computer organization.

Understand the difference between programmed 1/O and interrupt-driven I/0 and discuss their
relative merits.

Present an overview of the operation of direct memory access.

Present an overview of direct cache access.

Explain the function and use of I/O channels.

wETa-cm"ﬁ'%
Y %
e

Aleksandr Lukin/123RF
I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element of
a computer system is a set of I/O modules. Each module interfaces to the system
bus or central switch and controls one or more peripheral devices. An I/0O module
is not simply a set of mechanical connectors that wire a device into the system
bus. Rather, the I/0 module contains logic for performing a communication
function between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the
system bus. The reasons are as follows:

e There are a wide variety of peripherals with various methods of operation. It
would be impractical to incorporate the necessary logic within the processor to
control a range of devices.

e The data transfer rate of peripherals is often much slower than that of the
memory or processor. Thus, it is impractical to use the high-speed system bus
to communicate directly with a peripheral.

e On the other hand, the data transfer rate of some peripherals is faster than that
of the memory or processor. Again, the mismatch would lead to inefficiencies if
not managed properly.

e Peripherals often use different data formats and word lengths than the
computer to which they are attached.

J gh1t)/s, an I/0 module is required. This module has two major functions (Figure

Address lines
- System
Data lines bus
Control lines
I/O module
Links to
peripheral
devices

Figure 8.1 Generic Model of an I/O Module

= |nterface to the processor and memory via the system bus or central switch.

» |nterface to one or more peripheral devices by tailored data links.
We begin this chapter with a brief discussion of external devices, followed by an
overview of the structure and function of an I/O module. Then we look at the
various ways in which the I/O function can be performed in cooperation with the
processor and memory: the internal I/O interface. Next, we examine in some detail
direct memory access and the more recent innovation of direct cache access.
Fir;a{g, we ?C)/(amine the external I/O interface, between the I/0 module and the
outside world.

8.1 External Devices

I/O operations are accomplished through a wide assortment of external devices that provide a means
of exchanging data between the external environment and the computer. An external device attaches
to the computer by a link to an 1/0 module (Figure 8.1). The link is used to exchange control, status,
and data between the 1/0O module and the external device. An external device connected to an 1/O
module is often referred to as a peripheral device or, simply, a peripheral .

We can broadly classify external devices into three categories:

e Human readable: Suitable for communicating with the computer user;

e Machine readable: Suitable for communicating with equipment;

e Communication: Suitable for communicating with remote devices.

Examples of human-readable devices are video display terminals (VDTs) and printers. Examples of
machine-readable devices are magnetic disk and tape systems, and sensors and actuators, such as
are used in a robotics application. Note that we are viewing disk and tape systems as I/O devices in
this chapter, whereas in Chapter 7 we viewed them as memory devices. From a functional point of
view, these devices are part of the memory hierarchy, and their use is appropriately discussed in
Chapter 7. From a structural point of view, these devices are controlled by I/O modules and are hence
to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote device, which may be a
human-readable device, such as a terminal, a machine-readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 8.2. The interface to the
I/O module is in the form of control, data, and status signals. Control signals determine the function
that the device will perform, such as send data to the /0 module (INPUT or READ), accept data from
the I/O module (OUTPUT or WRITE), report status, or perform some control function particular to the
device (e.g., position a disk head). Data are in the form of a set of bits to be sent to or received from
the 1/0 module. Status signals indicate the state of the device. Examples are READY/NOT-READY to
show whether the device is ready for data transfer.

‘ Control A Status A Data bits
signals from signals to to and from
I/0 module 1/0 module 1/0 module
Y Y
Control Buffer
logic —

Transducer

Data (device-unique)
to and from
Y environment

Figure 8.2 Block Diagram of an External Device

Control logic associated with the device controls the device’s operation in response to direction from
the I/O module. The transducer converts data from electrical to other forms of energy during output
and from other forms to electrical during input. Typically, a buffer is associated with the transducer to
temporarily hold data being transferred between the I/O module and the external environment. A
buffer size of 8 to 16 bits is common for serial devices, whereas block-oriented devices such as disk
drive controllers may have much larger buffers.

The interface between the 1/0 module and the external device will be examined in Section 8.7. The
interface between the external device and the environment is beyond the scope of this book, but
several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor arrangement. The user
provides input through the keyboard, the input is then transmitted to the computer and may also be
displayed on the monitor. In addition, the monitor displays data provided by the computer.

The basic unit of exchange is the character. Associated with each character is a code, typically 7 or 8
bits in length. The most commonly used text code is the International Reference Alphabet (IRA).1
Each character in this code is represented by a unique 7-bit binary code; thus, 128 different
characters can be represented. Characters are of two types: printable and control. Printable
characters are the alphabetic, numeric, and special characters that can be printed on paper or
displayed on a screen. Some of the control characters have to do with controlling the printing or
displaying of characters; an example is carriage return. Other control characters are concerned with
communications procedures. See Appendix D for details.

TIRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet Number 5 (IA5).

The U.S. national version of IRA is referred to as the American Standard Code for Information Interchange (ASCII).

For keyboard input, when the user depresses a key, this generates an electronic signal that is
interpreted by the transducer in the keyboard and translated into the bit pattern of the corresponding
IRA code. This bit pattern is then transmitted to the I1/O module in the computer. At the computer, the
text can be stored in the same IRA code. On output, IRA code characters are transmitted to an
external device from the I/O module. The transducer at the device interprets this code and sends the
required electronic signals to the output device either to display the indicated character or perform the
requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with an I/O module
plus the electronics for controlling the disk read/write mechanism. In a fixed-head disk, the transducer
is capable of converting between the magnetic patterns on the moving disk surface and bits in the
device’s buffer (Figure 8.2). A moving-head disk must also be able to cause the disk arm to move
radially in and out across the disk’s surface.

8.2 1/0O Modules

Module Function

The major functions or requirements for an I/O module fall into the following categories:

Control and timing

Processor communication

Device communication

Data buffering

Error detection

During any period of time, the processor may communicate with one or more external devices in
unpredictable patterns, depending on the program’s need for 1/0. The internal resources, such as
main memory and the system bus, must be shared among a number of activities, including data 1/O.
Thus, the 1/O function includes a control and timing requirement, to coordinate the flow of traffic
between internal resources and external devices. For example, the control of the transfer of data from
an external device to the processor might involve the following sequence of steps:

1. The processor interrogates the 1/0 module to check the status of the attached device.

2. The I/O module returns the device status.

3. If the device is operational and ready to transmit, the processor requests the transfer of data, by
means of a command to the I/O module.

4. The I/0 module obtains a unit of data (e.g., 8 or 16 bits) from the external device.

5. The data are transferred from the 1/O module to the processor.

If the system employs a bus, then each of the interactions between the processor and the 1/0 module
involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must communicate with the
processor and with the external device. Processor communication involves the following:

e Command decoding: The I/O module accepts commands from the processor, typically sent as
signals on the control bus. For example, an I/O module for a disk drive might accept the following
commands: READ SECTOR, WRITE SECTOR, SEEK track number, and SCAN record ID. The
latter two commands each include a parameter that is sent on the data bus.

e Data: Data are exchanged between the processor and the I/O module over the data bus.

e Status reporting: Because peripherals are so slow, it is important to know the status of the 1/0
module. For example, if an I/O module is asked to send data to the processor (read), it may not be
ready to do so because it is still working on the previous I/O command. This fact can be reported
with a status signal. Common status signals are BUSY and READY. There may also be signals to
report various error conditions.

e Address recognition: Just as each word of memory has an address, so does each 1/O device.
Thus, an 1/0 module must recognize one unique address for each peripheral it controls.

On the other side, the /0O module must be able to perform device communication. This
communication involves commands, status information, and data (Figure 8.2).

An essential task of an 1/0O module is data buffering. The need for this function is apparent from
Figure 2.1. Whereas the transfer rate into and out of main memory or the processor is quite high, the
rate is orders of magnitude lower for many peripheral devices and covers a wide range. Data coming
from main memory are sent to an I/O module in a rapid burst. The data are buffered in the I/O module
and then sent to the peripheral device at its data rate. In the opposite direction, data are buffered so

as not to tie up the memory in a slow transfer operation. Thus, the /0O module must be able to operate
at both device and memory speeds. Similarly, if the 1/O device operates at a rate higher than the
memory access rate, then the 1/0 module performs the needed buffering operation.

Finally, an 1/0O module is often responsible for error detection and for subsequently reporting errors to
the processor. One class of errors includes mechanical and electrical malfunctions reported by the
device (e.g., paper jam, bad disk track). Another class consists of unintentional changes to the bit
pattern as it is transmitted from device to I/0O module. Some form of error-detecting code is often used
to detect transmission errors. A simple example is the use of a parity bit on each character of data.
For example, the IRA character code occupies 7 bits of a byte. The eighth bit is set so that the total
number of 1s in the byte is even (even parity) or odd (odd parity). When a byte is received, the I/O
module checks the parity to determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices that they control. We
will attempt only a very general description here. (One specific device, the Intel 8255A, is described in
Section 8.4.) Figure 8.3 provides a general block diagram of an /O module. The module connects to
the rest of the computer through a set of signal lines (e.g., system bus lines). Data transferred to and
from the module are buffered in one or more data registers. There may also be one or more status
registers that provide current status information. A status register may also function as a control
register, to accept detailed control information from the processor. The logic within the module
interacts with the processor via a set of control lines. The processor uses the control lines to issue
commands to the 1/0O module. Some of the control lines may be used by the 1/0O module (e.g., for
arbitration and status signals). The module must also be able to recognize and generate addresses
associated with the devices it controls. Each I/O module has a unique address or, if it controls more
than one external device, a unique set of addresses. Finally, the I/O module contains logic specific to
the interface with each device that it controls.

Interface to Interface to
system bus external device

~A— ~A—

. I Data
—> Data registers - > {:;te:l‘na
Data . ::;w Status
lines lnle .a‘ce
—>»| Status/Control registers B¢ Control
L
L
Y L
Address
. r - — Data
lines External
/o device
logic interface Status
Control logic
lines : Control

Figure 8.3 Block Diagram of an 1/0 Module

An 1/0O module functions to allow the processor to view a wide range of devices in a simple-minded
way. There is a spectrum of capabilities that may be provided. The I1/O module may hide the details of
timing, formats, and the electromechanics of an external device so that the processor can function in
terms of simple read and write commands, and possibly open and close file commands. In its simplest
form, the 1/0 module may still leave much of the work of controlling a device (e.g., rewinding a tape)
visible to the processor.

An 1/0O module that takes on most of the detailed processing burden, presenting a high-level interface
to the processor, is usually referred to as an I/O channel or I/O processor. An I/O module that is
quite primitive and requires detailed control is usually referred to as an I/O controller or device
controller. 1/0 controllers are commonly seen on microcomputers, whereas 1/O channels are used on
mainframes.

In what follows, we will use the generic term I/O module when no confusion results and will use more
specific terms where necessary.

8.3 Programmed 1/O

Three techniques are possible for I/O operations. With programmed I/0O, data are exchanged between
the processor and the I/O module. The processor executes a program that gives it direct control of the
I/O operation, including sensing device status, sending a read or write command, and transferring the
data. When the processor issues a command to the I/O module, it must wait until the 1/O operation is
complete. If the processor is faster than the I/O module, this is a waste of processor time. With
interrupt-driven I/O | the processor issues an I/O command, continues to execute other
instructions, and is interrupted by the I/O module when the latter has completed its work. With both
programmed and interrupt 1/O, the processor is responsible for extracting data from main memory for
output and storing data in main memory for input. The alternative is known as direct memory access
(DMA) . In this mode, the I/O module and main memory exchange data directly, without processor
involvement.

Table 8.1 indicates the relationship among these three techniques. In this section, we explore
programmed 1/O. Interrupt I/O and DMA are explored in the following two sections, respectively.

Table 8.1 I/0 Techniques

No Interrupts Use of Interrupts

1/0-to-memory transfer through processor Programmed I/O | Interrupt-driven I/O

Direct I1/0-to-memory transfer Direct memory access (DMA)

Overview of Programmed 1/O

When the processor is executing a program and encounters an instruction relating to 1/O, it executes
that instruction by issuing a command to the appropriate I/0O module. With programmed I/O, the 1/0
module will perform the requested action and then set the appropriate bits in the I/O status register
(Figure 8.3). The I/0O module takes no further action to alert the processor. In particular, it does not
interrupt the processor. Thus, it is the responsibility of the processor to periodically check the status of
the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of view of the /O commands
issued by the processor to the I/O module, and then from the point of view of the I/O instructions
executed by the processor.

/O Commands

To execute an I/O-related instruction, the processor issues an address, specifying the particular 1/0
module and external device, and an I/O command. There are four types of I/O commands that an I/O
module may receive when it is addressed by a processor:

e Control: Used to activate a peripheral and tell it what to do. For example, a magnetic-tape unit
may be instructed to rewind or to move forward one record. These commands are tailored to the
particular type of peripheral device.

e Test: Used to test various status conditions associated with an I/O module and its peripherals.
The processor will want to know that the peripheral of interest is powered on and available for use.

It will also want to know if the most recent I/O operation is completed and if any errors occurred.
e Read: Causes the I/O module to obtain an item of data from the peripheral and place it in an
internal buffer (depicted as a data register in Figure 8.3). The processor can then obtain the data
item by requesting that the I/O module place it on the data bus.
e Write: Causes the I/O module to take an item of data (byte or word) from the data bus and
subsequently transmit that data item to the peripheral.
Figure 8.4a gives an example of the use of programmed I/O to read in a block of data from a
peripheral device (e.g., a record from tape) into memory. Data are read in one word (e.g., 16 bits) at a
time. For each word that is read in, the processor must remain in a status-checking cycle until it
determines that the word is available in the I/O module’s data register. This flowchart highlights the
main disadvantage of this technique: it is a time-consuming process that keeps the processor busy

needlessly.

Issue Read
» command to | CPU—1/O

I/O module

Read status

of /O I/0— CPU

Error
condition

from /O
module

/0 —CPU

Write word

into memory[¥ U~ memory

Next instruction
(a) Programmed /O

Issue Read
command to
/O module

Read status
of I/O
module

Read word
from I/O
Module

Write word

into memory

Next instruction
(b) Interrupt-driven /O

CPU—T1/O
Do something

=~ P else

— - = Interrupt

1/O—CPU

Error
condition

1/0— CPU

CPU— memory

Figure 8.4 Three Techniques for Input of a Block of Data

I/O Instructions

Issue Read CPU—~DMA
block comman Do something
to /O module [~ +¢1$¢

Read status - - - Interrupt
of DMA
module DMA—CPU

Next instruction

(c) Direct memory access

With programmed 1/O, there is a close correspondence between the I/O-related instructions that the
processor fetches from memory and the I/O commands that the processor issues to an I/O module to
execute the instructions. That is, the instructions are easily mapped into I/O commands, and there is
often a simple one-to-one relationship. The form of the instruction depends on the way in which

external devices are addressed.

