

Computer Organization and Architecture
Designing for Performance

Eleventh Edition

Computer Organization and Architecture
Designing for Performance

Eleventh Edition

William Stallings

330 Hudson Street, New York, NY 10013

Senior Vice President Courseware Portfolio Management: Marcia J. Horton

Director, Portfolio Management: Engineering, Computer Science & Global Editions: Julian Partridge

Executive Portfolio Manager: Tracy Johnson

Portfolio Management Assistant: Meghan Jacoby

Managing Content Producer: Scott Disanno

Content Producer: Amanda Brands

R&P Manager: Ben Ferrini

Manufacturing Buyer, Higher Ed, Lake Side Communications, Inc. (LSC): Maura Zaldivar-Garcia

Inventory Manager: Bruce Boundy

Field Marketing Manager: Demetrius Hall

Product Marketing Manager: Yvonne Vannatta

Marketing Assistant: Jon Bryant

Cover Designer: Black Horse Designs

Cover Art: Shuttersstock/Shimon Bar

Full-Service Project Management: Kabilan Selvakumar, SPi Global

Printer/Binder: LSC Communications, Inc.

Copyright © 2019, 2016, 2013, 2010, 2006, 2003, 2000 by Pearson Education, Inc., Hoboken,
New Jersey 07030.

All rights reserved. Manufactured in the United States of America. This publication is protected by
copyright and permissions should be obtained from the publisher prior to any prohibited reproduction,
storage in a retrieval system, or transmission in any form or by any means, electronic, mechanical,
photocopying, recording, or likewise. For information regarding permissions, request forms and the
appropriate contacts within the Pearson Education Global Rights & Permissions department, please
visit http://www.pearsoned.com/permissions/.

Many of the designations by manufacturers and seller to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and the publisher was aware of a
trademark claim, the designations have been printed in initial caps or all caps.

The author and publisher of this book have used their best efforts in preparing this book. These efforts
include the development, research, and testing of theories and programs to determine their
effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with
regard to these programs or the documentation contained in this book. The author and publisher shall
not be liable in any event for incidental or consequential damages with, or arising out of, the
furnishing, performance, or use of these programs.

http://www.pearsoned.com/permissions/

Library of Congress Cataloging-in-Publication Data

Names: Stallings, William, author.

Title: Computer organization and architecture : designing for performance / William Stallings.

Description: Eleventh edition. | Hoboken : Pearson Education, 2019. | Includes bibliographical
references and index.

Identifiers: LCCN 0134997190 | ISBN 9780134997193

Subjects: LCSH: Computer organization. | Computer architecture.

Classification: LCC QA76.9.C643 S73 2018 | DDC 004.2/2—dc23 LC record available at
https://lccn.loc.gov/

1 18

ISBN-10:    0-13-499719-0

ISBN-13: 978-0-13-499719-3

https://lccn.loc.gov/

To Tricia my loving wife, the kindest and gentlest person

Contents
Preface xiii
About the Author xxii

Chapter 1 Basic Concepts and Computer Evolution 1
1.1 Organization and Architecture 2
1.2 Structure and Function 3
1.3 The IAS Computer 11
1.4 Gates, Memory Cells, Chips, and Multichip Modules 17
1.5 The Evolution of the Intel x86 Architecture 23
1.6 Embedded Systems 24
1.7 ARM Architecture 29

1.8 Key Terms, Review Questions, and Problems 34

Chapter 2 Performance Concepts 37
2.1 Designing for Performance 38
2.2 Multicore, MICs, and GPGPUs 44
2.3 Two Laws that Provide Insight: Ahmdahl’s Law and Little’s Law 45
2.4 Basic Measures of Computer Performance 48
2.5 Calculating the Mean 51
2.6 Benchmarks and SPEC 59

2.7 Key Terms, Review Questions, and Problems 66

Chapter 3 A Top-​Level View of Computer Function and Interconnection 72
3.1 Computer Components 73
3.2 Computer Function 75
3.3 Interconnection Structures 90
3.4 Bus Interconnection 92
3.5 Point-​to-​Point Interconnect 94
3.6 PCI Express 99

3.7 Key Terms, Review Questions, and Problems 107

Chapter 4 The Memory Hierarchy: Locality and Performance 112
4.1 Principle of Locality 113
4.2 Characteristics of Memory Systems 118
4.3 The Memory Hierarchy 121
4.4 Performance Modeling of a Multilevel Memory Hierarchy 128

4.5 Key Terms, Review Questions, and Problems 135

 Chapter 5 Cache Memory 138
5.1 Cache Memory Principles 139
5.2 Elements of Cache Design 143
5.3 Intel x86 Cache Organization 165
5.4 The IBM z13 Cache Organization 168
5.5 Cache Performance Models 169

5.6 Key Terms, Review Questions, and Problems 173

Chapter 6 Internal Memory 177
6.1 Semiconductor Main Memory 178
6.2 Error Correction 187
6.3 DDR DRAM 192
6.4 eDRAM 197
6.5 Flash Memory 199
6.6 Newer Nonvolatile Solid-State Memory Technologies 202

6.7 Key Terms, Review Questions, and Problems 205

Chapter 7 External Memory 210
7.1 Magnetic Disk 211
7.2 RAID 221
7.3 Solid State Drives 231
7.4 Optical Memory 234
7.5 Magnetic Tape 240

7.6 Key Terms, Review Questions, and Problems 242

Chapter 8 Input/Output 245
8.1 External Devices 247
8.2 I/O Modules 249
8.3 Programmed I/O 252
8.4 Interrupt-Driven I/O 256
8.5 Direct Memory Access 265
8.6 Direct Cache Access 271
8.7 I/O Channels and Processors 278
8.8 External Interconnection Standards 280
8.9 IBM z13 I/O Structure 283

8.10 Key Terms, Review Questions, and Problems 287

Chapter 9 Operating System Support 291
9.1 Operating System Overview 292

9.2 Scheduling 303
9.3 Memory Management 309
9.4 Intel x86 Memory Management 320
9.5 ARM Memory Management 325

9.6 Key Terms, Review Questions, and Problems 330

Chapter 10 Number Systems 334
10.1 The Decimal System 335
 10.2 Positional Number Systems 336
10.3 The Binary System 337
10.4 Converting Between Binary and Decimal 337
10.5 Hexadecimal Notation 340

10.6 Key Terms and Problems 342

Chapter 11 Computer Arithmetic 344
11.1 The Arithmetic and Logic Unit 345
11.2 Integer Representation 346
11.3 Integer Arithmetic 351
11.4 Floating-Point Representation 366
11.5 Floating-Point Arithmetic 374

11.6 Key Terms, Review Questions, and Problems 383

Chapter 12 Digital Logic 388
12.1 Boolean Algebra 389
12.2 Gates 394
12.3 Combinational Circuits 396
12.4 Sequential Circuits 414
12.5 Programmable Logic Devices 423

12.6 Key Terms and Problems 428

Chapter 13 Instruction Sets: Characteristics and Functions 432
13.1 Machine Instruction Characteristics 433
13.2 Types of Operands 440
13.3 Intel x86 and ARM Data Types 442
13.4 Types of Operations 445
13.5 Intel x86 and ARM Operation Types 458

13.6 Key Terms, Review Questions, and Problems 466
Appendix 13A Little-, Big-, and Bi-Endian 472

Chapter 14 Instruction Sets: Addressing Modes and Formats 476

14.1 Addressing Modes 477
14.2 x86 and ARM Addressing Modes 483
14.3 Instruction Formats 489
14.4 x86 and ARM Instruction Formats 497