Typically, there will be many I/O devices connected through 1/0O modules to the system. Each device is
given a unique identifier or address. When the processor issues an I1/O command, the command
contains the address of the desired device. Thus, each I/O module must interpret the address lines to
determine if the command is for itself.

When the processor, main memory, and I/O share a common bus, two modes of addressing are
possible: memory mapped and isolated. With memory-mapped 1/O, there is a single address space
for memory locations and I/O devices. The processor treats the status and data registers of 1/0
modules as memory locations and uses the same machine instructions to access both memory and
I/O devices. So, for example, with 10 address lines, a combined total of 2 Y1024 memory locations

and I/O addresses can be supported, in any combination.

With memory-mapped I/O, a single read line and a single write line are needed on the bus.
Alternatively, the bus may be equipped with memory read and write plus input and output command
lines. The command line specifies whether the address refers to a memory location or an /O device.
The full range of addresses may be available for both. Again, with 10 address lines, the system may
now support both 1024 memory locations and 1024 |/O addresses. Because the address space for I/O
is isolated from that for memory, this is referred to as isolated 1/O.

Figure 8.5 contrasts these two programmed I/O techniques. Figure 8.5a shows how the interface for
a simple input device such as a terminal keyboard might appear to a programmer using
memory-mapped I/0O. Assume a 10-bit address, with a 512-bit memory (locations 0-511) and up to
512 1/0O addresses (locations 512—1023). Two addresses are dedicated to keyboard input from a
particular terminal. Address 516 refers to the data register and address 517 refers to the status
register, which also functions as a control register for receiving processor commands. The program
shown will read 1 byte of data from the keyboard into an accumulator register in the processor. Note
that the processor loops until the data byte is available.

7 6 5 4 3 2 1 0

516 Keyboard input data register

7 6 5 4 3 2 1 0

Keyboard input status
S17 and control register
A A
L 1 = ready L Setto1to
0 = busy start read
ADDRESS INSTRUCTION OPERAND COMMENT
200 Load AC 17 Load accumulator
Store AC 517 Initiate keyboard read
202 Load AC 517 Get status byte
Branch if Sign = 0 202 Loop until ready
Load AC 516 Load data byte

(a) Memory-mapped I/O

ADDRESS INSTRUCTION OPERAND COMMENT
200 Load /O 5 Initiate keyboard read

201 Test 1/O 5 Check for completion
Branch Not Ready 201 Loop until complete
In 5 Load data byte
(b} Isolated 1/O

Figure 8.5 Memory-Mapped and Isolated 1/0

With isolated I/O (Figure 8.5b), the I/O ports are accessible only by special I/O commands, which
activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instructions for referencing
memory. If isolated I/O is used, there are only a few 1/O instructions. Thus, an advantage of
memory-mapped I/O is that this large repertoire of instructions can be used, allowing more efficient
programming. A disadvantage is that valuable memory address space is used up. Both
memory-mapped and isolated I/O are in common use.

8.4 Interrupt-Driven 1/O

The problem with programmed 1I/O is that the processor has to wait a long time for the 1/0 module of
concern to be ready for either reception or transmission of data. The processor, while waiting, must
repeatedly interrogate the status of the 1/0O module. As a result, the performance of the entire system
is severely degraded.

An alternative is for the processor to issue an I/O command to a module and then go on to do some
other useful work. The 1/0O module will then interrupt the processor to request service when it is ready
to exchange data with the processor. The processor then executes the data transfer, as before, and
then resumes its former processing.

Let us consider how this works, first from the point of view of the I/O module. For input, the I/O module
receives a READ command from the processor. The I/O module then proceeds to read data in from
an associated peripheral. Once the data are in the module’s data register, the module signals an
interrupt to the processor over a control line. The module then waits until its data are requested by the
processor. When the request is made, the module places its data on the data bus and is then ready
for another I/O operation.

From the processor’s point of view, the action for input is as follows. The processor issues a READ
command. It then goes off and does something else (e.g., the processor may be working on several
different programs at the same time). At the end of each instruction cycle, the processor checks for
interrupts (Figure 3.9). When the interrupt from the I/O module occurs, the processor saves the
context (e.g., program counter and processor registers) of the current program and processes the
interrupt. In this case, the processor reads the word of data from the 1/O module and stores it in
memory. It then restores the context of the program it was working on (or some other program) and
resumes execution.

Figure 8.4b shows the use of interrupt 1/O for reading in a block of data. Compare this with Figure
8.4a. Interrupt I/O is more efficient than programmed 1/O because it eliminates needless waiting.
However, interrupt I/O still consumes a lot of processor time, because every word of data that goes
from memory to I/O module or from 1/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt-driven I/O in more detail. The occurrence of an
interrupt triggers a number of events, both in the processor hardware and in software. Figure 8.6
shows a typical sequence. When an |/O device completes an |/O operation, the following sequence of
hardware events occurs:

Hardware Software

— A — ——A

Device controller or
other system hardware
issues an interrupt

Y
Save remainder of
process state

information

Processor finishes
execution of current
instruction

Process interrupt

Processor signals
acknowledgment
of interrupt

Restore process state
information

Processor pushes PSW
and PC onto control
stack

Restore old PSW
and PC

Processor loads new
PC value based on
interrupt

Figure 8.6 Simple Interrupt Processing

1. The device issues an interrupt signal to the processor.

2. The processor finishes execution of the current instruction before responding to the interrupt, as
indicated in Figure 3.9.

3. The processor tests for an interrupt, determines that there is one, and sends an
acknowledgment signal to the device that issued the interrupt. The acknowledgment allows the
device to remove its interrupt signal.

4. The processor now needs to prepare to transfer control to the interrupt routine. To begin, it
needs to save information needed to resume the current program at the point of interrupt. The
minimum information required is (a) the status of the processor, which is contained in a register
called the program status word (PSW); and (b) the location of the next instruction to be
executed, which is contained in the program counter. These can be pushed onto the system
control stack.2

2 See Appendix E for a discussion of stack operation.

5. The processor now loads the program counter with the entry location of the interrupt-handling
program that will respond to this interrupt. Depending on the computer architecture and
operating system design, there may be a single program; one program for each type of

interrupt; or one program for each device and each type of interrupt. If there is more than one
interrupt-handling routine, the processor must determine which one to invoke. This information
may have been included in the original interrupt signal, or the processor may have to issue a
request to the device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the next instruction cycle,
which begins with an instruction fetch. Because the instruction fetch is determined by the contents of
the program counter, the result is that control is transferred to the interrupt-handler program. The
execution of this program results in the following operations:

6. At this point, the program counter and PSW relating to the interrupted program have been
saved on the system stack. However, there is other information that is considered part of the
“state” of the executing program. In particular, the contents of the processor registers need to
be saved, because these registers may be used by the interrupt handler. So, all of these values,
plus any other state information, need to be saved. Typically, the interrupt handler will begin by
saving the contents of all registers on the stack. Figure 8.7a shows a simple example. In this
case, a user program is interrupted after the instruction at location N. The contents of all of the
registers plus the address of the next instruction (N + 1) are pushed onto the stack. The stack

pointer is updated to point to the new top of stack, and the program counter is updated to point
to the beginning of the interrupt service routine.

T-M r-m
. - Y . N+1
Control Control
stack - | stack
T | T
Program Program
counter counter
Y | Start Y | Start l
Interrupt General Interrupt General
service registers service registers
Y + L [Return Foutine Y + L [Return| FOutine T
Stack Stack
pointer pointer
Processor Processor
T-M
N +hi User’s N +N1 User’s
program program
Main Main
Memory Memory

(a) Interrupt occurs after instruction

at location N

(b) Return from interrupt

Figure 8.7 Changes in Memory and Registers for an Interrupt

7. The interrupt handler next processes the interrupt. This includes an examination of status

information relating to the I/O operation or other event that caused an interrupt. It may also
involve sending additional commands or acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved from the stack
and restored to the registers (e.g., see Figure 8.7b).

9. The final act is to restore the PSW and program counter values from the stack. As a result, the
next instruction to be executed will be from the previously interrupted program.

Note that it is important to save all the state information about the interrupted program for later
resumption. This is because the interrupt is not a routine called from the program. Rather, the interrupt
can occur at any time and therefore at any point in the execution of a user program. Its occurrence is

unpredictable. Indeed, as we will see in the next chapter, the two programs may not have anything in
common and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt 1/0. First, because there will almost invariably be
multiple I/O modules, how does the processor determine which device issued the interrupt? And
second, if multiple interrupts have occurred, how does the processor decide which one to process?

Let us consider device identification first. Four general categories of techniques are in common use:

Multiple interrupt lines

Software poll

Daisy chain (hardware poll, vectored)

Bus arbitration (vectored)

The most straightforward approach to the problem is to provide multiple interrupt lines between the
processor and the 1/0O modules. However, it is impractical to dedicate more than a few bus lines or
processor pins to interrupt lines. Consequently, even if multiple lines are used, it is likely that each line
will have multiple I/O modules attached to it. Thus, one of the other three techniques must be used on
each line.

One alternative is the software poll. When the processor detects an interrupt, it branches to an
interrupt-service routine that polls each I/O module to determine which module caused the interrupt.
The poll could be in the form of a separate command line (e.g., TESTI/O). In this case, the processor
raises TESTI/O and places the address of a particular I/O module on the address lines. The I/O
module responds positively if it set the interrupt. Alternatively, each 1/0O module could contain an
addressable status register. The processor then reads the status register of each 1/0 module to
identify the interrupting module. Once the correct module is identified, the processor branches to a
device-service routine specific to that device.

The disadvantage of the software poll is that it is time consuming. A more efficient technique is to use
a daisy chain, which provides, in effect, a hardware poll. An example of a daisy-chain configuration is
shown in Figure 3.26. For interrupts, all /O modules share a common interrupt request line. The
interrupt acknowledge line is daisy chained through the modules. When the processor senses an
interrupt, it sends out an interrupt acknowledge. This signal propagates through a series of 1/0
modules until it gets to a requesting module. The requesting module typically responds by placing a
word on the data lines. This word is referred to as a vector and is either the address of the 1/0 module
or some other unique identifier. In either case, the processor uses the vector as a pointer to the
appropriate device-service routine. This avoids the need to execute a general interrupt-service routine
first. This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is bus arbitration. With
bus arbitration, an 1/0O module must first gain control of the bus before it can raise the interrupt request
line. Thus, only one module can raise the line at a time. When the processor detects the interrupt, it
responds on the interrupt acknowledge line. The requesting module then places its vector on the data
lines.

The aforementioned techniques serve to identify the requesting I/O module. They also provide a way
of assigning priorities when more than one device is requesting interrupt service. With multiple lines,
the processor just picks the interrupt line with the highest priority. With software polling, the order in
which modules are polled determines their priority. Similarly, the order of modules on a daisy chain
determines their priority. Finally, bus arbitration can employ a priority scheme, as discussed in

Section 3.4.

We now turn to two examples of interrupt structures.
Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt Acknowledge (INTA)
line. To allow the 80386 to handle a variety of devices and priority structures, it is usually configured
with an external interrupt arbiter, the 82C59A. External devices are connected to the 82C59A, which in
turn connects to the 80386.

Figure 8.8 shows the use of the 82C59A to connect multiple I1/O modules for the 80386. A single
82C59A can handle up to eight modules. If control for more than eight modules is required, a cascade
arrangement can be used to handle up to 64 modules.

Slave

82C59A
interrupt
controller
| External device 00— IR0
| External device 01 ——{IR1 INT
IR2
IR3
® IR4
. IRS
IR6
[External device 07 |—>|IR7
Slave Master
82C59A 82C59A
interrupt interrupt 80386
controller controller processor
| External device 08 —{ IR0 > IR0
[External device 09 ——>{IR1 INT »(IR1 INT > INTR
IR2 IR2
° IR3 IR3
. IR4 IR4
* IRS IRS
IR6 IR6
[External device 15 |—| IR7 > IR7

Slave
82C59A
interrupt
controller

| External device 56 —> IR0
| External device 57 —{IR1 INT

IR2
. IR3
. IR4
. IRS
IR6

[External device 63 |—>{IR7
Figure 8.8 Use of the 82C59A Interrupt Controller

The 82C59A’s sole responsibility is the management of interrupts. It accepts interrupt requests from
attached modules, determines which interrupt has the highest priority, and then signals the processor

by raising the INTR line. The processor acknowledges via the INTA line. This prompts the 82C59A to
place the appropriate vector information on the data bus. The processor can then proceed to process
the interrupt and to communicate directly with the I/O module to read or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to be used by setting a
control word in the 82C59A. The following interrupt modes are possible:

e Fully nested: The interrupt requests are ordered in priority from 0 (IR0) through 7 (IR7).

e Rotating: In some applications a number of interrupting devices are of equal priority. In this mode
a device, after being serviced, receives the lowest priority in the group.

e Special mask: This allows the processor to inhibit interrupts from certain devices.

The Intel 8255A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt-driven I/O, we consider the
Intel 8255A Programmable Peripheral Interface. The 8255A is a single-chip, general-purpose 1/0O
module originally designed for use with the Intel 80386 processor. It has since been cloned by other
manufacturers and is a widely used peripheral controller chip. Its uses include as a controller for
simple 1/O devices for microprocessors and in embedded systems, including microcontroller systems.

ARCHITECTURE AND OPERATION

Figure 8.9 shows a general block diagram plus the pin assignment for the 40-pin package in which it
is housed. As shown on the pin layout, the 8255A includes the following lines:

| ' . PA3 O] 1 40 [0 PA4
ini:*r —t +5V Group A I PA2 2 39 [PAS
supplies ——— GND G";“l' > portA | 10 PA1 O3 38 [PAG
' ™ control (8) | PA7-PAD PAO O] 4 370 PA7
: | ! RD O 5 36 0 WR
: 1 : cs e 35 [0 Reset
e e ; 1 DO
Bi-directionhl Group A GND O 7 34
| bus |k upper (4)|«—¢, PC7-PC4 A0Cl9 82554 32[0D2
p7-Do | | bulfer | PC7 10 310 D3
[] . | PC6 O 11 30 0 D4
8-bit Group B
— internal | | portC :1" o pCs O 12 29 D5
B : data bus lower (4) [«—¢ | PC3-PCO n0 M3 28 1 D6
RD = pead/ . } : pC3 O 14 270 D7
WR —— e Erie | pC2 [15 260V
A1 —>! control Euly & pC1 O 16 251 PB7
—e> B | portB /0
A0 = logic control & :Itm_m“ pCo O] 17 24 1 PB6
Reset == : | PBO] 18 230 PB5
CS =1 I PB1 [19 22 0 PB4
' ' PB2 [20 21 0 PB3
L N N N -l
(a) Block diagram {b) Pin layout

Figure 8.9 The Intel 8255A Programmable Peripheral Interface

e DO0-D7: These are the data I/O lines for the device. All information read from and written to the

8255A occurs via these eight data lines.
e CS (Chip Select Input): If this line is a logical 0, the microprocessor can read and write to the

8255A.
e RD (Read Input): If this line is a logical 0 and the CS input is a logical 0, the 8255A data outputs

are enabled onto the system data bus.
e WR (Write Input): If this input line is a logical 0 and the CS input is a logical 0, data are written to

the 8255A from the system data bus.
e RESET: The 8255A is placed into its reset state if this input line is a logical 1. All peripheral ports
are set to the input mode.
e PAO-PA7, PB0-PB7, PC0-PC7: These signal lines are used as 8-bit I/O ports. They can be
connected to peripheral devices.
e A0, A1: The logical combination of these two input lines determines which internal register of the
8255A data are written to or read from.
The right side of the block diagram of Figure 8.9a is the external interface of the 8255A. The 24 1/0
lines are divided into three 8-bit groups (A, B, C). Each group can function as an 8-bit I/O port, thus
providing connection for three peripheral devices. In addition, group C is subdivided into 4-bit groups (
C4 and Cg), which may be used in conjunction with the A and B |/O ports. Configured in this manner,

group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the microprocessor system bus. It
includes an 8-bit bidirectional data bus (DO through D7), used to transfer data between the
microprocessor and the I/O ports and to transfer control information.

The processor controls the 8255A by means of an 8-bit control register in the processor. The
processor can set the value of the control register to specify a variety of operating modes and
configurations. From the processor point of view, there is a control port, and the control register bits
are set in the processor and then sent to the control port over lines DO-D7. The two address lines
specify one of the three I/O ports or the control register, as follows:

A1 A2 Selects
0 0 Port A
0 1 Port B
1 0 Port C
1 1 Control register

Thus, when the processor sets both A1 and A2 to 1, the 8255A interprets the 8-bit value on the data
bus as a control word. When the processor transfers an 8-bit control word with line D7 set to 1 (Figure
8.10a), the control word is used to configure the operating mode of the 24 |/O lines. The three modes
are:

Group A Group B Don’t care
pu AL A P —
D7 | D6 | D5 [D4 | D3 [D2 | D1 | DO D7 (D6 | D5 | D4 | D3 | D2 | DI | DO
] !
|
Port C (lower) D3 D2 b1
1= Input 0 0 0 b{t 0 of port C
0 = Output 0 0 1 bit 1 of port C
Pori B 0 1 0 bit 2 of port C
1= Input 0 1 1 bit 3 of port C
0 = Output 1 0 0 bit 4 of port C
Mode selection 1 0 1 bit 5 of port C
0 = Mode 0 1 1 0 bit 6 of port C
1 = Mode 1 1 1 1 bit 7 of port C
Port C (upper)
1 = Input Bit set/reset Bit set/reset
0 = Output flag 1 = set
Port A 0 = Active 0 = reset
1= Input
0 = Output
Mode selection
Mode set 00 = Mode 0
flag 01 = Mode 1
1 = Active 1X = Mode 2

(a) Mode definition of the 8255 control
register to configure the 8255

(b) Bit definitions of the 8255 control
register to modify single bits of port C

Figure 8.10 The Intel 8255A Control Word

e Mode 0: This is the basic I/O mode. The three groups of eight external lines function as three 8-bit

I/O ports. Each port can be designated as input or output. Data may only be sent to a port if the
port is defined as output, and data may only be read from a port if the port is set to input.

Mode 1: In this mode, ports A and B can be configured as either input or output, and lines from
port C serve as control lines for A and B. The control signals serve two principal purposes:
“handshaking” and interrupt request. Handshaking is a simple timing mechanism. One control line
is used by the sender as a DATA READY line, to indicate when the data are present on the 1/0
data lines. Another line is used by the receiver as an ACKNOWLEDGE, indicating that the data
have been read and the data lines may be cleared. Another line may be designated as an
INTERRUPT REQUEST line and tied back to the system bus.

Mode 2: This is a bidirectional mode. In this mode, port A can be configured as either the input or
output lines for bidirectional traffic on port B, with the port B lines providing the opposite direction.
Again, port C lines are used for control signaling.

When the processor sets D7 to O (Figure 8.10b), the control word is used to program the bit values of
port C individually. This feature is rarely used.

KEYBOARD/DISPLAY EXAMPLE

Because the 8255A is programmable via the control register, it can be used to control a variety of
simple peripheral devices. Figure 8.11 illustrates its use to control a keyboard/display terminal. The
keyboard provides 8 bits of input. Two of these bits, SHIFT and CONTROL, have special meaning to
the keyboard-handling program executing in the processor. However, this interpretation is transparent
to the 8255A, which simply accepts the 8 bits of data and presents them on the system data bus. Two
handshaking control lines are provided for use with the keyboard.

—
Interrupt
request
C3 Al = RO
Al |- R1
A2 |- R2
Ad |- R3
INPUT Ad |- R4 KEYBOARD
PORT 45 | RS
A6 |- Shift
AT |- Control
C4 |- Data ready
C5 »| Acknowledge
82C55A
B0 | SO
Bl - S1
B2 | 52
DUTPUTEi > ;31 DISPLAY
PORT d
B5 | S5
B6 »| Backspace
B7 | Clear
C1 »-| Data ready
C2 |« Acknowledge
Cé6 | Blanking
co C7 | Clear line
Interrupt
request
-

Figure 8.11 Keyboard/Display Interface to 8255A

The display is also linked by an 8-bit data port. Again, two of the bits have special meanings that are
transparent to the 8255A. In addition to two handshaking lines, two lines provide additional control
functions.

8.5 Direct Memory Access

Drawbacks of Programmed and Interrupt-Driven 1/O

Interrupt-driven 1/O, though more efficient than simple programmed 1/O, still requires the active
intervention of the processor to transfer data between memory and an I/O module, and any data
transfer must traverse a path through the processor. Thus, both these forms of I/O suffer from two
inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test and service a
device.

2. The processor is tied up in managing an I/O transfer; a number of instructions must be executed
for each I/O transfer (e.g., Figure 8.5).

There is somewhat of a trade-off between these two drawbacks. Consider the transfer of a block of
data. Using simple programmed 1/O, the processor is dedicated to the task of I/O and can move data
at a rather high rate, at the cost of doing nothing else. Interrupt I/O frees up the processor to some
extent at the expense of the I/O transfer rate. Nevertheless, both methods have an adverse impact on
both processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is required: direct memory
access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module (Figure 8.12) is capable of
mimicking the processor and, indeed, of taking over control of the system from the processor. It needs
to do this to transfer data to and from memory over the system bus. For this purpose, the DMA
module must use the bus only when the processor does not need it, or it must force the processor to
suspend operation temporarily. The latter technique is more common and is referred to as cycle
stealing, because the DMA module in effect steals a bus cycle.

Data lines - > Data
register
h -
~| Address
Address lines - > register
Request to DMA >
Ack | -
cknowledge from DMA Control
Interrupt — logic
Read »
Write »

Figure 8.12 Typical DMA Block Diagram

When the processor wishes to read or write a block of data, it issues a command to the DMA module,
by sending to the DMA module the following information:

e Whether a read or write is requested, using the read or write control line between the processor
and the DMA module.
e The address of the 1/0 device involved, communicated on the data lines.
e The starting location in memory to read from or write to, communicated on the data lines and
stored by the DMA module in its address register.
e The number of words to be read or written, again communicated via the data lines and stored in
the data count register.
The processor then continues with other work. It has delegated this I/O operation to the DMA module.
The DMA module transfers the entire block of data, one word at a time, directly to or from memory,
without going through the processor. When the transfer is complete, the DMA module sends an
interrupt signal to the processor. Thus, the processor is involved only at the beginning and end of the
transfer (Figure 8.4c).

Figure 8.13 shows where in the instruction cycle the processor may be suspended. In each case, the
processor is suspended just before it needs to use the bus. The DMA module then transfers one word
and returns control to the processor. Note that this is not an interrupt; the processor does not save a
context and do something else. Rather, the processor pauses for one bus cycle. The overall effect is
to cause the processor to execute more slowly. Nevertheless, for a multiple-word 1/O transfer, DMA is
far more efficient than interrupt-driven or programmed 1/0.

Time

Instruction cycle

Processor Processor Processor Processor Processor Processor
cycle cycle cycle cycle cycle cycle
Fetch Decode Fetch Execute Store Process

instruction | instruction operand instruction result interrupt
A A
DMA Interrupt
breakpoints breakpoint

Figure 8.13 DMA and Interrupt Breakpoints during an Instruction Cycle

The DMA mechanism can be configured in a variety of ways. Some possibilities are shown in Figure
8.14. In the first example, all modules share the same system bus. The DMA module, acting as a
surrogate processor, uses programmed I/O to exchange data between memory and an 1/O module
through the DMA module. This configuration, while it may be inexpensive, is clearly inefficient. As with
processor-controlled programmed /O, each transfer of a word consumes two bus cycles.

Processor DMA /0 I/0 Memory

i

(a) Single-bus, detached DMA

Processor DMA DMA Memory

[l

1/0

/O /O

(b) Single-bus, integrated DMA-1/O
System bus

Processor DMA | Memory I

I/0 bus

/O /O /O

(c) I/O bus
Figure 8.14 Alternative DMA Configurations

The number of required bus cycles can be cut substantially by integrating the DMA and 1/O functions.
As Figure 8.14b indicates, this means that there is a path between the DMA module and one or more
I/O modules that does not include the system bus. The DMA logic may actually be a part of an 1/0
module, or it may be a separate module that controls one or more 1/0O modules. This concept can be
taken one step further by connecting 1/0 modules to the DMA module using an I/O bus (Figure
8.14c). This reduces the number of I/O interfaces in the DMA module to one and provides for an
easily expandable configuration. In both of these cases (Figures 8.14b and c), the system bus that
the DMA module shares with the processor and memory is used by the DMA module only to
exchange data with memory. The exchange of data between the DMA and I/O modules takes place
off the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the 80 x 86 family of processors and to DRAM memory to
provide a DMA capability. Figure 8.15 indicates the location of the DMA module. When the DMA

module needs to use the system buses (data, address, and control) to transfer data, it sends a signal
called HOLD to the processor. The processor responds with the HLDA (hold acknowledge) signal,
indicating that the DMA module can use the buses. For example, if the DMA module is to transfer a
block of data from memory to disk, it will do the following:

CPU
Data bus
o
DREQ
HRQ (€—
8237 DMA Main Disk
chip memory controller
HLDA — > DACK
o *&
Address bus
N
Control bus (IOR, 10W, MEMR, MEMW)

DACK = DMA acknowledge
DREQ = DMA request
HLDA = HOLD acknowledge
HRQ = HOLD request

Figure 8.15 8237 DMA Usage of System Bus

1. The peripheral device (such as the disk controller) will request the service of the DMA by pulling
DREQ (DMA request) high.

2. The DMA will put a high on its HRQ (hold request), signaling the CPU through its HOLD pin that
it needs to use the buses.

3. The CPU will finish the present bus cycle (not necessarily the present instruction) and respond
to the DMA request by putting high on its HDLA (hold acknowledge), thus telling the 8237 DMA
that it can go ahead and use the buses to perform its task. HOLD must remain active high as
long as DMA is performing its task.

4. DMA will activate DACK (DMA acknowledge), which tells the peripheral device that it will start to
transfer the data.

5. DMA starts to transfer the data from memory to peripheral by putting the address of the first
byte of the block on the address bus and activating MEMR, thereby reading the byte from
memory into the data bus; it then activates IOW to write it to the peripheral. Then DMA
decrements the counter and increments the address pointer and repeats this process until the
count reaches zero and the task is finished.

6. After the DMA has finished its job it will deactivate HRQ, signaling the CPU that it can regain
control over its buses.

While the DMA is using the buses to transfer data, the processor is idle. Similarly, when the processor

is using the bus, the DMA is idle. The 8237 DMA is known as a fly-by DMA controller. This means that
the data being moved from one location to another does not pass through the DMA chip and is not
stored in the DMA chip. Therefore, the DMA can only transfer data between an I/O port and a memory

address, and not between two /O ports or two memory locations. However, as explained

subsequently, the DMA chip can perform a memory-to-memory transfer via a register.

The 8237 contains four DMA channels that can be programmed independently, and any one of the
channels may be active at any moment. These channels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control DMA operation over one
of its channels (Table 8.2):

Fabkle 8.2 Intel,8237A Registers

TC = terminalcount

Bit Command Status Mode Single All Mask
Mask
DO | Memory-to-memory | Channel O Channel select Select Clear/set
E/D has reached channel | channel 0
TC mask bit | mask bit
D1 | Channel 0 address | Channel 1 Clear/set
hold E/D has reached channel 1
TC mask bit
D2 | Controller E/D Channel 2 Verify/write/read transfer Clear/set | Clear/set
has reached mask bit | channel 2
TC mask bit
D3 | Normal/compressed | Channel 3 Not used | Clear/set
timing has reached channel 3
TC mask bit
D4 | Fixed/rotating Channel 0 Auto-initialization E/D Not used
priority request
D5 | Late/extended write | Channel O Address
selection request increment/decrement select
D6 | DREQ sense active | Channel 0
high/low request
D7 | DACK sense active | Channel 0 Demand/single/block/cascade
high/low request mode select

e Command: The processor loads this register to control the operation of the DMA. DO enables a
memory-to-memory transfer, in which channel 0 is used to transfer a byte into an 8237 temporary
register and channel 1 is used to transfer the byte from the register to memory. When
memory-to-memory is enabled, D1 can be used to disable increment/decrement on channel 0 so
that a fixed value can be written into a block of memory. D2 enables or disables DMA.

e Status: The processor reads this register to determine DMA status. Bits DO-D3 are used to
indicate if channels 0-3 have reached their TC (terminal count). Bits D4-D7 are used by the
processor to determine if any channel has a DMA request pending.

e Mode: The processor sets this register to determine the mode of operation of the DMA. Bits DO
and D1 are used to select a channel. The other bits select various operation modes for the
selected channel. Bits D2 and D3 determine if the transfer is from an 1/0O device to memory (write)
or from memory to 1/O (read), or a verify operation. If D4 is set, then the memory address register
and the count register are reloaded with their original values at the end of a DMA data transfer. Bits
D6 and D7 determine the way in which the 8237 is used. In single mode, a single byte of data is
transferred. Block and demand modes are used for a block transfer, with the demand mode
allowing for premature ending of the transfer. Cascade mode allows multiple 8237s to be cascaded
to expand the number of channels to more than 4.

e Single Mask: The processor sets this register. Bits DO and D1 select the channel. Bit D2 clears or
sets the mask bit for that channel. It is through this register that the DREQ input of a specific
channel can be masked (disabled) or unmasked (enabled). While the command register can be
used to disable the whole DMA chip, the single mask register allows the programmer to disable or
enable a specific channel.

e All Mask: This register is similar to the single mask register except that all four channels can be
masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register and one count register
for each channel. The processor sets these registers to indicate the location of size of main memory to
be affected by the transfers.