14.5 Key Terms, Review Questions, and Problems 502

Chapter 15 Assembly Language and Related Topics 506
15.1 Assembly Language Concepts 507
15.2 Motivation for Assembly Language Programming 510
15.3 Assembly Language Elements 512
15.4 Examples 518
15.5 Types of Assemblers 523
15.6 Assemblers 523
15.7 Loading and Linking 526

15.8 Key Terms, Review Questions, and Problems 533

Chapter 16 Processor Structure and Function 537
16.1 Processor Organization 538
16.2 Register Organization 539
16.3 Instruction Cycle 545
16.4 Instruction Pipelining 548
16.5 Processor Organization for Pipelining 566
16.6 The x86 Processor Family 568
16.7 The ARM Processor 575

16.8 Key Terms, Review Questions, and Problems 581

Chapter 17 Reduced Instruction Set Computers 586
17.1 Instruction Execution Characteristics 588
17.2 The Use of a Large Register File 593
17.3 Compiler-Based Register Optimization 598
17.4 Reduced Instruction Set Architecture 600
17.5 RISC Pipelining 606
17.6 MIPS R4000 610
17.7 SPARC 616
17.8 Processor Organization for Pipelining 621
17.9 CISC, RISC, and Contemporary Systems 623

17.10 Key Terms, Review Questions, and Problems 625

Chapter 18 Instruction-Level Parallelism and Superscalar Processors 629

18.1 Overview 630
18.2 Design Issues 637
18.3 Intel Core Microarchitecture 646
18.4 ARM Cortex-A8 652
18.5 ARM Cortex-M3 658

18.6 Key Terms, Review Questions, and Problems 663

Chapter 19 Control Unit Operation and Microprogrammed Control 669
19.1 Micro-operations 670
19.2 Control of the Processor 676
19.3 Hardwired Implementation 686
19.4 Microprogrammed Control 689

19.5 Key Terms, Review Questions, and Problems 698

Chapter 20 Parallel Processing 701
20.1 Multiple Processors Organization 703
20.2 Symmetric Multiprocessors 705
20.3 Cache Coherence and the MESI Protocol 709
20.4 Multithreading and Chip Multiprocessors 718
20.5 Clusters 723
20.6 Nonuniform Memory Access 726

20.7 Key Terms, Review Questions, and Problems 730

 Chapter 21 Multicore Computers 736
21.1 Hardware Performance Issues 737
21.2 Software Performance Issues 740
21.3 Multicore Organization 745
21.4 Heterogeneous Multicore Organization 747
21.5 Intel Core i7-5960X 756
21.6 ARM Cortex-A15 MPCore 757
21.7 IBM z13 Mainframe 762

21.8 Key Terms, Review Questions, and Problems 765

Appendix A System Buses 768
A.1	Bus Structure 769
A.2	Multiple-Bus Hierarchies 770
A.3	Elements of Bus Design 772

Appendix B Victim Cache Strategies 777
B.1	Victim Cache 778

B.2	Selective Victim Cache 780

Appendix C Interleaved Memory 782
Appendix D The International Reference Alphabet 785
Appendix E Stacks 788

E.1	Stacks 789
E.2	Stack Implementation 790
E.3	Expression Evaluation 791

Appendix F Recursive Procedures 795
F.1	Recursion 796
F.2	Activation Tree Representation 797
F.3	Stack Implementation 803
F.4	Recursion and Iteration 804

Appendix G Additional Instruction Pipeline Topics 807
G.1	Pipeline Reservation Tables 808
G.2	Reorder Buffers 815
G.3	Tomasulo’s Algorithm 818
G.4	Scoreboarding 822

Glossary 826
References 835
Supplemental Materials
Index 844

 Preface

What’s New in the Eleventh Edition

Since the tenth edition of this book was published, the field has seen continued innovations and
improvements. In this new edition, I try to capture these changes while maintaining a broad and
comprehensive coverage of the entire field. To begin this process of revision, the tenth edition of this
book was extensively reviewed by a number of professors who teach the subject and by professionals
working in the field. The result is that, in many places, the narrative has been clarified and tightened,
and illustrations have been improved.

Beyond these refinements to improve pedagogy and user- ​friendliness, there have been substantive
changes throughout the book. Roughly the same chapter organization has been retained, but much of
the material has been revised and new material has been added. The most noteworthy changes are
as follows:

Multichip Modules: A new discussion of MCMs, which are now widely used, has been added to
Chapter 1.
SPEC benchmarks: The treatment of SPEC in Chapter 2 has been updated to cover the new
SPEC CPU2017 benchmark suite.
Memory hierarchy: A new chapter on memory hierarchy expands on material that was in the
cache memory chapter, plus adds new material. The new Chapter 4 includes:
—Updated and expanded coverage of the principle of locality

—Updated and expanded coverage of the memory hierarchy

—A new treatment of performance modeling of data access in a memory hierarchy

Cache memory: The cache memory chapter has been updated and revised. Chapter 5 now
includes:
—Revised and expanded treatment of logical cache organization, including new figures, to improve
clarity

—New coverage of content-addressable memory

—New coverage of write allocate and no write allocate policies

—A new section on cache performance modeling.

Embedded DRAM: Chapter 6 on internal memory now includes a section on the increasingly
popular eDRAM.
Advanced Format 4k sector hard drives: Chapter 7 on external memory now includes
discussion of the now widely used 4k sector hard drive format.
Boolean algebra: The discussion on Boolean algebra in Chapter 12 has been expanded with new
text, figures, and tables, to enhance understanding.
Assembly language: The treatment of assembly language has been expanded to a full chapter,
with more detail and more examples.
Pipeline organization: The discussion on pipeline organization has been substantially expanded
with new text and figures. The material is in new sections in Chapters 16 (Processor Structure and
Function), 17 (RISC), and 18 (Superscalar).
Cache coherence: The discussion of the MESI cache coherence protocol in Chapter 20 has been
expanded with new text and figures.

Support of ACM/IEEE Computer Science and Computer Engineering Curricula

The book is intended for both an academic and a professional audience. As a textbook, it is intended
as a one-​ or two-​semester undergraduate course for computer science, computer engineering, and
electrical engineering majors. This edition supports recommendations of the ACM/IEEE Computer
Science Curricula 2013 (CS2013). CS2013 divides all course work into three categories: Core- ​Tier 1
(all topics should be included in the curriculum); Core- ​Tier-​2 (all or almost all topics should be
included); and Elective (desirable to provide breadth and depth). In the Architecture and Organization
(AR) area, CS2013 includes five Tier- ​2 topics and three Elective topics, each of which has a number
of subtopics. This text covers all eight topics listed by CS2013. Table P.1 shows the support for the
AR Knowledge Area provided in this textbook. This book also supports the ACM/IEEE Computer
Engineering Curricula 2016 (CE2016). CE2016 defines a necessary body of knowledge for
undergraduate computer engineering, divided into twelve knowledge areas. One of these areas is
Computer Architecture and Organization (CE-CAO), consisting of ten core knowledge areas. This text
covers all of the CE-CAO knowledge areas listed in CE2016. Table P.2 shows the coverage.