8.6 Direct Cache Access

DMA has proved an effective means of enhancing performance of /O with peripheral devices and
network /O traffic. However, for the dramatic increases in data rates for network I/O, DMA is not able
to scale to meet the increased demand. This demand is coming primarily from the widespread
deployment of 10-Gbps and 100-Gbps Ethernet switches to handle massive amounts of data transfer
to and from database servers and other high-performance systems [STAL16]. A secondary but
increasingly important source of traffic comes from Wi-Fi in the gigabit range. Network Wi-Fi devices
that handle 3.2 Gbps and 6.76 Gbps are becoming widely available and producing demand on
enterprise systems [STAL16].

In this section, we will show how enabling the 1/0O function to have direct access to the cache can
enhance performance, a technique known as direct cache access (DCA). Throughout this section,
we are concerned only with the cache that is closest to main memory, referred to as the last-level
cache. In some systems, this will be an L2 cache, in others an L3 cache.

To begin, we describe the way in which contemporary multicore systems use on-chip shared cache to
enhance DMA performance. This approach involves enabling the DMA function to have direct access
to the last-level cache. Next we examine cache-related performance issues that manifest when
high-speed network traffic is processed. From there, we look at several different strategies for DCA
that are designed to enhance network protocol processing performance. Finally, this section describes
a DCA approach implemented by Intel, referred to as Direct Data I/O.

DMA Using Shared Last-Level Cache

As was discussed in Chapter 1 (see Figure 1.2), contemporary multicore systems include both cache
dedicated to each core and an additional level of shared cache, either L2 or L3. With the increasing
size of available last-level cache, system designers have enhanced the DMA function so that the DMA
controller has access to the shared cache in a manner similar to the cores. To clarify the interaction of
DMA and cache, it will be useful to first describe a specific system architecture. For this purpose, the
following is an overview of the Intel Xeon system.

XEON MULTICORE PROCESSOR

Intel Xeon is Intel's high-end, high-performance processor family, used in servers, high-performance
workstations, and supercomputers. Many of the members of the Xeon family use a ring interconnect
system, as illustrated for the Xeon E5-2600/4600 in Figure 8.16.

To other To 1/0
processor chips devices

Eoie 2 B Cache Cache e Core
L =1 (2.5MB) | (2.5 MB) O -

5| & a |3

= -

= L3 L3 2 |a
Core % » [FEDED| Cache Cache g ; g Core
LI =1 2.5MB) | (25MB) 8|2 s

Z E 9 |-

Z| S L3 L3 CHE
HO % B [IEONEDm| Cache | Cache |puur e ; Core
2 x| 2 (2.5MB) | (2.5 MB) a2 s

o 3 |=

=l 5 L3 L3 “BE)
Core 2| B (DN cache Cache | € e Core
Uzl = (25MB) | (2.5MB) g (3 4

’ —/

Memory
Controller Hub

Chip boundary

To DDR3
memory

Figure 8.16 Xeon E5-2600/4600 Chip Architecture

The E5-2600/4600 can be configured with up to eight cores on a single chip. Each core has dedicated
L1 and L2 caches. There is a shared L3 cache of up to 20 MB. The L3 cache is divided into slices,

one associated with each core although each core can address the entire cache. Further, each slice
has its own cache pipeline, so that requests can be sent in parallel to the slices.

The bidirectional high-speed ring interconnect links cores, last-level cache, PCle, and integrated
memory controller (IMC).

In essence, the ring operates as follows:

1. Each component that attaches to the bidirectional ring (QPI, PCle, L3 cache, L2 cache) is
considered a ring agent, and implements ring agent logic.

2. The ring agents cooperate via a distributed protocol to request and allocate access to the ring,
in the form of time slots.

3. When an agent has data to send, it chooses the ring direction that results in the shortest path to
the destination and transmits when a scheduling slot is available.

The ring architecture provides good performance and scales well for multiple cores, up to a point. For
systems with a greater number of cores, multiple rings are used, with each ring supporting some of
the cores.

DMA USE OF THE CACHE

In traditional DMA operation, data are exchanged between main memory and an I/O device by means
of the system interconnection structure, such as a bus, ring, or QPI point-to-point matrix. So, for
example, if the Xeon E5-2600/4600 used a traditional DMA technique, output would proceed as
follows. An I/O driver running on a core would send an 1/0 command to the 1/O controller (labeled
PCle in Figure 8.16) with the location and size of the buffer in main memory containing the data to be
transferred. The 1/O controller issues a read request that is routed to the memory controller hub
(MCH), which accesses the data on DDR3 memory and puts it on the system ring for delivery to the
I/O controller. The L3 cache is not involved in this transaction and one or more off-chip memory reads
are required. Similarly, for input, data arrive from the 1/0O controller and is delivered over the system
ring to the MCH and written out to main memory. The MCH must also invalidate any L3 cache lines
corresponding to the updated memory locations. In this case, one or more off-chip memory writes are
required. Further, if an application wants to access the new data, a main memory read is required.

With the availability of large amounts of last-level cache, a more efficient technique is possible, and is
used by the Xeon E5-2600/4600. For output, when the I/O controller issues a read request, the MCH
first checks to see if the data are in the L3 cache. This is likely to be the case, if an application has
recently written data into the memory block to be output. In that case, the MCH directs data from the
L3 cache to the I/O controller; no main memory accesses are needed. However, it also causes the
data to be evicted from cache, that is, the act of reading by an I/O device causes data to be evicted.
Thus, the 1/0O operation proceeds efficiently because it does not require main memory access. But, if
an application does need that data in the future, it must be read back into the L3 cache from main
memory. The input operation on the Xeon E5-2600/4600 operates as described in the previous
paragraph; the L3 cache is not involved. Thus, the performance improvement involves only output
operations.

A final point. Although the output transfer is directly from cache to the 1/O controller, the term direct
cache access is not used for this feature. Rather, that term is reserved for the 1/O protocol application,
as described in the remainder of this section.

Cache-Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks, called packets or protocol
data units. The lowest, or link, level protocol is typically Ethernet, so that each arriving and departing
block of data consists of an Ethernet packet containing as payload the higher-level protocol packet.
The higher-level protocols are usually the Internet Protocol (IP), operating on top of Ethernet, and the
Transmission Control Protocol (TCP), operating on top of IP. Accordingly, the Ethernet payload
consists of a block of data with a TCP header and an IP header. For outgoing data, Ethernet packets
are formed in a peripheral component, such as an I/O controller or network interface controller (NIC).
Similarly, for incoming traffic, the 1/0O controller strips off the Ethernet information and delivers the
TCP/IP packet to the host CPU.

For both outgoing and incoming traffic, the core, main memory, and cache are all involved. In a DMA
scheme, when an application wishes to transmit data, it places that data in an application-assigned
buffer in main memory. The core transfers this to a system buffer in main memory and creates the
necessary TCP and IP headers, which are also buffered in system memory. The packet is then picked
up via DMA for transfer via the NIC. This activity engages not only main memory but also the cache.
For incoming traffic, similar transfers between system and application buffers are required.

When large volumes of protocol traffic are processed, two factors in this scenario degrade
performance. First, the core consumes valuable clock cycles in copying data between system and
application buffers. Second, because memory speeds have not kept up with CPU speeds, the core
loses time waiting on memory reads and writes. In this traditional way of processing protocol traffic,
the cache does not help because the data and protocol headers are constantly changing and thus the
cache must constantly be updated.

To clarify the performance issue and to explain the benefit of DCA as a way of improving
performance, let us look at the processing of protocol traffic in more detail for incoming traffic. In
general terms, the following steps occur:

1. Packet arrives: The NIC receives an incoming Ethernet packet. The NIC processes and strips
off the Ethernet control information. This includes doing an error detection calculation. The
remaining TCP/IP packet is then transferred to the system’s DMA module, which generally is
part of the NIC. The NIC also creates a packet descriptor with information about the packet,
such as its buffer location in memory.

2. DMA: The DMA module transfers data, including the packet descriptor, to main memory. It must
also invalidate the corresponding cache lines, if any.

3. NIC interrupts host: After a number of packets have been transferred, the NIC issues an
interrupt to the host processor.

4. Retrieve descriptors and headers: The core processes the interrupt, invoking an interrupt
handling procedure, which reads the descriptor and header of the received packets.

5. Cache miss occurs: Because this is new data coming in, the cache lines corresponding to the
system buffer containing the new data are invalidated. Thus, the core must stall to read the data
from main memory into cache, and then to core registers.

6. Header is processed: The protocol software executes on the core to analyze the contents of
the TCP and IP headers. This will likely include accessing a transport control block (TCB),
which contains context information related to TCP. The TCB access may or may not trigger a
cache miss, necessitating a main memory access.

7. Payload transferred: The data portion of the packet is transferred from the system buffer to the
appropriate application buffer.

A similar sequence of steps occurs for outgoing packet traffic, but there are some differences that
affect how the cache is managed. For outgoing traffic, the following steps occur:

1. Packet transfer requested: \When an application has a block of data to transfer to a remote

system, it places the data in an application buffer and alerts the OS with some type of system
call.

2. Packet created: The OS invokes a TCP/IP process to create the TCP/IP packet for
transmission. The TCP/IP process accesses the TCB (which may involve a cache miss) and
creates the appropriate headers. It also reads the data from the application buffer, and then
places the completed packet (headers plus data) in a system buffer. Note that the data that is
written into the system buffer also exists in the cache. The TCP/IP process also creates a
packet descriptor that is placed in memory shared with the DMA module.

3. Output operation invoked: This uses a device driver program to signal the DMA module that
output is ready for the NIC.

4. DMA transfer: The DMA module reads the packet descriptor, then a DMA transfer is performed
from main memory or the last-level cache to the NIC. Note that DMA transfers invalidate the
cache line in cache even in the case of a read (by the DMA module). If the line is modified, this
causes a write back. The core does not do the invalidates. The invalidates happen when the
DMA module reads the data.

5. NIC signals completion: After the transfer is complete, the NIC signals the driver on the core
that originated the send signal.

6. Driver frees buffer: Once the driver receives the completion notice, it frees up the buffer space
for reuse. The core must also invalidate the cache lines containing the buffer data.

As can be seen, network 1/O involves a number of accesses to cache and main memory and the
movement of data between an application buffer and a system buffer. The heavy involvement of main
memory becomes a bottleneck, as both core and network performance outstrip gains in memory
access times.

Direct Cache Access Strategies

Several strategies have been proposed for making more efficient use of caches for network 1/O, with
the general term direct cache access applied to all of these strategies.

The simplest strategy is one that was implemented as a prototype on a number of Intel Xeon
processors between 2006 and 2010 [KUMAOQ7, INTEO8]. This form of DCA applies only to incoming
network traffic. The DCA function in the memory controller sends a prefetch hint to the core as soon
as the data are available in system memory. This enables the core to prefetch the data packet from
the system buffer, thus avoiding cache misses and the associated waste of core cycles.

While this simple form of DCA does provide some improvement, much more substantial gains can be
realized by avoiding the system buffer in main memory altogether. For the specific function of protocol
processing, note that the packet and packet descriptor information are accessed only once in the
system buffer by the core. For incoming packets, the core reads the data from the buffer and transfers
the packet payload to an application buffer. It has no need to access that data in the system buffer
again. Similarly, for outgoing packets, once the core has placed the data in the system buffer, it has
no need to access that data again. Suppose, therefore, that the 1/0 system were equipped not only
with the capability of directly accessing main memory, but also of accessing the cache, both for input
and output operations. Then it would be possible to use the last-level cache instead of the main
memory to buffer packets and descriptors of incoming and outgoing packets.

This last approach, which is a true DCA, was proposed in [HUGGO05]. It has also been described as
cache injection [LEONOG6]. A version of this more complete form of DCA is implemented in Intel’s
Xeon processor line, referred to as Direct Data 1/0 [INTE12].

Direct Data |/O

Intel Direct Data 1/0 (DDIO) is implemented on all of the Xeon ES5 family of processors. Its operation is
best explained with a side-by-side comparison of transfers with and without DDIO.

PACKET INPUT

First, we look at the case of a packet arriving at the NIC from the network. Figure 8.17a shows the
steps involved for a DMA operation. The NIC initiates a memory write (1). Then the NIC invalidates
the cache lines corresponding to the system buffer (2). Next, the DMA operation is performed,
depositing the packet directly into main memory (3). Finally, after the appropriate core receives a DMA
interrupt signal, the core can read the packet data from memory through the cache (4).

Core || Core Core Core || Core Core
1 || 2 "(".+~N 1 || 2 "@'rrm
Last—-level cncie Last—level cac]l:m
3
y
} ® |
@F Main Main
LD 1 memory . 1 memory
(1) controller L3> (1) controller
(a) Normal DMA transfer to memory (b) DDIO transfer to cache
Core || Core Core Core || Core Core
1 || 2 ..F"'N 1 || 2 "(D'r+~.~
Last-level cnc*e Last-level cnc]l:le
i
|

@

f

Vo

@.-

i

Main

controller

&

memory

Y

(c) Normal DMA transfer to [/O

o

}

/0

controller

Y

Main
memory

(d) DDIO transfer to /O

Figure 8.17 Comparison of DMA and DDIO

Before discussing the processing of an incoming packet using DDIO, we need to summarize the
discussion of cache write policy from Chapter 5, and introduce a new technique. For the following
discussion, there are issues relating to cache coherency that arise in a multiprocessor or multicore
environment. These details are discussed in Chapter 19, but the details need not concern us here.
Recall that there are two techniques for dealing with an update to a cache line:

e Write through: All write operations are made to main memory as well as to the cache, ensuring
that main memory is always valid. Any other core—cache module can monitor traffic to main
memory to maintain consistency within its own local cache.

o Write back: Updates are made only in the cache. When an update occurs, a dirty bit associated
with the line is set. Then, when a block is replaced, it is written back to main memory if and only if
the dirty bit is set.

DDIO uses the write-back strategy in the L3 cache.
A cache write operation may encounter a cache miss, which is dealt with by one of two strategies:

e Write allocate: The required line is loaded into the cache from main memory. Then, the line in the
cache is updated by the write operation. This scheme is typically used with the write-back method.
e Non-write allocate: The block is modified directly in main memory. No change is made to the
cache. This scheme is typically used with the write-through method.
With the above in mind, we can describe the DDIO strategy for inbound transfers initiated by the NIC.