Table P.1 Coverage of CS2013 Architecture and Organization (AR) Knowledge Area

IAS Knowledge Units Topics Textbook
Coverage

Digital Logic and
Digital Systems (Tier 2)

Overview and history of computer architecture
Combinational vs. sequential logic/Field programmable
gate arrays as a fundamental combinational sequential
logic building block
Multiple representations/layers of interpretation
(hardware is just another layer)
Physical constraints (gate delays, fan- ​in, fan-​out,
energy/power)

—Chapter
1

—Chapter
12

Machine Level
Representation of Data
(Tier 2)

Bits, bytes, and words
Numeric data representation and number bases
Fixed-​ and floating- ​point systems
Signed and twos- ​complement representations
Representation of non- ​numeric data (character codes,
graphical data)

—Chapter
10

—Chapter
11

Assembly Level
Machine Organization
(Tier 2)

Basic organization of the von Neumann machine
Control unit; instruction fetch, decode, and execution
Instruction sets and types (data manipulation, control,
I/O)
Assembly/machine language programming
Instruction formats
Addressing modes
Subroutine call and return mechanisms (cross- ​

—Chapter
1

—Chapter
8

—Chapter
13

—Chapter

reference PL/Language Translation and Execution)
I/O and interrupts
Shared memory multiprocessors/multicore
organization
Introduction to SIMD vs. MIMD and the Flynn
Taxonomy

14

—Chapter
15

—Chapter
19

—Chapter
20

—Chapter
21

Memory System
Organization and
Architecture (Tier 2)

Storage systems and their technology
Memory hierarchy: temporal and spatial locality
Main memory organization and operations
Latency, cycle time, bandwidth, and interleaving
Cache memories (address mapping, block size,
replacement and store policy)
Multiprocessor cache consistency/Using the memory
system for inter-​core synchronization/atomic memory
operations
Virtual memory (page table, TLB)
Fault handling and reliability

—Chapter
4

—Chapter
5

—Chapter
6

—Chapter
7

—Chapter
9

—Chapter
20

Interfacing and
Communication (Tier 2)

I/O fundamentals: handshaking, buffering,
programmed I/O, interrupt-​driven I/O
Interrupt structures: vectored and prioritized, interrupt
acknowledgment
External storage, physical organization, and drives
Buses: bus protocols, arbitration, direct- ​memory
access (DMA)
RAID architectures

—Chapter
3

—Chapter
7

—Chapter
8

Functional
Organization (Elective)

Implementation of simple datapaths, including
instruction pipelining, hazard detection, and resolution
Control unit: hardwired realization vs.
microprogrammed realization

—Chapter
16

—Chapter

Instruction pipelining
Introduction to instruction- ​level parallelism (ILP)

17

—Chapter
18

—Chapter
19

Multiprocessing and
Alternative
Architectures (Elective)

Example SIMD and MIMD instruction sets and
architectures
Interconnection networks
Shared multiprocessor memory systems and memory
consistency
Multiprocessor cache coherence

—Chapter
20

—Chapter
21

Performance
Enhancements
(Elective)

Superscalar architecture
Branch prediction, Speculative execution, Out- ​of-​order
execution
Prefetching
Vector processors and GPUs
Hardware support for multithreading
Scalability

—Chapter
17

—Chapter
18

—Chapter
20

Table P.2 Coverage of CE2016 Computer Architecture and Organization (AR) Knowledge Area

Knowledge Unit Textbook Coverage

History and overview Chapter 1—Basic Concepts and Computer Evolution

Relevant tools, standards and/or
engineering constraints

Chapter 3—A Top-Level View of Computer Function
and Interconnection

Instruction set architecture Chapter 13—Instruction Sets: Characteristics and
Functions

Chapter 14—Instruction Sets: Addressing Modes and
Formats

Chapter 15—Assembly Language and Related Topics

Measuring performance Chapter 2—Performance Concepts

Computer arithmetic Chapter 10—Number Systems

Chapter 11—Computer Arithmetic

Processor organization Chapter 16—Processor Structure and Function

Chapter 17—Reduced Instruction Set Computers
(RISCs)

Chapter 18—Instruction-Level Parallelism and
Superscalar Processors

Chapter 19—Control Unit Operation and
Microprogrammed Control

Memory system organization and
architectures

Chapter 4—The Memory Hierarchy: Locality and
Performance

Chapter 5—Cache Memory

Chapter 6—Internal Memory Technology

Chapter 7—External Memory

Input/Output interfacing and
communication

Chapter 8—Input/Output

Peripheral subsystems Chapter 3—A Top-Level View of Computer Function
and Interconnection

Chapter 8—Input/Output

Multi/Many-core architectures Chapter 21—Multicore Computers

Distributed system architectures Chapter 20—Parallel Processing

Objectives 

This book is about the structure and function of computers. Its purpose is to present, as clearly and
completely as possible, the nature and characteristics of modern- ​day computer systems.

This task is challenging for several reasons. First, there is a tremendous variety of products that can
rightly claim the name of computer, from single- ​chip microprocessors costing a few dollars to
supercomputers costing tens of millions of dollars. Variety is exhibited not only in cost but also in size,
performance, and application. Second, the rapid pace of change that has always characterized
computer technology continues with no letup. These changes cover all aspects of computer
technology, from the underlying integrated circuit technology used to construct computer components

to the increasing use of parallel organization concepts in combining those components.

In spite of the variety and pace of change in the computer field, certain fundamental concepts apply
consistently throughout. The application of these concepts depends on the current state of the
technology and the price/performance objectives of the designer. The intent of this book is to provide
a thorough discussion of the fundamentals of computer organization and architecture and to relate
these to contemporary design issues.

The subtitle suggests the theme and the approach taken in this book. It has always been important to
design computer systems to achieve high performance, but never has this requirement been stronger
or more difficult to satisfy than today. All of the basic performance characteristics of computer
systems, including processor speed, memory speed, memory capacity, and interconnection data
rates, are increasing rapidly. Moreover, they are increasing at different rates. This makes it difficult to
design a balanced system that maximizes the performance and utilization of all elements. Thus,
computer design increasingly becomes a game of changing the structure or function in one area to
compensate for a performance mismatch in another area. We will see this game played out in
numerous design decisions throughout the book.

A computer system, like any system, consists of an interrelated set of components. The system is best
characterized in terms of structure— ​the way in which components are interconnected, and function
—​the operation of the individual components. Furthermore, a computer’s organization is hierarchical.
Each major component can be further described by decomposing it into its major subcomponents and
describing their structure and function. For clarity and ease of understanding, this hierarchical
organization is described in this book from the top down:

Computer system: Major components are processor, memory, I/O.
Processor: Major components are control unit, registers, ALU, and instruction execution unit.
Control unit: Provides control signals for the operation and coordination of all processor
components. Traditionally, a microprogramming implementation has been used, in which major
components are control memory, microinstruction sequencing logic, and registers. More recently,
microprogramming has been less prominent but remains an important implementation technique.

The objective is to present the material in a fashion that keeps new material in a clear context. This
should minimize the chance that the reader will get lost and should provide better motivation than a
bottom-​up approach.

Throughout the discussion, aspects of the system are viewed from the points of view of both
architecture (those attributes of a system visible to a machine language programmer) and organization
(the operational units and their interconnections that realize the architecture).

Example Systems 

This text is intended to acquaint the reader with the design principles and implementation issues of
contemporary operating systems. Accordingly, a purely conceptual or theoretical treatment would be
inadequate. To illustrate the concepts and to tie them to real- ​world design choices that must be made,
two processor families have been chosen as running examples:

Intel x86 architecture: The x86 architecture is the most widely used for nonembedded computer
systems. The x86 is essentially a complex instruction set computer (CISC) with some RISC
features. Recent members of the x86 family make use of superscalar and multicore design
principles. The evolution of features in the x86 architecture provides a unique case-study of the
evolution of most of the design principles in computer architecture.
ARM: The ARM architecture is arguably the most widely used embedded processor, used in cell
phones, iPods, remote sensor equipment, and many other devices. The ARM is essentially a

reduced instruction set computer (RISC). Recent members of the ARM family make use of
superscalar and multicore design principles.

Many, but by no means all, of the examples in this book are drawn from these two computer families.
Numerous other systems, both contemporary and historical, provide examples of important computer
architecture design features.

Plan of the Text 

The book is organized into six parts:

Introduction
The computer system
Arithmetic and logic
Instruction sets and assembly language
The central processing unit
Parallel organization, including multicore

The book includes a number of pedagogic features, including the use of interactive simulations and
numerous figures and tables to clarify the discussion. Each chapter includes a list of key words,
review questions, and homework problems. The book also includes an extensive glossary, a list of
frequently used acronyms, and a bibliography.

Instructor Support Materials 

Support materials for instructors are available at the Instructor Resource Center (IRC) for this
textbook, which can be reached through the publisher’s Web site www.pearson.com/stallings. To
gain access to the IRC, please contact your local Pearson sales representative via
www.pearson.com/replocator. The IRC provides the following materials:

Projects manual: Project resources including documents and portable software, plus suggested
project assignments for all of the project categories listed subsequently in this Preface.
Solutions manual: Solutions to end- ​of-​chapter Review Questions and Problems.
PowerPoint slides: A set of slides covering all chapters, suitable for use in lecturing.
PDF files: Copies of all figures and tables from the book.
Test bank: A chapter-​by-​chapter set of questions.
Sample syllabuses: The text contains more material than can be conveniently covered in one
semester. Accordingly, instructors are provided with several sample syllabuses that guide the use
of the text within limited time. These samples are based on real- ​world experience by professors
with the first edition.

Student Resources 

For this new edition, a tremendous amount of original supporting material for students has been made
available online. The Companion Web Site, at www.pearson.com/stallings, includes a list of
relevant links organized by chapter and an errata sheet for the book. To aid the student in
understanding the material, a separate set of homework problems with solutions are available at this
site. Students can enhance their understanding of the material by working out the solutions to these
problems and then checking their answers. The site also includes a number of documents and papers
referenced throughout the text.

Projects and Other Student Exercises 

http://www.pearson.com/stallings
http://www.pearson.com/stallings
http://www.pearson.com/replocator
http://www.pearson.com/replocator
http://www.pearson.com/stallings

For many instructors, an important component of a computer organization and architecture course is a
project or set of projects by which the student gets hands- ​on experience to reinforce concepts from
the text. This book provides an unparalleled degree of support for including a projects component in
the course. The instructor’s support materials available through the IRC not only includes guidance on
how to assign and structure the projects but also includes a set of user’s manuals for various project
types plus specific assignments, all written especially for this book. Instructors can assign work in the
following areas:

Interactive simulation assignments: Described subsequently.
Research projects: A series of research assignments that instruct the student to research a
particular topic on the Internet and write a report.
Simulation projects: The IRC provides support for the use of the two simulation packages:
SimpleScalar can be used to explore computer organization and architecture design issues.
SMPCache provides a powerful educational tool for examining cache design issues for symmetric
multiprocessors.
Assembly language projects: A simplified assembly language, CodeBlue, is used and
assignments based on the popular Core Wars concept are provided.
Reading/report assignments: A list of papers in the literature, one or more for each chapter, that
can be assigned for the student to read and then write a short report.
Writing assignments: A list of writing assignments to facilitate learning the material.
Test bank: Includes T/F, multiple choice, and fill- ​in-​the-​blank questions and answers.

This diverse set of projects and other student exercises enables the instructor to use the book as one
component in a rich and varied learning experience and to tailor a course plan to meet the specific
needs of the instructor and students.

Interactive Simulations 

An important feature in this edition is the incorporation of interactive simulations. These simulations
provide a powerful tool for understanding the complex design features of a modern computer system.
A total of 20 interactive simulations are used to illustrate key functions and algorithms in computer
organization and architecture design. At the relevant point in the book, an icon indicates that a
relevant interactive simulation is available online for student use. Because the animations enable the
user to set initial conditions, they can serve as the basis for student assignments. The instructor’s
supplement includes a set of assignments, one for each of the animations. Each assignment includes
several specific problems that can be assigned to students.

Acknowledgments

This new edition has benefited from review by a number of people, who gave generously of their time
and expertise. The following professors provided a review of the entire book: Nikhil Bhargava (Indian
Institute of Management, Delhi), James Gil de Lamadrid (Bowie State University, Computer Science
Department), Debra Calliss (Computer Science and Engineering, Arizona State University),
Mohammed Anwaruddin (Wentworth Institute of Technology, Dept. of Computer Science), Roger
Kieckhafer (Michigan Technological University, Electrical & Computer Engineering), Paul Fortier
(University of Massachusetts Darthmouth, Electrical and Computer Engineering), Yan Zhang
(Department of Computer Science and Engineering, University of South Florida), Patricia Roden
(University of North Alabama, Computer Science and Information Systems), Sanjeev Baskiyar
(Auburn University, Computer Science and Software Engineering), and (Jayson Rock, University of
Wisconsin-Milwaukee, Computer Science). I would especially like to thank Professor Roger
Kieckhafer for permission to make use of some of the figures and performance models from his
course lecture notes.

Thanks also to the many people who provided detailed technical reviews of one or more chapters:
Rekai Gonzalez Alberquilla, Allen Baum, Jalil Boukhobza, Dmitry Bufistov, Humberto Calderón, Jesus
Carretero, Ashkan Eghbal, Peter Glaskowsky, Ram Huggahalli, Chris Jesshope, Athanasios
Kakarountas, Isil Oz, Mitchell Poplingher, Roger Shepherd, Jigar Savla, Karl Stevens, Siri Uppalapati,
Dr. Sriram Vajapeyam, Kugan Vivekanandarajah, Pooria M. Yaghini, and Peter Zeno,

Professor Cindy Norris of Appalachian State University, Professor Bin Mu of the University of New
Brunswick, and Professor Kenrick Mock of the University of Alaska kindly supplied homework
problems.

Aswin Sreedhar of the University of Massachusetts developed the interactive simulation assignments.

Professor Miguel Angel Vega Rodriguez, Professor Dr. Juan Manuel Sánchez Pérez, and Professor
Dr. Juan Antonio Gómez Pulido, all of University of Extremadura, Spain, prepared the SMPCache
problems in the instructor’s manual and authored the SMPCache User’s Guide.

Todd Bezenek of the University of Wisconsin and James Stine of Lehigh University prepared the
SimpleScalar problems in the instructor’s manual, and Todd also authored the SimpleScalar User’s
Guide.

Finally, I would like to thank the many people responsible for the publication of the book, all of whom
did their usual excellent job. This includes the staff at Pearson, particularly my editor Tracy Johnson,
her assistant Meghan Jacoby, and project manager Bob Engelhardt. Thanks also to the marketing and
sales staffs at Pearson, without whose efforts this book would not be in front of you.

About the Author

Dr. William Stallings

has authored 18 textbooks, and counting revised editions, over 70 books on computer security,
computer networking, and computer architecture. In over 30 years in the field, he has been a technical
contributor, technical manager, and an executive with several high- ​technology firms. Currently, he is
an independent consultant whose clients have included computer and networking manufacturers and
customers, software development firms, and leading- ​edge government research institutions. He has
13 times received the award for the best computer science textbook of the year from the Text and
Academic Authors Association.