1. If there is a cache hit, the cache line is updated, but not main memory; this is simply the
write-back strategy for a cache hit. The Intel literature refers to this as write update.

2. If there is a cache miss, the write operation occurs to a line in the cache that will not be written
back to main memory. Subsequent writes update the cache line, again with no reference to
main memory or no future action that writes this data to main memory. The Intel documentation
[INTE12] refers to this as write allocate, which unfortunately is not the same meaning for the
term in the general cache literature.

The DDIO strategy is effective for a network protocol application because the incoming data need not
be retained for future use. The protocol application is going to write the data to an application buffer,
and there is no need to temporarily store it in a system buffer.

Figure 8.17b shows the operation for DDIO input. The NIC initiates a memory write (1). Then the NIC
invalidates the cache lines corresponding to the system buffer and deposits the incoming data in the
cache (2). Finally, after the appropriate core receives a DCA interrupt signal, the core can read the
packet data from the cache (3).

PACKET OUTPUT

Figure 8.17c shows the steps involved for a DMA operation for outbound packet transmission. The
TCP/IP protocol handler executing on the core reads data in from an application buffer and writes it
out to a system buffer. These data access operations result in cache misses and cause data to be
read from memory and into the L3 cache (1). When the NIC receives notification for starting a transmit
operation, it reads the data from the L3 cache and transmits it (2). The cache access by the NIC
causes the data to be evicted from the cache and written back to main memory (3).

Figure 8.17d shows the steps involved for a DDIO operation for packet transmission. The TCP/IP
protocol handler creates the packet to be transmitted and stores it in allocated space in the L3 cache
(1), but not in main memory (2). The read operation initiated by the NIC is satisfied by data from the
cache, without causing evictions to main memory.

It should be clear from these side-by-side comparisons that DDIO is more efficient than DMA for both
incoming and outgoing packets, and is therefore better able to keep up with a high packet traffic rate.

8.7 1/0 Channels and Processors

The Evolution of the I/0O Function

As computer systems have evolved, there has been a pattern of increasing complexity and
sophistication of individual components. Nowhere is this more evident than in the 1/O function. We
have already seen part of that evolution. The evolutionary steps can be summarized as follows:

1. The CPU directly controls a peripheral device. This is seen in simple microprocessor-controlled
devices.

2. A controller or I/O module is added. The CPU uses programmed /O without interrupts. With this
step, the CPU becomes somewhat divorced from the specific details of external device
interfaces.

3. The same configuration as in step 2 is used, but now interrupts are employed. The CPU need
not spend time waiting for an 1/0 operation to be performed, thus increasing efficiency.

4. The I/0O module is given direct access to memory via DMA. It can now move a block of data to
or from memory without involving the CPU, except at the beginning and end of the transfer.

5. The I/0O module is enhanced to become a processor in its own right, with a specialized
instruction set tailored for I/0. The CPU directs the I/O processor to execute an I/O program in
memory. The |/O processor fetches and executes these instructions without CPU intervention.
This allows the CPU to specify a sequence of 1/O activities and to be interrupted only when the
entire sequence has been performed.

6. The I/O module has a local memory of its own and is, in fact, a computer in its own right. With
this architecture, a large set of I/O devices can be controlled, with minimal CPU involvement. A
common use for such an architecture has been to control communication with interactive
terminals. The I/O processor takes care of most of the tasks involved in controlling the
terminals.

As one proceeds along this evolutionary path, more and more of the 1/O function is performed without
CPU involvement. The CPU is increasingly relieved of I/O-related tasks, improving performance. With
the last two steps (5—6), a major change occurs with the introduction of the concept of an I/O module
capable of executing a program. For step 5, the 1/0O module is often referred to as an I/O channel. For
step 6, the term I/O processor is often used. However, both terms are on occasion applied to both
situations. In what follows, we will use the term I/O channel.

Characteristics of /O Channels

The 1/0 channel represents an extension of the DMA concept. An I/O channel has the ability to
execute I/O instructions, which gives it complete control over I/O operations. In a computer system
with such devices, the CPU does not execute I/O instructions. Such instructions are stored in main
memory to be executed by a special-purpose processor in the I/O channel itself. Thus, the CPU
initiates an I/O transfer by instructing the I/O channel to execute a program in memory. The program
will specify the device or devices, the area or areas of memory for storage, priority, and actions to be
taken for certain error conditions. The 1/0O channel follows these instructions and controls the data
transfer.

Two types of /0O channels are common, as illustrated in Figure 8.18. A selector channel controls
multiple high-speed devices and, at any one time, is dedicated to the transfer of data with one of those
devices. Thus, the I/O channel selects one device and effects the data transfer. Each device, or a
small set of devices, is handled by a controller, or I/O module, that is much like the 1/0 modules we

have been discussing. Thus, the 1/0 channel serves in place of the CPU in controlling these 1/0
controllers. A multiplexor channel can handle I/O with multiple devices at the same time. For
low-speed devices, a byte multiplexor accepts or transmits characters as fast as possible to multiple
devices. For example, the resultant character stream from three devices with different rates and
individual streams A, A,A;A, ... ,B;B,B;3B, ... ,andC,C,C;C,... mightbe A ,B,C,A,C,A;B,C3A,

and so on. For high-speed devices, a block multiplexor interleaves blocks of data from several
devices.

Data and
address channel

to main memory
Selector
—
Control signal /O /O sos
path to CPU controller controller
(a) Selector
Data and
address channel
to main memory
Multiplexor
channel
—_—
Control signal
path to CPU ool /0
controller
/0
controller .
/O
controller
/O
controller

(b) Multiplexor
Figure 8.18 I/0 Channel Architecture

8.8 External Interconnection Standards

In this section, we provide a brief overview of the most widely used external interface standards to
support I/O.

Universal Serial Bus (USB)

USB is widely used for peripheral connections. It is the default interface for slower- speed devices,
such as keyboard and pointing devices, but is also commonly used for high-speed /O, including
printers, disk drives, and network adapters.

USB has gone through multiple generations. The first version, USB 1.0, defined a Low Speed data
rate of 1.5 Mbps and a Full Speed rate of 12 Mbps. USB 2.0 provides a data rate of 480 Mbps. USB
3.0 includes a new, higher speed bus called SuperSpeed in parallel with the USB 2.0 bus. The
signaling speed of SuperSpeed is 5 Gbps, but due to signaling overhead, the usable data rate is up to
4 Gbps. The most recent specification is USB 3.1, which includes a faster transfer mode called
SuperSpeed+ . This transfer mode achieves a signaling rate of 10 Gbps and a theoretical usable data

rate of 9.7 Gbps.

A USB system is controlled by a root host controller, which attaches to devices to create a local
network with a hierarchical tree topology.

FireWire Serial Bus

FireWire was developed as an alternative to the small computer system interface (SCSI) to be used
on smaller systems, such as personal computers, workstations, and servers. The objective was to
meet the increasing demands for high 1/O rates on these systems, while avoiding the bulky and
expensive I/O channel technologies developed for mainframe and supercomputer systems. The result
is the IEEE standard 1394, for a High Performance Serial Bus, commonly known as FireWire.

FireWire uses a daisy-chain configuration, with up to 63 devices connected off a single port.
Moreover, up to 1022 FireWire buses can be interconnected using bridges, enabling a system to
support as many peripherals as required.

FireWire provides for what is known as hot plugging, which makes it possible to connect and
disconnect peripherals without having to power the computer system down or reconfigure the system.
Also, FireWire provides for automatic configuration; it is not necessary manually to set device IDs or to
be concerned with the relative position of devices. With FireWire, there are no terminations, and the
system automatically performs a configuration function to assign addresses. A FireWire bus need not
be a strict daisy chain. Rather, a tree-structured configuration is possible.

An important feature of the FireWire standard is that it specifies a set of three layers of protocols to
standardize the way in which the host system interacts with the peripheral devices over the serial bus.
The physical layer defines the transmission media that are permissible under FireWire and the
electrical and signaling characteristics of each. Data rates from 25 Mbps to 3.2 Gbps are defined. The
link layer describes the transmission of data in the packets. The transaction layer defines a
request-response protocol that hides the lower-layer details of FireWire from applications.

Small Computer System Interface (SCSI)

SCSI is a once common standard for connecting peripheral devices (disks, modems, printers, etc.) to
small and medium-sized computers. Although SCSI has evolved to higher data rates, it has lost
popularity to such competitors as USB and FireWire in smaller systems. However, high-speed
versions of SCSI remain popular for mass memory support on enterprise systems. For example, the
IBM zEnterprise EC12 and other IBM mainframes offer support for SCSI, and a number of Seagate
hard drive systems use SCSI.

The physical organization of SCSI is a shared bus, which can support up to 16 or 32 devices,
depending on the generation of the standard. The bus provides for parallel transmission rather than
serial, with a bus width of 16 bits on earlier generations and 32 bits on later generations. Speeds
range from 5 Mbps on the original SCSI-1 specification to 160 Mbps on SCSI-3 U3.

Thunderbolt

The most recent, and one of fastest, peripheral connection technology to become available for
general-purpose use is Thunderbolt, developed by Intel with collaboration from Apple. One
Thunderbolt cable can manage the work previously required of multiple cables. The technology
combines data, video, audio, and power into a single high-speed connection for peripherals such as
hard drives, RAID (Redundant Array of Independent Disks) arrays, video-capture boxes, and network
interfaces. It provides up to 10 Gbps throughput in each direction and up to 10 watts of power to
connected peripherals.

InfiniBand

InfiniBand is an I/O specification aimed at the high-end server market. The first version of the
specification was released in early 2001 and has attracted numerous vendors. For example, IBM
zEnterprise series of mainframes has relied heavily on InfiniBand for a number of years. The standard
describes an architecture and specifications for data flow among processors and intelligent I/O
devices. InfiniBand has become a popular interface for storage area networking and other large
storage configurations. In essence, InfiniBand enables servers, remote storage, and other network
devices to be attached in a central fabric of switches and links. The switch-based architecture can
connect up to 64,000 servers, storage systems, and networking devices.

PCIl Express

PCI Express is a high-speed bus system for connecting peripherals of a wide variety of types and
speeds. Chapter 3 discusses PCI Express in detail.

SATA

Serial ATA (Serial Advanced Technology Attachment) is an interface for disk storage systems. It
provides data rates of up to 6 Gbps, with a maximum per device of 300 Mbps. SATA is widely used in
desktop computers, and in industrial and embedded applications.

Ethernet

Ethernet is the predominant wired networking technology, used in homes, offices, data centers,
enterprises, and wide-area networks. As Ethernet has evolved to support data rates up to 100 Gbps
and distances from a few meters to tens of km, it has become essential for supporting personal
computers, workstations, servers, and massive data storage devices in organizations large and small.

Ethernet began as an experimental bus-based 3-Mbps system. With a bus system, all of the attached
devices, such as PCs, connect to a common coaxial cable, much like residential cable TV systems.
The first commercially-available Ethernet, and the first version of IEEE 802.3, were bus-based
systems operating at 10 Mbps. As technology has advanced, Ethernet has moved from bus-based to
switch-based, and the data rate has periodically increased by an order of magnitude. With
switch-based systems, there is a central switch, with all of the devices connected directly to the
switch. Currently, Ethernet systems are available at speeds up to 100 Gbps. Here is a brief
chronology.

e 1983: 10 Mbps (megabit per second, million bits per second)
1995: 100 Mbps

1998: 1 Gbps (gigabit per second, billion bits per second)
2003: 10 Gbps

2010: 40 Gbps and 100 Gbps

Wi-Fi

Wi-Fi is the predominant wireless Internet access technology, used in homes, offices, and public
spaces. Wi-Fi in the home now connects computers, tablets, smart phones, and a host of electronic
devices, such as video cameras, TVs, and thermostats. Wi-Fi in the enterprise has become an
essential means of enhancing worker productivity and network effectiveness. And public Wi-Fi
hotspots have expanded dramatically to provide free Internet access in most public places.

As the technology of antennas, wireless transmission techniques, and wireless protocol design has
evolved, the IEEE 802.11 committee has been able to introduce standards for new versions of Wi-Fi
at ever-higher speeds. Once the standard is issued, industry quickly develops the products. Here is a
brief chronology, starting with the original standard, which was simply called IEEE 802.11, and
showing the maximum data rate for each version:

802.11 (1997): 2 Mbps (megabit per second, million bits per second)
802.11a (1999): 54 Mbps

802.11b (1999): 11 Mbps

802.11n (1999): 600 Mbps

802.11g (2003): 54 Mbps

802.11ad (2012): 6.76 Gbps (billion bits per second)

802.11ac (2014): 3.2 Gbps

N— N N S

8.9 IBM z13 I/O Structure

The z13 is IBM’s latest mainframe computer offering (at the time of this writing). The system is based
on the use of a 5-GHz multicore chip with eight cores. The z13 architecture can have a maximum of
168 processor chips, or processor units (PU), for a total of 1344 cores, and it supports up to a total of
10 TB of real memory. In this section, we look at the 1/O structure of the z13.

Channel Structure

The z13 has a dedicated I/O subsystem that manages all I/O operations, completely off-loading this
processing and memory burden from the main processors. Figure 8.19 shows the logical structure of
the I/O subsystem. Of the 168 core processors, up to 24 of these can be dedicated for I/O use,
creating 46 channel subsystems (CSS). Each CSS is made up of the following elements:

< 85 partitions per system

~ Y
< 15 partitions per channel subsystem
Logical Logical c o o Logical Logical
partition partition partition partition
Channel Channel Channel 6 channel
Subsystem Subsystem Subsystem euhcyqtemq

/\\/ W TN

Subchannel Subchannel Suh-:hannel Suh-:hmmel 4 subchannel sets
Set Set per channel subsystem
up to 64k

channels per
subchannel set

Figure 8.19 IBM z13 I/0 Channel Structure

e System assist processor (SAP): The SAP is a core processor configured for I/O operation. Its
role is to offload 1/0O operations and manage channels and the I/O operations queues. It relieves
the other processors of all I/O tasks, allowing them to be dedicated to application logic.

e Hardware system area (HSA): The HSA is a reserved part of the system memory containing the

I/O configuration. It is used by SAPs. A fixed amount of 96 GB is reserved, which is not part of the
customer-purchased memory. This provides for greater configuration flexibility and higher
availability by eliminating planned and preplanned outages.

e Logical partitions: A logical partition is a form of virtual machine, which is in essence a logical
processor defined at the operating system level.3 Each CSS supports up to 16 logical partitions.
3 A virtual machine is an instance of an operating system along with one or more applications running in an

isolated memory partition within the computer. It enables different operating systems to run in the same
computer at the same time, as well as prevents applications from interfering with each other. See [STAL18] for a
discussion of virtual machines.

e Subchannels: A subchannel appears to a program as a logical device and contains the
information required to perform an 1/0O operation. One subchannel exists for each 1/0 device
addressable by the CSS. A subchannel is used by the channel subsystem code running on a
partition to pass an I/O request to the channel subsystem. A subchannel is assigned for each
device defined to the logical partition. Up to 196k subchannels are supported per CSS.

e Subchannel set: This is a collection of subchannels within a channel subsystem. The maximum
number of subchannels of a subchannel set determines how many devices are accessible to a
channel subsystem.

e Channel path: A channel path is a single interface between a channel subsystem and one or more
control units, via a channel. Commands and data are sent across a channel path to perform 1/0O
requests. Each CSS can have up to 256 channel paths.

e Channel: Channels are small processors that communicate with the 1/0 control units (CUs). They
manage the data transfer between memory and the external devices.