He created and maintains the Computer Science Student Resource Site at
ComputerScienceStudent.com. This site provides documents and links on a variety of subjects of
general interest to computer science students (and professionals). He is a member of the editorial
board of Cryptologia, a scholarly journal devoted to all aspects of cryptology.

Dr. Stallings holds a PhD from MIT in computer science and a BS from Notre Dame in electrical
engineering.

http://computersciencestudent.com/

Acronyms
ACM Association for Computing Machinery

ALU Arithmetic Logic Unit

ANSI American National Standards Institute

ASCII American Standards Code for Information Interchange

BCD Binary Coded Decimal

CD Compact Disk

CD-ROM Compact Disk Read-Only Memory

CISC Complex Instruction Set Computer

CPU Central Processing Unit

DRAM Dynamic Random-Access Memory

DMA Direct Memory Access

DVD Digital Versatile Disk

EEPROM Electrically Erasable Programmable Read-Only Memory

EPIC Explicitly Parallel Instruction Computing

EPROM Erasable Programmable Read-Only Memory

HLL High-Level Language

I/O Input/Output

IAR Instruction Address Register

IC Integrated Circuit

IEEE Institute of Electrical and Electronics Engineers

ILP Instruction-Level Parallelism

IR Instruction Register

LRU Least Recently Used

LSI Large-scale Integration

MAR Memory Address Register

MBR Memory Buffer Register

MESI Modify-Exclusive-Shared-Invalid

MIC Many Integrated Core

MMU Memory Management Unit

MSI Medium-Scale Integration

NUMA Nonuniform Memory Access

OS Operating System

PC Program Counter

PCB Process Control Block

PCI Peripheral Component Interconnect

PROM Programmable Read-Only Memory

PSW Processor Status Word

RAID Redundant Array of Independent Disks

RALU Register/Arithmetic-Logic Unit

RAM Random-Access Memory

RISC Reduced Instruction Set Computer

ROM Read-Only Memory

SCSI Small Computer System Interface

SMP Symmetric Multiprocessors

SRAM Static Random-Access Memory

SSI Small-Scale Integration

ULSI Ultra Large-Scale Integration

VLIW Very Long Instruction Word

VLSI Very Large-Scale Integration

Part One Introduction

Chapter 1 Basic Concepts and Computer Evolution

1.8 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Explain the general functions and structure of a digital computer.
Present an overview of the evolution of computer technology from early digital computers to the
latest microprocessors.
Present an overview of the evolution of the x86 architecture.
Define embedded systems and list some of the requirements and constraints that various
embedded systems must meet.

1.1 Organization and Architecture
1.2 Structure and Function

Function
Structure

1.3 The IAS Computer
1.4 Gates, Memory Cells, Chips, and Multichip Modules

Gates and Memory Cells
Transistors
Microelectronic Chips
Multichip Module

1.5 The Evolution of the Intel x86 Architecture
1.6 Embedded Systems

The Internet of Things
Embedded Operating Systems
Application Processors versus Dedicated Processors
Microprocessors versus Microcontrollers
Embedded versus Deeply Embedded Systems

1.7 ARM Architecture
ARM Evolution
Instruction Set Architecture
ARM Products

1.1 Organization and Architecture
In describing computers, a distinction is often made between computer architecture and computer
organization. Although it is difficult to give precise definitions for these terms, a consensus exists
about the general areas covered by each. For example, see [VRAN80], [SIEW82], and [BELL78a]; an
interesting alternative view is presented in [REDD76].

Computer architecture refers to those attributes of a system visible to a programmer or, put
another way, those attributes that have a direct impact on the logical execution of a program. A term
that is often used interchangeably with computer architecture is instruction set architecture
(ISA) . The ISA defines instruction formats, instruction opcodes, registers, instruction and data
memory; the effect of executed instructions on the registers and memory; and an algorithm for
controlling instruction execution. Computer organization refers to the operational units and their
interconnections that realize the architectural specifications. Examples of architectural attributes
include the instruction set, the number of bits used to represent various data types (e.g., numbers,
characters), I/O mechanisms, and techniques for addressing memory. Organizational attributes
include those hardware details transparent to the programmer, such as control signals; interfaces
between the computer and peripherals; and the memory technology used.

For example, it is an architectural design issue whether a computer will have a multiply instruction. It is
an organizational issue whether that instruction will be implemented by a special multiply unit or by a
mechanism that makes repeated use of the add unit of the system. The organizational decision may
be based on the anticipated frequency of use of the multiply instruction, the relative speed of the two
approaches, and the cost and physical size of a special multiply unit.

Historically, and still today, the distinction between architecture and organization has been an
important one. Many computer manufacturers offer a family of computer models, all with the same
architecture but with differences in organization. Consequently, the different models in the family have
different price and performance characteristics. Furthermore, a particular architecture may span many
years and encompass a number of different computer models, its organization changing with changing
technology. A prominent example of both these phenomena is the IBM System/370 architecture. This
architecture was first introduced in 1970 and included a number of models. The customer with modest
requirements could buy a cheaper, slower model and, if demand increased, later upgrade to a more
expensive, faster model without having to abandon software that had already been developed. Over
the years, IBM has introduced many new models with improved technology to replace older models,
offering the customer greater speed, lower cost, or both. These newer models retained the same
architecture so that the customer’s software investment was protected. Remarkably, the System/370
architecture, with a few enhancements, has survived to this day as the architecture of IBM’s
mainframe product line.

In a class of computers called microcomputers, the relationship between architecture and organization
is very close. Changes in technology not only influence organization but also result in the introduction
of more powerful and more complex architectures. Generally, there is less of a requirement for
generation-to-generation compatibility for these smaller machines. Thus, there is more interplay
between organizational and architectural design decisions. An intriguing example of this is the
reduced instruction set computer (RISC), which we examine in Chapter 15.

This book text examines both computer organization and computer architecture. The emphasis is
perhaps more on the side of organization. However, because a computer organization must be
designed to implement a particular architectural specification, a thorough treatment of organization
requires a detailed examination of architecture as well.

1.2 Structure and Function
A computer is a complex system; contemporary computers contain millions of elementary electronic
components. How, then, can one clearly describe them? The key is to recognize the hierarchical
nature of most complex systems, including the computer [SIMO96]. A hierarchical system is a set of
interrelated subsystems; each subsystem may, in turn, contain lower level subsystems, until we reach
some lowest level of elementary subsystem.

The hierarchical nature of complex systems is essential to both their design and their description. The
designer need only deal with a particular level of the system at a time. At each level, the system
consists of a set of components and their interrelationships. The behavior at each level depends only
on a simplified, abstracted characterization of the system at the next lower level. At each level, the
designer is concerned with structure and function:

Structure: The way in which the components are interrelated.
Function: The operation of each individual component as part of the structure.

In terms of description, we have two choices: starting at the bottom and building up to a complete
description, or beginning with a top view and decomposing the system into its subparts. Evidence from
a number of fields suggests that the top-down approach is the clearest and most effective [WEIN75].

The approach taken in this book follows from this viewpoint. The computer system will be described
from the top down. We begin with the major components of a computer, describing their structure and
function, and proceed to successively lower layers of the hierarchy. The remainder of this section
provides a very brief overview of this plan of attack.

Function

Both the structure and functioning of a computer are, in essence, simple. In general terms, there are
only four basic functions that a computer can perform:

Data processing: Data may take a wide variety of forms, and the range of processing
requirements is broad. However, we shall see that there are only a few fundamental methods or
types of data processing.
Data storage: Even if the computer is processing data on the fly (i.e., data come in and get
processed, and the results go out immediately), the computer must temporarily store at least those
pieces of data that are being worked on at any given moment. Thus, there is at least a short-term
data storage function. Equally important, the computer performs a long-term data storage function.
Files of data are stored on the computer for subsequent retrieval and update.
Data movement: The computer’s operating environment consists of devices that serve as either
sources or destinations of data. When data are received from or delivered to a device that is
directly connected to the computer, the process is known as input–output (I/O), and the device is
referred to as a peripheral. When data are moved over longer distances, to or from a remote
device, the process is known as data communications.
Control: Within the computer, a control unit manages the computer’s resources and orchestrates
the performance of its functional parts in response to instructions.

The preceding discussion may seem absurdly generalized. It is certainly possible, even at a top level
of computer structure, to differentiate a variety of functions, but to quote [SIEW82]:

There is remarkably little shaping of computer structure to fit the function to be performed. At the
root of this lies the general-purpose nature of computers, in which all the functional specialization

occurs at the time of programming and not at the time of design.

Structure

We now look in a general way at the internal structure of a computer. We begin with a traditional
computer with a single processor that employs a microprogrammed control unit, then examine a
typical multicore structure.

SIMPLE SINGLE-PROCESSOR COMPUTER

Figure 1.1 provides a hierarchical view of the internal structure of a traditional single-processor
computer. There are four main structural components:

Figure 1.1 The Computer: Top-Level Structure

Central processing unit (CPU): Controls the operation of the computer and performs its data
processing functions; often simply referred to as processor .
Main memory: Stores data.
I/O: Moves data between the computer and its external environment.
System interconnection: Some mechanism that provides for communication among CPU, main
memory, and I/O. A common example of system interconnection is by means of a system bus ,

consisting of a number of conducting wires to which all the other components attach.
There may be one or more of each of the aforementioned components. Traditionally, there has been
just a single processor. In recent years, there has been increasing use of multiple processors in a
single computer. Some design issues relating to multiple processors crop up and are discussed as the
text proceeds; Part Five focuses on such computers.

Each of these components will be examined in some detail in Part Two. However, for our purposes,
the most interesting and in some ways the most complex component is the CPU. Its major structural
components are as follows:

Control unit: Controls the operation of the CPU and hence the computer.
Arithmetic and logic unit (ALU): Performs the computer’s data processing functions.
Registers: Provides storage internal to the CPU.
CPU interconnection: Some mechanism that provides for communication among the control unit,
ALU, and registers.

Part Three covers these components, where we will see that complexity is added by
the use of
parallel and pipelined organizational techniques. Finally, there are several approaches to the
implementation of the control unit; one common approach is a microprogrammed implementation. In
essence, a microprogrammed control unit operates by executing microinstructions that define the
functionality of the control unit. With this approach, the structure of the control unit can be depicted, as
in Figure 1.1. This structure is examined in Part Four.

MULTICORE COMPUTER STRUCTURE

As was mentioned, contemporary computers generally have multiple processors. When these
processors all reside on a single chip, the term multicore computer is used, and each processing unit
(consisting of a control unit, ALU, registers, and perhaps cache) is called a core. To clarify the
terminology, this text will use the following definitions.

Central processing unit (CPU): That portion of a computer that fetches and executes instructions.
It consists of an ALU, a control unit, and registers. In a system with a single processing unit, it is
often simply referred to as a processor.
Core: An individual processing unit on a processor chip. A core may be equivalent in
functionality to a CPU on a single-CPU system. Other specialized processing units, such as one
optimized for vector and matrix operations, are also referred to as cores.
Processor: A physical piece of silicon containing one or more cores. The processor is the
computer component that interprets and executes instructions. If a processor contains multiple
cores, it is referred to as a multicore processor.

After about a decade of discussion, there is broad industry consensus on this usage.

Another prominent feature of contemporary computers is the use of multiple layers of memory, called
cache memory, between the processor and main memory. Chapter 4 is devoted to the topic of cache
memory. For our purposes in this section, we simply note that a cache memory is smaller and faster
than main memory and is used to speed up memory access, by placing in the cache data from main
memory, that is likely to be used in the near future. A greater performance improvement may be
obtained by using multiple levels of cache, with level 1 (L1) closest to the core and additional levels
(L2, L3, and so on) progressively farther from the core. In this scheme, level n is smaller and faster
than level .

Figure 1.2 is a simplified view of the principal components of a typical multicore computer. Most
computers, including embedded computers in smartphones and tablets, plus personal computers,
laptops, and workstations, are housed on a motherboard. Before describing this arrangement, we
need to define some terms. A printed circuit board (PCB) is a rigid, flat board that holds and

n + 1

interconnects chips and other electronic components. The board is made of layers, typically two to
ten, that interconnect components via copper pathways that are etched into the board. The main
printed circuit board in a computer is called a system board or motherboard, while smaller ones that
plug into the slots in the main board are called expansion boards.

Figure 1.2 Simplified View of Major Elements of a Multicore Computer

The most prominent elements on the motherboard are the chips. A chip is a single piece of
semiconducting material, typically silicon, upon which electronic circuits and logic gates are fabricated.
The resulting product is referred to as an integrated circuit .

The motherboard contains a slot or socket for the processor chip, which typically contains multiple
individual cores, in what is known as a multicore processor. There are also slots for memory chips, I/O
controller chips, and other key computer components. For desktop computers, expansion slots enable

the inclusion of more components on expansion boards. Thus, a modern motherboard connects only a
few individual chip components, with each chip containing from a few thousand up to hundreds of
millions of transistors.

Figure 1.2 shows a processor chip that contains eight cores and an L3 cache. Not shown is the logic
required to control operations between the cores and the cache and between the cores and the
external circuitry on the motherboard. The figure indicates that the L3 cache occupies two distinct
portions of the chip surface. However, typically, all cores have access to the entire L3 cache via the
aforementioned control circuits. The processor chip shown in Figure 1.2 does not represent any
specific product, but provides a general idea of how such chips are laid out.

Next, we zoom in on the structure of a single core, which occupies a portion of the processor chip. In
general terms, the functional elements of a core are:

Instruction logic: This includes the tasks involved in fetching instructions, and decoding each
instruction to determine the instruction operation and the memory locations of any operands.
Arithmetic and logic unit (ALU): Performs the operation specified by an instruction.
Load/store logic: Manages the transfer of data to and from main memory via cache.

The core also contains an L1 cache, split between an instruction cache (I-cache) that is used for the
transfer of instructions to and from main memory, and an L1 data cache, for the transfer of operands
and results. Typically, today’s processor chips also include an L2 cache as part of the core. In many
cases, this cache is also split between instruction and data caches, although a combined, single L2
cache is also used.

Keep in mind that this representation of the layout of the core is only intended to give a general idea of
internal core structure. In a given product, the functional elements may not be laid out as the three
distinct elements shown in Figure 1.2, especially if some or all of these functions are implemented as
part of a microprogrammed control unit.

EXAMPLES

It will be instructive to look at some real-world examples that illustrate the hierarchical structure of
computers. Figure 1.3 is a photograph of the motherboard for a computer built around two Intel Quad-
Core Xeon processor chips. Many of the elements labeled on the photograph are discussed
subsequently in this book. Here, we mention the most important, in addition to the processor sockets:

Figure 1.3 Motherboard with Two Intel Quad-Core Xeon Processors
Source: Courtesy of Chassis Plans Rugged Rackmount Computers

PCI-Express slots for a high-end display adapter and for additional peripherals (Section 3.6
describes PCIe).
Ethernet controller and Ethernet ports for network connections.
USB sockets for peripheral devices.
Serial ATA (SATA) sockets for connection to disk memory (Section 7.7 discusses Ethernet, USB,
and SATA).
Interfaces for DDR (double data rate) main memory chips (Section 5.3 discusses DDR).
Intel 3420 chipset is an I/O controller for direct memory access operations between peripheral
devices and main memory (Section 7.5 discusses DDR).