This elaborate structure enables the mainframe to manage a massive number of I/O devices and
communication links. All I/O processing is offloaded from the application and server processors,
enhancing performance. The channel subsystem processors are somewhat general in configuration,
enabling them to manage a wide variety of I/O duties and to keep up with evolving requirements. The
channel processors are specifically programmed for the 1/0O control units to which they interface.

I/O System Organization

To explain the 1/0 system organization, we need to first briefly explain the physical layout of the z13.
The system has the following characteristics:

Weight: 2567 kg (5657 Ibs)
Width: 1.847 m (6.06 ft)
Depth: 1.806 m (5.9 ft)
Height: 2.154 m (7.1 ft)
Not exactly a laptop.

The system consists of two large bays called frames bolted together, that house the various
components of the z13. The A frame houses four processor drawers interconnected via Ethernet, and
one PCle I/O drawer, which contains I/O hardware, including multiplexors and channels. The A frame
also includes two support servers used by a system manager for platform management, battery
backup, and a cooling unit (water or air).

The Z frame houses up to four I/O drawers, which can be a combination of PCle drawers and
customer-selected I/O drawers. The Z frame also includes battery backup and a keyboard/display
tray, which contains the keyboards and the displays that are connected to the support servers.

With this background, we now show a typical configuration of the z13 I/O system structure (Figure
8.20). Each z13 processor drawer supports two types of internal (i.e., internal to the A and Z frames)
I/O infrastructures: PCI Express (PCle) and Infiniband. Each processor drawer includes a card
containing the channel controller which provides connectivity to the 1/0 drawers. These channel
controllers are referred to as fanouts.

Drawer 0 Drawer 1
Memory Memory
| | | | |
P P P P P
SMP U U U SMP | | SMP U U PU SMP
[] cables| | cables [T [11 cables
sSC SC SC
| | 11 1
PU PU PU PU PU PU
PCle Gen3 PCle Gen3
|
16GB/s PCle |
Gend x16]|
PCle Gen3 PCle Gen3 PCle Gen3 PCle Gen3
interconnect interconnect interconnect interconnect
wwercd T T T T
Gen2x8 | L — — —
PCle PCle
" 2GHB/s PCle it
switch Gen? x4 switch
2GB/s PCle / \ / \
Gen2 x4 D |:|
1GRB/s PCle 2GB/s PCle
Genl x4 Genl x4
Fiber Channel 0OSA Express Fiber Channel OS5SA Express
controller controller controller controller
PCle 1/O drawer

Figure 8.20 IBM z13 I/0 System Structure

The InfiniBand connections from the processor book to the 1/O drawers are via a Host Channel
Adapter (HCA) fanout, which has InfiniBand links to InfiniBand multiplexors in the 1/0O drawer. The
InfiniBand multiplexors are used to interconnect servers, communications infrastructure equipment,
storage, and embedded systems. In addition to using InfiniBand to interconnect systems, all of which
use InfiniBand, the InfiniBand multiplexor supports other /O technologies, such as Ethernet. Ethernet
connections provide 1-Gbps and 10-Gbps connections to a variety of devices that support this popular
local area network technology. One noteworthy use of Ethernet is to construct large server farms,
particularly to interconnect blade servers with each other and with other mainframes.4

4 A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It is widely

used in data centers to save space and improve system management. Either self-standing or rack mounted, the
chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.

The PCle connections from the processor book to the 1/O drawers are via a PCle fanout to PCle
switches. The PCle switches can connect to a number of /O device controllers. Typical examples for
z13 are 1-Gbps and 10-Gbps Ethernet, Fiber Channel, and (OSA) Express Controller. OSA is an I/O
adapter technology that provides streamlined, high-speed transfer between system memory and a
high-speed network interface, such as Ethernet.

8.10 Key Terms, Review Questions, and Problems

Key Terms

cache injection
cycle stealing

direct cache access (DCA)
Direct Data 1/O
direct memory access (DMA)
InfiniBand

interrupt
interrupt-driven 1/0
I/0O channel

/0 command

I/O module

1/0 processor
isolated 1/0
last-level cache
memory-mapped I/O
multiplexor channel
non-write allocate
parallel /0
peripheral device
programmed 1/O
selector channel
serial 1/0
Thunderbolt

write allocate

write back

write through

write update

Review Questions

8.1 List three broad classifications of external, or peripheral, devices.

8.2 What is the International Reference Alphabet?

8.3 What are the major functions of an 1/0 module?

8.4 List and briefly define three techniques for performing 1/O.

8.5 What is the difference between memory-mapped I/O and isolated I/O?

8.6 When a device interrupt occurs, how does the processor determine which device issued the
interrupt?

8.7 When a DMA module takes control of a bus, and while it retains control of the bus, what
does the processor do?

Problems

8.1 On a typical microprocessor, a distinct I/O address is used to refer to the 1/0 data registers
and a distinct address for the control and status registers in an 1/O controller for a given device.
Such registers are referred to as ports. In the Intel 8088, two I/O instruction formats are used.
In one format, the 8-bit opcode specifies an 1/O operation; this is followed by an 8-bit port
address. Other I/O opcodes imply that the port address is in the 16-bit DX register. How many
ports can the 8088 address in each I/O addressing mode?
8.2 A similar instruction format is used in the Zilog Z8000 microprocessor family. In this case,
there is a direct port addressing capability, in which a 16-bit port address is part of the
instruction, and an indirect port addressing capability, in which the instruction references one of
the 16-bit general purpose registers, which contains the port address. How many ports can the
Z8000 address in each 1/0O addressing mode?
8.3 The Z8000 also includes a block I/O transfer capability that, unlike DMA, is under the direct
control of the processor. The block transfer instructions specify a port address register (Rp), a
count register (Rc), and a destination register (Rd). Rd contains the main memory address at
which the first byte read from the input port is to be stored. Rc is any of the 16-bit general
purpose registers. How large a data block can be transferred?
8.4 Consider a microprocessor that has a block 1/O transfer instruction such as that found on
the Z8000. Following its first execution, such an instruction takes five clock cycles to re-execute.
However, if we employ a nonblocking 1/O instruction, it takes a total of 20 clock cycles for
fetching and execution. Calculate the increase in speed with the block 1/O instruction when
transferring blocks of 128 bytes.
8.5 A system is based on an 8-bit microprocessor and has two 1/O devices. The I/O controllers
for this system use separate control and status registers. Both devices handle data on a 1-
byte-at-a-time basis. The first device has two status lines and three control lines. The second
device has three status lines and four control lines.

a. How many 8-bit I/O control module registers do we need for status reading and control of

each device?
b. What is the total number of needed control module registers given that the first device is
an output-only device?
c. How many distinct addresses are needed to control the two devices?

8.6 For programmed |I/O, Figure 8.5 indicates that the processor is stuck in a wait loop doing
status checking of an I/O device. To increase efficiency, the I/O software could be written so
that the processor periodically checks the status of the device. If the device is not ready, the
processor can jump to other tasks. After some timed interval, the processor comes back to
check status again.
a. Consider the above scheme for outputting data one character at a time to a printer that
operates at 10 characters per second (cps). What will happen if its status is scanned
every 200 ms?

b. Next consider a keyboard with a single character buffer. On average, characters are
entered at a rate of 10 cps. However, the time interval between two consecutive key
depressions can be as short as 60 ms. At what frequency should the keyboard be
scanned by the I/O program?

8.7 A microprocessor scans the status of an output I/O device every 20 ms. This is
accomplished by means of a timer alerting the processor every 20 ms. The interface of the
device includes two ports: one for status and one for data output. How long does it take to scan
and service the device, given a clocking rate of 8 MHz? Assume for simplicity that all pertinent
instruction cycles take 12 clock cycles.
8.8 In Section 8.3 , one advantage and one disadvantage of memory-mapped I/O, compared
with isolated 1/O, were listed. List two more advantages and two more disadvantages.
8.9 A particular system is controlled by an operator through commands entered from a
keyboard. The average number of commands entered in an 8-hour interval is 60.
a. Suppose the processor scans the keyboard every 100 ms. How many times will the
keyboard be checked in an 8-hour period?
b. By what fraction would the number of processor visits to the keyboard be reduced if
interrupt-driven 1/0O were used?

8.10 Suppose that the 8255A shown in Figure 8.9 is configured as follows: port A as input, port
B as output, and all the bits of port C as output. Show the bits of the control register to define
this configuration.
8.11 Consider a system employing interrupt-driven I/O for a particular device that transfers data
at an average of 8 KB/s on a continuous basis.

a. Assume that interrupt processing takes about 100us (i.e., the time to jump to the interrupt

service routine (ISR), execute it, and return to the main program). Determine what
fraction of processor time is consumed by this I/O device if it interrupts for every byte.
b. Now assume that the device has two 16-byte buffers and interrupts the processor when
one of the buffers is full. Naturally, interrupt processing takes longer, because the ISR
must transfer 16 bytes. While executing the ISR, the processor takes about 8us for the

transfer of each byte. Determine what fraction of processor time is consumed by this I/O
device in this case.

c. Now assume that the processor is equipped with a block transfer 1/O instruction such as
that found on the Z8000. This permits the associated ISR to transfer each byte of a block
in only 2us. Determine what fraction of processor time is consumed by this 1/0O device in

this case.

8.12 In virtually all systems that include DMA modules, DMA to main memory is given higher
priority than CPU access to main memory. Why?

8.13 A DMA module is transferring characters to memory using cycle stealing, from a device
transmitting at 9600 bps. The processor is fetching instructions at the rate of 1 million
instructions per second (1 MIPS). By how much will the processor be slowed down due to the
DMA activity?

8.14 Consider a system in which bus cycles takes 500 ns. Transfer of bus control in either
direction, from processor to I/O device or vice versa, takes 250 ns. One of the 1/0O devices has a
data transfer rate of 50 KB/s and employs DMA. Data are transferred 1 byte at a time.

a. Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus
mastership prior to the start of a block transfer and maintains control of the bus until the
whole block is transferred. For how long would the device tie up the bus when
transferring a block of 128 bytes?

b. Repeat the calculation for cycle-stealing mode.

8.15 Examination of the timing diagram of the 8237A indicates that once a block transfer
begins, it takes three bus clock cycles per DMA cycle. During the DMA cycle, the 8237A
transfers one byte of information between memory and 1/O device.
a. Suppose we clock the 8237A at a rate of 5 MHz. How long does it take to transfer one
byte?
b. What would be the maximum attainable data transfer rate?
c. Assume that the memory is not fast enough and we have to insert two wait states per
DMA cycle. What will be the actual data transfer rate?

8.16 Assume that in the system of the preceding problem, a memory cycle takes 750 ns. To
what value could we reduce the clocking rate of the bus without effect on the attainable data
transfer rate?
8.17 A DMA controller serves four receive-only telecommunication links (one per DMA channel)
having a speed of 64 Kbps each.

a. Would you operate the controller in burst mode or in cycle-stealing mode?

b. What priority scheme would you employ for service of the DMA channels?

8.18 A 32-bit computer has two selector channels and one multiplexor channel. Each selector
channel supports two magnetic disk and two magnetic tape units. The multiplexor channel has
two line printers, two card readers, and 10 VDT terminals connected to it. Assume the following
transfer rates:

Disk drive 800 Kbytes/s
Magnetic tape drive 200 Kbytes/s
Line printer 6.6 Kbytes/s
Card reader 1.2 Kbytes/s
VDT 1 Kbyte/s

Estimate the maximum aggregate 1/O transfer rate in this system.
8.19 A computer consists of a processor and an 1/O device D connected to main memory M vig\
a shared bus with a data bus width of one word. The processor can execute a maximum of 10

instructions per second. An average instruction requires five machine cycles, three of which use
the memory bus. A memory read or write operation uses one machine cycle. Suppose that the
processor is continuously executing “background” programs that require 95% of its instruction
execution rate but not any I/O instructions. Assume that one processor cycle equals one bus
cycle. Now suppose the 1/0O device is to be used to transfer very large blocks of data between M
and D.

a. If programmed I/O is used and each one-word I/O transfer requires the processor to
execute two instructions, estimate the maximum 1/O data-transfer rate, in words per
second, possible through D.

b. Estimate the same rate if DMA is used.

8.20 A data source produces 7-bit IRA characters, to each of which is appended a parity bit.
Derive an expression for the maximum effective data rate (rate of IRA data bits) over an R-bps
line for the following:

a.

Asynchronous transmission, with a 1.5-unit stop bit;

b. Bit-synchronous transmission, with a frame consisting of 48 control bits and 128
information bits;

c. Same as (b), with a 1024-bit information field;

d. Character-synchronous, with nine control characters per frame and 16 information
characters;

e. Same as (d), with 128 information characters.

8.21 Two women are on either side of a high fence. One of the women, named Apple-server,
has a beautiful apple tree loaded with delicious apples growing on her side of the fence; she is
happy to supply apples to the other woman whenever needed. The other woman, named
Apple-eater, loves to eat apples but has none. In fact, she must eat her apples at a fixed rate
(an apple a day keeps the doctor away). If she eats them faster than that rate, she will get sick.
If she eats them slower, she will suffer malnutrition. Neither woman can talk, and so the problem
is to get apples from Apple-server to Apple-eater at the correct rate.

a. Assume that there is an alarm clock sitting on top of the fence and that the clock can
have multiple alarm settings. How can the clock be used to solve the problem? Draw a
timing diagram to illustrate the solution.

b. Now assume that there is no alarm clock. Instead Apple-eater has a flag that she can
wave whenever she needs an apple. Suggest a new solution. Would it be helpful for
Apple-server also to have a flag? If so, incorporate this into the solution. Discuss the
drawbacks of this approach.

c. Now take away the flag and assume the existence of a long piece of string. Suggest a
solution that is superior to that of (b) using the string.