Following our top-down strategy, as illustrated in Figures 1.1 and 1.2, we can now zoom in and look
at the internal structure of a processor chip, referred to as a processor unit (PU). For variety, we look
at an IBM chip instead of the Intel processor chip. Figure 1.4 is a to-scale layout of the processor chip
for the IBM z13 mainframe computer [LASC16]. This chip has 3.99 billion transistors. The
superimposed labels indicate how the silicon surface area of the chip is allocated. We see that this
chip has eight cores, or processors. In addition, a substantial portion of the chip is devoted to the L3
cache, which is shared by all eight cores. The L3 control logic controls traffic between the L3 cache
and the cores and between the L3 cache and the external environment. Additionally, there is storage
control (SC) logic between the cores and the L3 cache. The memory controller (MC) function controls
access to memory external to the chip. The GX I/O bus controls the interface to the channel adapters
accessing the I/O.

Figure 1.4 IBM z13 Processor Unit (PU) Chip Diagram

Going down one level deeper, we examine the internal structure of a single core, as shown in the
photograph of Figure 1.5. The core implements the z13 instruction set architecture, referred to as the
z/Architecture. Keep in mind that this is a portion of the silicon surface area making up a single-
processor chip. The main sub-areas within this core area are the following:

Figure 1.5 IBM z13 Core Layout

ISU (instruction sequence unit): Determines the sequence in which instructions are executed in
what is referred to as a superscalar architecture. It enables the out-of-order (OOO) pipeline. It
tracks register names, OOO instruction dependency, and handling of instruction resource dispatch.
These concepts are discussed in Chapter 16.
IFB (instruction fetch and branch) and ICM (instruction cache and merge) These two subunits
contain the 128-kB instruction cache, branch prediction logic, instruction fetching controls, and
buffers. The relative size of these subunits is the result of the elaborate branch prediction design.

1

1

 kB = kilobyte = 1048 bytes. Numerical prefixes are explained in a document under the “Other Useful” tab at

ComputerScienceStudent.com.

IDU (instruction decode unit): The IDU is fed from the IFU buffers, and is responsible for the
parsing and decoding of all z/Architecture operation codes.
LSU (load-store unit): The LSU contains the 96-kB L1 data cache, and manages data traffic
between the L2 data cache and the functional execution units. It is responsible for handling all
types of operand accesses of all lengths, modes, and formats as defined in the z/Architecture.
XU (translation unit): This unit translates logical addresses from instructions into physical
addresses in main memory. The XU also contains a translation lookaside buffer (TLB) used to
speed up memory access. TLBs are discussed in Chapter 8.
PC (core pervasive unit): Used for instrumentation and error collection.
FXU (fixed-point unit): The FXU executes fixed-point arithmetic operations.
VFU (vector and floating-point units): The binary floating-unit part handles all binary and
hexadecimal floating-point operations, as well as fixed-point multiplication operations. The decimal
floating-unit part handles both fixed-point and floating-point operations on numbers that are stored
as decimal digits. The vector execution part handles vector operations.
RU (recovery unit): The RU keeps a copy of the complete state of the system that includes all
registers, collects hardware fault signals, and manages the hardware recovery actions.
COP (dedicated co-processor): The COP is responsible for data compression and encryption
functions for each core.
L2D: A 2-MB L2 data cache for all memory traffic other than instructions.
L2I: A 2-MB L2 instruction cache.

As we progress through the book, the concepts introduced in this section will become clearer.

1.3 The IAS Computer
The first generation of computers used vacuum tubes for digital logic elements and memory. A
number of research and then commercial computers were built using vacuum tubes. For our
purposes, it will be instructive to examine perhaps the most famous first-generation computer, known
as the IAS computer. This example illustrates many of the fundamental concepts found in all computer
systems.

A fundamental design approach first implemented in the IAS computer is known as the stored-
program concept. This idea is usually attributed to the mathematician John von Neumann. Alan Turing
developed the idea at about the same time. The first publication of the idea was in a 1945 proposal by
von Neumann for a new computer, the EDVAC (Electronic Discrete Variable Computer).

 The 1945 report on EDVAC is available at box.com/COA11e.

In 1946, von Neumann and his colleagues began the design of a new stored-program computer,
referred to as the IAS computer, at the Princeton Institute for Advanced Studies. The IAS computer,
although not completed until 1952, is the prototype of all subsequent general-purpose computers.

 A 1954 report [GOLD54] describes the implemented IAS machine and lists the final instruction set. It is available at

box.com/COA11e.

Figure 1.6 shows the structure of the IAS computer (compare with Figure 1.1). It consists of

2

2

3

3

Figure 1.6 IAS Structure

A main memory , which stores both data and instructions
 In this book text, unless otherwise noted, the term instruction refers to a machine instruction that is directly

interpreted and executed by the processor, in contrast to a statement in a high-level language, such as Ada or
C++, which must first be compiled into a series of machine instructions before being executed.

An arithmetic and logic unit (ALU) capable of operating on binary data
A control unit , which interprets the instructions in memory and causes them to be executed
Input–output (I/O) equipment operated by the control unit

This structure was outlined in von Neumann’s earlier proposal, which is worth quoting in part at this

4
4

point [VONN45]:

2.2 First: Since the device is primarily a computer, it will have to perform the elementary operations
of arithmetic most frequently. These are addition, subtraction, multiplication, and division. It is
therefore reasonable that it should contain specialized organs for just these operations.

It must be observed, however, that while this principle as such is probably sound, the specific way
in which it is realized requires close scrutiny. At any rate a central arithmetical part of the device will
probably have to exist, and this constitutes the first specific part: CA.

2.3 Second: The logical control of the device, that is, the proper sequencing of its operations, can
be most efficiently carried out by a central control organ. If the device is to be elastic, that is, as
nearly as possible all purpose, then a distinction must be made between the specific instructions
given for and defining a particular problem, and the general control organs that see to it that these
instructions—no matter what they are—are carried out. The former must be stored in some way; the
latter are represented by definite operating parts of the device. By the central control we mean this
latter function only, and the organs that perform it form the second specific part: CC.

2.4 Third: Any device that is to carry out long and complicated sequences of operations
(specifically of calculations) must have a considerable memory . . .

The instructions which govern a complicated problem may constitute considerable material,
particularly so if the code is circumstantial (which it is in most arrangements). This material must be
remembered.

At any rate, the total memory constitutes the third specific part of the device: M.

2.6 The three specific parts CA, CC (together C), and M correspond to the associative neurons in
the human nervous system. It remains to discuss the equivalents of the sensory or afferent and the
motor or efferent neurons. These are the input and output organs of the device.

The device must be endowed with the ability to maintain input and output (sensory and motor)
contact with some specific medium of this type. The medium will be called the outside recording
medium of the device: R.

2.7 Fourth: The device must have organs to transfer information from R into its specific parts C and
M. These organs form its input, the fourth specific part: I. It will be seen that it is best to make all
transfers from R (by I) into M and never directly from C.

2.8 Fifth: The device must have organs to transfer from its specific parts C and M into R. These
organs form its output, the fifth specific part: O. It will be seen that it is again best to make all

transfers from M (by O) into R, and never directly from C.