8.22 Assume that one 16-bit and two 8-bit microprocessors are to be interfaced to a system
bus. The following details are given:
1. All microprocessors have the hardware features necessary for any type of data transfer:
programmed 1I/O, interrupt-driven 1/0, and DMA.
2. All microprocessors have a 16-bit address bus.
3. Two memory boards, each of 64-Kbytes capacity, are interfaced with the bus. The
designer wishes to use a shared memory that is as large as possible.
4. The system bus supports a maximum of four interrupt lines and one DMA line. Make any
other assumptions necessary, and:
a. Give the system bus specifications in terms of number and types of lines.
b. Describe a possible protocol for communicating on the bus (i.e., read-write,
interrupt, and DMA sequences).
c. Explain how the aforementioned devices are interfaced to the system bus.

Chapter 9 Operating System Support

9.1 Operating System Overview
Operating System Objectives and Functions

Types of Operating Systems
9.2 Scheduling
Long-Term Scheduling
Medium-Term Scheduling
Short-Term Scheduling
9.3 Memory Management
Swapping
Partitioning
Paging
Virtual Memory
Translation Lookaside Buffer
Segmentation
9.4 Intel x86 Memory Management
Address Spaces
Segmentation
Paging
9.5 ARM Memory Management
Memory System Organization
Virtual Memory Address Translation
Memory-Management Formats

Access Control

9.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

e Summarize, at a top level, the key functions of an operating system (OS)

Discuss the evolution of operating systems for early simple batch systems to modern complex
systems.

Explain the differences among long-, medium-, and short-term scheduling.

Understand the reason for memory partitioning and explain the various techniques that are used.
Assess the relative advantages of paging and segmentation.

Define virtual memory.

Although the focus of this text is computer hardware, there is one area of software
that needs to be addressed: the computer’s OS. The OS is a program that
manages the computer’s resources, provides services for programmers, and
schedules the execution of other programs. Some understanding of operating
systems is essential to appreciate the mechanisms by which the CPU controls the
computer system. In particular, explanations of the effect of interrupts and of the
management of the memory hierarchy are best explained in this context.

The chapter begins with an overview and brief history of operating systems. The
bulk of the chapter looks at the two OS functions that are most relevant to the
study of computer organization and architecture: scheduling and memory
management.

9.1 Operating System Overview

Operating System Objectives and Functions

An OS is a program that controls the execution of application programs and acts as an interface
between applications and the computer hardware. It can be thought of as having two objectives:

e Convenience: An OS makes a computer more convenient to use.
e Efficiency: An OS allows the computer system resources to be used in an efficient manner.
Let us examine these two aspects of an OS in turn.

THE OPERATING SYSTEM AS A USER/COMPUTER INTERFACE

The hardware and software used in providing applications to a user can be viewed in a layered or
hierarchical fashion, as depicted in Figure 9.1. The user of those applications, the end user, generally
is not concerned with the computer’s architecture. Thus the end user views a computer system in
terms of an application. That application can be expressed in a programming language and is
developed by an application programmer. To develop an application program as a set of processor
instructions that is completely responsible for controlling the computer hardware would be an
overwhelmingly complex task. To ease this task, a set of system programs is provided. Some of these
programs are referred to as utilities. These implement frequently used functions that assist in
program creation, the management of files, and the control of I/O devices. A programmer makes use
of these facilities in developing an application, and the application, while it is running, invokes the
utilities to perform certain functions. The most important system program is the OS. The OS masks
the details of the hardware from the programmer and provides the programmer with a convenient
interface for using the system. It acts as mediator, making it easier for the programmer and for
application programs to access and use those facilities and services.

L Application programs
Application PP prog
programming interface . . L
Application Libraries/utilities Software
binary interface
Operating system
Instruction set
architecture
Execution hardware
Memory
System interconnect translation Hardware
(bus)
I/0 devices Main
o memor
networking y

Figure 9.1 Computer Hardware and Software Structure

Briefly, the OS typically provides services in the following areas:

Program creation: The OS provides a variety of facilities and services, such as editors and
debuggers, to assist the programmer in creating programs. Typically, these services are in the form
of utility programs that are not actually part of the OS but are accessible through the OS.
Program execution: A number of steps need to be performed to execute a program. Instructions
and data must be loaded into main memory, I/O devices and files must be initialized, and other
resources must be prepared. The OS handles all of this for the user.
Access to I/O devices: Each I/O device requires its own specific set of instructions or control
signals for operation. The OS takes care of the details so that the programmer can think in terms of
simple reads and writes.
Controlled access to files: In the case of files, control must include an understanding of not only
the nature of the 1/0 device (disk drive, tape drive) but also the file format on the storage medium.
Again, the OS worries about the details. Further, in the case of a system with multiple simultaneous
users, the OS can provide protection mechanisms to control access to the files.
System access: In the case of a shared or public system, the OS controls access to the system as
a whole and to specific system resources. The access function must provide protection of
resources and data from unauthorized users and must resolve conflicts for resource contention.
Error detection and response: A variety of errors can occur while a computer system is running.
These include internal and external hardware errors, such as a memory error, or a device failure or
malfunction; and various software errors, such as arithmetic overflow, attempt to access forbidden
memory location, and inability of the OS to grant the request of an application. In each case, the
OS must make the response that clears the error condition with the least impact on running
applications. The response may range from ending the program that caused the error, to retrying
the operation, to simply reporting the error to the application.
Accounting: A good OS collects usage statistics for various resources and monitors performance
parameters such as response time. On any system, this information is useful in anticipating the
need for future enhancements and in tuning the system to improve performance. On a multiuser
system, the information can be used for billing purposes. Figure 9.1 also indicates three key
interfaces in a typical computer system:
= Instruction set architecture (ISA): The ISA defines the repertoire of machine language
instructions that a computer can follow. This interface is the boundary between hardware and
software. Note that both application programs and utilities may access the ISA directly. For
these programs, a subset of the instruction repertoire is available (user ISA). The OS has
access to additional machine language instructions that deal with managing system resources
(system ISA).
= Application binary interface (ABI): The ABI defines a standard for binary portability across
programs. The ABI defines the system call interface to the operating system and the hardware
resources and services available in a system through the user ISA.
= Application programming interface (API): The API gives a program access to the hardware
resources and services available in a system through the user ISA supplemented with
high-level language (HLL) library calls. Any system calls are usually performed through
libraries. Using an API enables application software to be ported easily, through recompilation,
to other systems that support the same API.

THE OPERATING SYSTEM AS RESOURCE MANAGER

A computer is a set of resources for the movement, storage, and processing of data and for the
control of these functions. The OS is responsible for managing these resources.

Can we say that the OS controls the movement, storage, and processing of data? From one point of
view, the answer is yes: By managing the computer’s resources, the OS is in control of the computer’s
basic functions. But this control is exercised in a curious way. Normally, we think of a control

mechanism as something external to that which is controlled, or at least as something that is a distinct
and separate part of that which is controlled. (For example, a residential heating system is controlled
by a thermostat, which is completely distinct from the heat-generation and heat-distribution
apparatus.) This is not the case with the OS, which as a control mechanism is unusual in two
respects:

e The OS functions in the same way as ordinary computer software; that is, it is a program executed
by the processor.
e The OS frequently relinquishes control and must depend on the processor to allow it to regain
control.
Like other computer programs, the OS provides instructions for the processor. The key difference is in
the intent of the program. The OS directs the processor in the use of the other system resources and
in the timing of its execution of other programs. But in order for the processor to do any of these
things, it must cease executing the OS program and execute other programs. Thus, the OS
relinquishes control for the processor to do some “useful” work and then resumes control long enough
to prepare the processor to do the next piece of work. The mechanisms involved in all this should
become clear as the chapter proceeds.

Figure 9.2 suggests the main resources that are managed by the OS. A portion of the OS is in main
memory. This includes the kernel, or nucleus , which contains the most frequently used functions
in the OS and, at a given time, other portions of the OS currently in use. The remainder of main
memory contains user programs and data. The allocation of this resource (main memory) is controlled
jointly by the OS and memory-management hardware in the processor, as we will see. The OS
decides when an I/O device can be used by a program in execution, and controls access to and use of
files. The processor itself is a resource, and the OS must determine how much processor time is to be
devoted to the execution of a particular user program. In the case of a multiple-processor system, this
decision must span all of the processors.

Computer system

/O devices

Memory
Operating I/O controller »() Printers,

system keyboards,
sof digital camera,
soltware I/O controller [~ » O ete.

. .

Programs . .

and data . .

I/O controller
Processor P Processor

Storage

0S
Programs

Data

Figure 9.2 The Operating System as Resource Manager

Types of Operating Systems

Certain key characteristics serve to differentiate various types of operating systems. The
characteristics fall along two independent dimensions. The first dimension specifies whether the
system is batch or interactive. In an interactive system, the user/programmer interacts directly with
the computer, usually through a keyboard/display terminal, to request the execution of a job or to
perform a transaction. Furthermore, the user may, depending on the nature of the application,
communicate with the computer during the execution of the job. A batch system is the opposite of
interactive. The user’s program is batched together with programs from other users and submitted by
a computer operator. After the program is completed, results are printed out for the user. Pure batch
systems are rare today, however, it will be useful to the description of contemporary operating
systems to briefly examine batch systems.

An independent dimension specifies whether the system employs multiprogramming or not. With
multiprogramming, the attempt is made to keep the processor as busy as possible, by having it work
on more than one program at a time. Several programs are loaded into memory, and the processor
switches rapidly among them. The alternative is a uniprogramming system that works only one
program at a time.

EARLY SYSTEMS

With the earliest computers, from the late 1940s to the mid-1950s, the programmer interacted directly
with the computer hardware; there was no OS. These processors were run from a console, consisting

of display lights, toggle switches, some form of input device, and a printer. Programs in processor
code were loaded via the input device (e.g., a card reader). If an error halted the program, the error
condition was indicated by the lights. The programmer could proceed to examine registers and main
memory to determine the cause of the error. If the program proceeded to a normal completion, the
output appeared on the printer.

These early systems presented two main problems:

e Scheduling: Most installations used a sign-up sheet to reserve processor time. Typically, a user
could sign up for a block of time in multiples of a half hour or so. A user might sign up for an hour
and finish in 45 minutes; this would result in wasted computer idle time. On the other hand, the
user might run into problems, not finish in the allotted time, and be forced to stop before resolving
the problem.

e Setup time: A single program, called a job, could involve loading the compiler plus the high-level
language program (source program) into memory, saving the compiled program (object program),
and then loading and linking together the object program and common functions. Each of these
steps could involve mounting or dismounting tapes, or setting up card decks. If an error occurred,
the hapless user typically had to go back to the beginning of the setup sequence. Thus a
considerable amount of time was spent just in setting up the program to run.

This mode of operation could be termed serial processing, reflecting the fact that users have access to
the computer in series. Over time, various system software tools were developed to attempt to make
serial processing more efficient. These include libraries of common functions, linkers, loaders,
debuggers, and I/O driver routines that were available as common software for all users.

SIMPLE BATCH SYSTEMS

Early processors were very expensive, and therefore it was important to maximize processor
utilization. The wasted time due to scheduling and setup time was unacceptable.

To improve utilization, simple batch operating systems were developed. With such a system, also
called a monitor, the user no longer has direct access to the processor. Rather, the user submits the
job on cards or tape to a computer operator, who batches the jobs together sequentially and places
the entire batch on an input device, for use by the monitor.

To understand how this scheme works, let us look at it from two points of view: that of the monitor and
that of the processor. From the point of view of the monitor, the monitor controls the sequence of
events. For this to be so, much of the monitor must always be in main memory and available for
execution (Figure 9.3). That portion is referred to as the resident monitor. The rest of the monitor
consists of utilities and common functions that are loaded as subroutines to the user program at the
beginning of any job that requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job is placed in the user
program area, and control is passed to this job. When the job is completed, it returns control to the
monitor, which immediately reads in the next job. The results of each job are printed out for delivery to
the user.

Interrupt
processing

Device
drivers

Job
sequencing

Monitor

Control language
interpreter

Boundary ———»

User
program
area

Figure 9.3 Memory Layout for a Resident Monitor

Now consider this sequence from the point of view of the processor. At a certain point in time, the
processor is executing instructions from the portion of main memory containing the monitor. These
instructions cause the next job to be read in to another portion of main memory. Once a job has been
read in, the processor will encounter in the monitor a branch instruction that instructs the processor to
continue execution at the start of the user program. The processor will then execute the instruction in
the user’s program until it encounters an ending or error condition. Either event causes the processor
to fetch its next instruction from the monitor program. Thus the phrase “control is passed to a job”
simply means that the processor is now fetching and executing instructions in a user program, and
“control is returned to the monitor” means that the processor is now fetching and executing
instructions from the monitor program.

It should be clear that the monitor handles the scheduling problem. A batch of jobs is queued up, and
jobs are executed as rapidly as possible, with no intervening idle time.

How about the job setup time? The monitor handles this as well. With each job, instructions are
included in a job control language (JCL). This is a special type of programming language used to
provide instructions to the monitor. A simple example is that of a user submitting a program written in
FORTRAN plus some data to be used by the program. Each FORTRAN instruction and each item of
data is on a separate punched card or a separate record on tape. In addition to FORTRAN and data
lines, the job includes job control instructions, which are denoted by the beginning “$”. The overall
format of the job looks like this:

$JOB

$FTN

: }JFORTRAN instructions
$LOAD

$RUN

: } Data

$SEND

To execute this job, the monitor reads the $FTN line and loads the appropriate compiler from its mass
storage (usually tape). The compiler translates the user’s program into object code, which is stored in
memory or mass storage. If it is stored in memory, the operation is referred to as “compile, load, and
go.” If it is stored on tape, then the $LOAD instruction is required. This instruction is read by the
monitor, which regains control after the compile operation. The monitor invokes the loader, which
loads the object program into memory in place of the compiler and transfers control to it. In this
manner, a large segment of main memory can be shared among different subsystems, although only
one such subsystem could be resident and executing at a time.

We see that the monitor, or batch OS, is simply a computer program. It relies on the ability of the
processor to fetch instructions from various portions of main memory in order to seize and relinquish
control alternately. Certain other hardware features are also desirable:

e Memory protection: While the user program is executing, it must not alter the memory area
containing the monitor. If such an attempt is made, the processor hardware should detect an error
and transfer control to the monitor. The monitor would then abort the job, print out an error
message, and load the next job.

e Timer: A timer is used to prevent a single job from monopolizing the system. The timer is set at the
beginning of each job. If the timer expires, an interrupt occurs, and control returns to the monitor.

e Privileged instructions: Certain instructions are designated privileged and can be executed only
by the monitor. If the processor encounters such an instruction while executing a user program, an
error interrupt occurs. Among the privileged instructions are 1/O instructions, so that the monitor
retains control of all I/O devices. This prevents, for example, a user program from accidentally
reading job control instructions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it. If a privileged instruction is encountered by the
processor while it is executing a user program, the processor hardware considers this an error and
transfers control to the monitor.

e Interrupts: Early computer models did not have this capability. This feature gives the OS more
flexibility in relinquishing control to and regaining control from user programs.

Processor time alternates between execution of user programs and execution of the monitor. There
have been two sacrifices: Some main memory is now given over to the monitor and some processor
time is consumed by the monitor. Both of these are forms of overhead. Even with this overhead, the
simple batch system improves utilization of the computer.

MULTIPROGRAMMED BATCH SYSTEMS

Even with the automatic job sequencing provided by a simple batch OS, the processor is often idle.
The problem is that I/O devices are slow compared to the processor. Figure 9.4 details a
representative calculation. The calculation concerns a program that processes a file of records and
performs, on average, 100 processor instructions per record. In this example the computer spends
over 96% of its time waiting for 1/0O devices to finish transferring data! Figure 9.5a illustrates this
situation. The processor spends a certain amount of time executing, until it reaches an 1/O instruction.
It must then wait until that 1/0 instruction concludes before proceeding.

Read one record from file 15 us

Execute 100 instructions 1 ps
Write one record to file 15 us
TOTAL 31 us

Percent CPU utilization = % — 0.032 = 3.2%

Figure 9.4 System Utilization Example

This inefficiency is not necessary. We know that there must be enough memory to hold the OS
(resident monitor) and one user program. Suppose that there is room for the OS and two user
programs. Now, when one job needs to wait for I/O, the processor can switch to the other job, which
likely is not waiting for 1/0 (Figure 9.5b). Furthermore, we might expand memory to hold three, four, or
more programs and switch among all of them (Figure 9.5c). This technique is known as
multiprogramming, or multitasking .1 Itis the central theme of modern operating systems.

" The term multitasking is sometimes reserved to mean multiple tasks within the same program that may be handled
concurrently by the OS, in contrast to multiprogramming, which would refer to multiple processes from multiple
programs. However, it is more common to equate the terms multitasking and multiprogramming, as is done in most
standards dictionaries (e.g., IEEE Std 100-1992, The New IEEE Standard Dictionary of Electrical and Electronics
Terms).

Program A | Run Wait Run Wait

Time -

(a) Uniprogramming
Program A | Run Wait Run Wait
Program B Wait| Run Wait Run Wait
. Run | Run . Run | Run .

Combined A B Wait A B Wait

Time -

(b) Multiprogramming with two programs

Program A | Run Wait Run Wait
Program B Wait| Run Wait Run Wait

Program C Wait - Wait - Wait
. Run | Run . Run | Run .
Combined A B . Wait A B . Wait

Time -

{c) Multiprogramming with three programs

Figure 9.5 Multiprogramming Example

Example 9.1

This example illustrates the benefit of multiprogramming. Consider a computer with 250 Mbytes of
available memory (not used by the OS), a disk, a terminal, and a printer. Three programs, JOB1,
JOB2, and JOB3, are submitted for execution at the same time, with the attributes listed in Table
9.1. We assume minimal processor requirements for JOB1 and JOB2 and continuous disk and
printer use by JOB3. For a simple batch environment, these jobs will be executed in sequence.
Thus, JOB1 completes in 5 minutes. JOB2 must wait until the 5 minutes is over and then
completes 15 minutes after that. JOB3 begins after 20 minutes and completes at 30 minutes from
the time it was initially submitted. The average resource utilization, throughput, and response
times are shown in the uniprogramming column of Table 9.2. Device-by-device utilization is
illustrated in Figure 9.6a. It is evident that there is gross underutilization for all resources when

averaged over the required 30-minute time period.

Table 9.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3
Type of job Heavy compute Heavy I/O Heavy I/O
Duration (min) 5 15 10
Memory required (M) 50 100 80
Need disk? No No Yes
Need terminal? No Yes No
Need printer? No No Yes

Table 9.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming
Processor use (%) 20 40
Memory use (%) 33 67
Disk use (%) 33 67
Printer use (%) 33 67
Elapsed time (min) 30 15
Throughput rate (jobs/hr) 6 12
Mean response time (min) 18 10

1005 1005
CPU CPU
0% 0%
100% 1005
Memory Memory
0% 0%
1005 1005
Disk Disk e
0% | _____ 0%
1009 100%
Terminal Terminal
0%
s ———— 1005
Printer Printer c— ===
| I] I I 0% | — 0%
I I | o I . I I
Job history JOBI JOB2 JOB3 Job history | JOBI
T T T T T - JOB2 -
0 5 10 15 20 25 30 JOB3
Minutes - I T
Time] 5) 10 15
Minutes Time
(a) Uniprogramming (b) Multiprogramming

Figure 9.6 Utilization Histograms

Now suppose that the jobs are run concurrently under a multiprogramming OS. Because there is
little resource contention between the jobs, all three can run in nearly minimum time while
coexisting with the others in the computer (assuming that JOB2 and JOB3 are allotted enough
processor time to keep their input and output operations active). JOB1 will still require 5 minutes to
complete but at the end of that time, JOB2 will be one-third finished, and JOB3 will be half
finished. All three jobs will have finished within 15 minutes. The improvement is evident when
examining the multiprogramming column of Table 9.2, obtained from the histogram shown in
Figure 9.6b.

As with a simple batch system, a multiprogramming batch system must rely on certain computer
hardware features. The most notable additional feature that is useful for multiprogramming is the
hardware that supports I/O interrupts and DMA. With interrupt-driven 1/O or DMA, the processor can
issue an 1/0O command for one job and proceed with the execution of another job while the I/O is
carried out by the device controller. When the 1/0O operation is complete, the processor is interrupted
and control is passed to an interrupt-handling program in the OS. The OS will then pass control to
another job.

Multiprogramming operating systems are fairly sophisticated compared to single-program, or
uniprogramming, systems. To have several jobs ready to run, the jobs must be kept in main memory,
requiring some form of memory management. In addition, if several jobs are ready to run, the
processor must decide which one to run, which requires some algorithm for scheduling. These
concepts are discussed later in this chapter.

TIME-SHARING SYSTEMS

With the use of multiprogramming, batch processing can be quite efficient. However, for many jobs, it
is desirable to provide a mode in which the user interacts directly with the computer. Indeed, for some
jobs, such as transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often is, met by the use of a
dedicated microcomputer. That option was not available in the 1960s, when most computers were big
and costly. Instead, time sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs at a time,
multiprogramming can be used to handle multiple interactive jobs. In this latter case, the technique is
referred to as time sharing, because the processor’s time is shared among multiple users. In a
time-sharing system, multiple users simultaneously access the system through terminals, with the
OS interleaving the execution of each user program in a short burst or quantum of computation. Thus,
if there are n users actively requesting service at one time, each user will only see on the average 1/n
of the effective computer speed, not counting OS overhead. However, given the relatively slow human
reaction time, the response time on a properly designed system should be comparable to that on a
dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The key differences are listed
in Table 9.3.

Table 9.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing
Principal objective Maximize processor use Minimize response time
Source of directives to Job control language commands Commands entered at
operating system provided with the job the terminal

9.2 Scheduling

The key to multiprogramming is scheduling. In fact, four types of scheduling are typically involved
(Table 9.4). We will explore these presently. But first, we introduce the concept of process . This
term was first used by the designers of the Multics OS in the 1960s. It is a somewhat more general
term than job. Many definitions have been given for the term process, including

Table 9.4 Types of Scheduling

Long-term The decision to add to the pool of processes to be executed.

scheduling

Medium-term The decision to add to the number of processes that are partially or fully in

scheduling main memory.

Short-term The decision as to which available process will be executed by the

scheduling processor.

I/0 scheduling The decision as to which process’s pending I/O request shall be handled by
an available 1/0O device.

e A program in execution
e The “animated spirit” of a program
e That entity to which a processor is assigned
This concept should become clearer as we proceed.

Long-Term Scheduling

The long-term scheduler determines which programs are admitted to the system for processing. Thus,
it controls the degree of multiprogramming (number of processes in memory). Once admitted, a job or
user program becomes a process and is added to the queue for the short-term scheduler. In some
systems, a newly created process begins in a swapped-out condition, in which case it is added to a
queue for the medium-term scheduler.

In a batch system, or for the batch portion of a general-purpose OS, newly submitted jobs are routed
to disk and held in a batch queue. The long-term scheduler creates processes from the queue when it
can. There are two decisions involved here. First, the scheduler must decide that the OS can take on
one or more additional processes. Second, the scheduler must decide which job or jobs to accept and
turn into processes. The criteria used may include priority, expected execution time, and 1/0O
requirements.

For interactive programs in a time-sharing system, a process request is generated when a user
attempts to connect to the system. Time-sharing users are not simply queued up and kept waiting until
the system can accept them. Rather, the OS will accept all authorized comers until the system is
saturated, using some predefined measure of saturation. At that point, a connection request is met
with a message indicating that the system is full and the user should try again later.

Medium-Term Scheduling

Medium-term scheduling is part of the swapping function, described in Section 9.3. Typically, the
swapping-in decision is based on the need to manage the degree of multiprogramming. On a system
that does not use virtual memory, memory management is also an issue. Thus, the swapping-in
decision will consider the memory requirements of the swapped-out processes.

Short-Term Scheduling

The long-term scheduler executes relatively infrequently and makes the coarse-grained decision of
whether or not to take on a new process, and which one to take. The short-term scheduler, also
known as the dispatcher, executes frequently and makes the fine-grained decision of which job to
execute next.

PROCESS STATES

To understand the operation of the short-term scheduler, we need to consider the concept of a
process state. During the lifetime of a process, its status will change a number of times. Its status at
any point in time is referred to as a state. The term state is used because it connotes that certain
information exists that defines the status at that point. At minimum, there are five defined states for a
process (Figure 9.7):

. Dispatch .
Admit —_— Release
(New —_— Ready Running ——» Exit
Timeout

-~

(Blocked

Figure 9.7 Five-State Process Model

New: A program is admitted by the high-level scheduler but is not yet ready to execute. The OS
will initialize the process, moving it to the ready state.

Ready: The process is ready to execute and is awaiting access to the processor.

Running: The process is being executed by the processor.

Waiting: The process is suspended from execution waiting for some system resource, such as 1/O.
Halted: The process has terminated and will be destroyed by the OS.

For each process in the system, the OS must maintain information indicating the state of the process
and other information necessary for process execution. For this purpose, each process is represented
in the OS by a process control block (Figure 9.8), which typically contains:

Identifier

State

Priority

Program counter

Memory pointers

Context data

I/O status
information

Accounting
information

Figure 9.8 Process Control Block

Identifier: Each current process has a unique identifier.
State: The current state of the process (new, ready, and so on).
Priority: Relative priority level.
Program counter: The address of the next instruction in the program to be executed.
Memory pointers: The starting and ending locations of the process in memory.
Context data: These are data that are present in registers in the processor while the process is
executing, and they will be discussed in Part Three. For now, it is enough to say that these data
represent the “context” of the process. The context data plus the program counter are saved when
the process leaves the running state. They are retrieved by the processor when it resumes
execution of the process.
e /O status information: Includes outstanding I/O requests, 1/0O devices (e.g., tape drives) assigned
to this process, a list of files assigned to the process, and so on.
e Accounting information: May include the amount of processor time and clock time used, time
limits, account numbers, and so on.
When the scheduler accepts a new job or user request for execution, it creates a blank process
control block and places the associated process in the new state. After the system has properly filled
in the process control block, the process is transferred to the ready state.

SCHEDULING TECHNIQUES

To understand how the OS manages the scheduling of the various jobs in memory, let us begin by
considering the simple example in Figure 9.9. The figure shows how main memory is partitioned at a
given point in time. The kernel of the OS is, of course, always resident. In addition, there are a number
of active processes, including A and B, each of which is allocated a portion of memory.

(a) (b) (c)
Figure 9.9 Scheduling Example

We begin at a point in time when process A is running. The processor is executing instructions from
the program contained in A’s memory partition. At some later point in time, the processor ceases to
execute instructions in A and begins executing instructions in the OS area. This will happen for one of
three reasons:

1. Process A issues a service call (e.g., an I/O request) to the OS. Execution of A is suspended
until this call is satisfied by the OS.

2. Process A causes an interrupt. An interrupt is a hardware-generated signal to the processor.
When this signal is detected, the processor ceases to execute A and transfers to the interrupt
handler in the OS. A variety of events related to A will cause an interrupt. One example is an
error, such as attempting to execute a privileged instruction. Another example is a timeout; to
prevent any one process from monopolizing the processor, each process is only granted the
processor for a short period at a time.

3. Some event unrelated to process A that requires attention causes an interrupt. An example is
the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context data and the program
counter for A in A’s process control block and then begins executing in the OS. The OS may perform
some work, such as initiating an 1/0O operation. Then the short-term-scheduler portion of the OS
decides which process should be executed next. In this example, B is chosen. The OS instructs the
processor to restore B’s context data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short-term scheduler. Figure 9.10 shows
the major elements of the OS involved in the multiprogramming and scheduling of processes. The OS
receives control of the processor at the interrupt handler if an interrupt occurs and at the service-call
handler if a service call occurs. Once the interrupt or service call is handled, the short-term scheduler
is invoked to select a process for execution.

Operating system
Service call Service
from process | | call
handler (code)
Interrupt Long- Short- I/O
i term term queues
from process Interrupt ene hene
Interru handler (code) q q
pt ||
from 1/O err—
scheduler
(code)

Y
Pass control
to process

Figure 9.10 Key Elements of an Operating System for Multiprogramming

To do its job, the OS maintains a number of queues. Each queue is simply a waiting list of processes
waiting for some resource. The long-term queue is a list of jobs waiting to use the system. As
conditions permit, the high-level scheduler will allocate memory and create a process for one of the
waiting items. The short-term queue consists of all processes in the ready state. Any one of these
processes could use the processor next. It is up to the short-term scheduler to pick one. Generally,
this is done with a round-robin algorithm, giving each process some time in turn. Priority levels may
also be used. Finally, there is an I/O queue for each I/O device. More than one process may request
the use of the same 1/O device. All processes waiting to use each device are lined up in that device’s
queue.

Figure 9.11 suggests how processes progress through the computer under the control of the OS.
Each process request (batch job, user-defined interactive job) is placed in the long-term queue. As
resources become available, a process request becomes a process and is then placed in the ready

state and put in the short-term queue. The processor alternates between executing OS instructions
and executing user processes. While the OS is in control, it decides which process in the short-term
queue should be executed next. When the OS has finished its immediate tasks, it turns the processor
over to the chosen process.

Long-term Short-term
. queue queue
Admit End
e e
-
VO1