With rare exceptions, all of today’s computers have this same general structure and function and are
thus referred to as von Neumann machines. Thus, it is worthwhile at this point to describe briefly the
operation of the IAS computer [BURK46, GOLD54]. Following [HAYE98], the terminology and notation
of von Neumann are changed in the following to conform more closely to modern usage; the examples
accompanying this discussion are based on that latter text.

The memory of the IAS consists of 4,096 storage locations, called words, of 40 binary digits (bits)
each. Both data and instructions are stored there. Numbers are represented in binary form, and each
instruction is a binary code. Figure 1.7 illustrates these formats. Each number is represented by a
sign bit and a 39-bit value. A word may alternatively contain two 20-bit instructions, with each
instruction consisting of an 8-bit operation code (opcode) specifying the operation to be performed and
a 12-bit address designating one of the words in memory (numbered from 0 to 999).

 There is no universal definition of the term word. In general, a word is an ordered set of bytes or bits that is the

normal unit in which information may be stored, transmitted, or operated on within a given computer. Typically, if a
processor has a fixed-length instruction set, then the instruction length equals the word length.

Figure 1.7 IAS Memory Formats

The control unit operates the IAS by fetching instructions from memory and executing them one at a
time. We explain these operations with reference to Figure 1.6. This figure reveals that both the
control unit and the ALU contain storage locations, called registers, defined as follows:

Memory buffer register (MBR): Contains a word to be stored in memory or sent to the I/O unit, or
is used to receive a word from memory or from the I/O unit.
Memory address register (MAR): Specifies the address in memory of the word to be written from
or read into the MBR.
Instruction register (IR): Contains the 8-bit opcode instruction being executed.
Instruction buffer register (IBR): Employed to hold temporarily the right-hand instruction from a
word in memory.

5

5

Program counter (PC): Contains the address of the next instruction pair to be fetched from
memory.
Accumulator (AC) and multiplier quotient (MQ): Employed to hold temporarily operands and
results of ALU operations. For example, the result of multiplying two 40-bit numbers is an 80-bit
number; the most significant 40 bits are stored in the AC and the least significant in the MQ.

The IAS operates by repetitively performing an instruction cycle, as shown in Figure 1.8. Each
instruction cycle consists of two subcycles. During the fetch cycle, the opcode of the next instruction is
loaded into the IR and the address portion is loaded into the MAR. This instruction may be taken from
the IBR, or it can be obtained from memory by loading a word into the MBR, and then down to the
IBR, IR, and MAR.

Figure 1.8 Partial Flowchart of IAS Operation

Why the indirection? These operations are controlled by electronic circuitry and result in the use of
data paths. To simplify the electronics, there is only one register that is used to specify the address in
memory for a read or write and only one register used for the source or destination.

Once the opcode is in the IR, the execute cycle is performed. Control circuitry interprets the opcode
and executes the instruction by sending out the appropriate control signals to cause data to be moved
or an operation to be performed by the ALU.

The IAS computer had a total of 21 instructions, which are listed in Table 1.1. These can be grouped
as follows:

Table 1.1 The IAS Instruction Set

Instruction
Type

Opcode Symbolic
Representation

Description

Data transfer 00001010 LOAD MQ Transfer contents of register MQ to the
accumulator AC

00001001 LOAD MQ,M(X) Transfer contents of memory location X to
MQ

00100001 STOR M(X) Transfer contents of accumulator to memory
location X

00000001 LOAD M(X) Transfer M(X) to the accumulator

00000010 LOAD –M(X) Transfer –M(X) to the accumulator

00000011 LOAD |M(X)| Transfer absolute value of M(X) to the
accumulator

00000100 LOAD –|M(X)| Transfer –|M(X)| to the accumulator

Unconditional
branch

00001101 JUMP M(X,0:19) Take next instruction from left half of M(X)

00001110 JUMP M(X,20:39) Take next instruction from right half of M(X)

Conditional
branch

00001111 If number in the accumulator is nonnegative,
take next instruction from left half of M(X)

00010000 If number in the accumulator is nonnegative,
take next instruction from right half of M(X)

Arithmetic 00000101 ADD M(X) Add M(X) to AC; put the result in AC

00000111 ADD |M(X)| Add |M(X)| to AC; put the result in AC

JUMP + M (X , 0 : 19)

JUMP + M (X , 20 : 39)

00000110 SUB M(X) Subtract M(X) from AC; put the result in AC

00001000 SUB |M(X)| Subtract |M(X)| from AC; put the remainder in
AC

00001011 MUL M(X) Multiply M(X) by MQ; put most significant bits
of result in AC, put least significant bits in MQ

00001100 DIV M(X) Divide AC by M(X); put the quotient in MQ
and the remainder in AC

00010100 LSH Multiply accumulator by 2; that is, shift left
one bit position

00010101 RSH Divide accumulator by 2; that is, shift right
one position

Address
modify

00010010 STOR M(X,8:19) Replace left address field at M(X) by 12
rightmost bits of AC

00010011 STOR M(X,28:39) Replace right address field at M(X) by 12
rightmost bits of AC

Data transfer: Move data between memory and ALU registers or between two ALU registers.
Unconditional branch: Normally, the control unit executes instructions in sequence from memory.
This sequence can be changed by a branch instruction, which facilitates repetitive operations.
Conditional branch: The branch can be made dependent on a condition, thus allowing decision
points.
Arithmetic: Operations performed by the ALU.
Address modify: Permits addresses to be computed in the ALU and then inserted into instructions
stored in memory. This allows a program considerable addressing flexibility.

Table 1.1 presents instructions (excluding I/O instructions) in a symbolic, easy-to-read form. In binary
form, each instruction must conform to the format of Figure 1.7b. The opcode portion (first 8 bits)
specifies which of the 21 instructions is to be executed. The address portion (remaining 12 bits)
specifies which of the 4,096 memory locations is to be involved in the execution of the instruction.

Figure 1.8 shows several examples of instruction execution by the control unit. Note that each
operation requires several steps, some of which are quite elaborate. The multiplication operation
requires 39 suboperations, one for each bit position except that of the sign bit.

1.4 Gates, Memory Cells, Chips, and Multichip Modules

Gates and Memory Cells

The basic elements of a digital computer, as we know, must perform data storage, movement,
processing, and control functions. Only two fundamental types of components are required (Figure
1.9): gates and memory cells. A gate is a device that implements a simple Boolean or logical
function. For example, an AND gate with inputs A and B and output C implements the expression IF A
AND B ARE TRUE THEN C IS TRUE. Such devices are called gates because they control data flow
in much the same way that canal gates control the flow of water. The memory cell is a device that
can store one bit of data; that is, the device can be in one of two stable states at any time. By
interconnecting large numbers of these fundamental devices, we can construct a computer. We can
relate this to our four basic functions as follows:

Data storage: Provided by memory cells.
Data processing: Provided by gates.
Data movement: The paths among components are used to move data from memory to memory
and from memory through gates to memory.
Control: The paths among components can carry control signals. For example, a gate will have
one or two data inputs plus a control signal input that activates the gate. When the control signal is
ON, the gate performs its function on the data inputs and produces a data output. Conversely,
when the control signal is OFF, the output line is null, such as is produced by a high impedance
state. Similarly, the memory cell will store the bit that is on its input lead when the WRITE control
signal is ON and will place the bit that is in the cell on its output lead when the READ control signal
is ON.

Thus, a computer consists of gates, memory cells, and interconnections among these elements. The
gates and memory cells are, in turn, constructed of simple electronic components, such as transistors
and capacitors.

Figure 1.9 Fundamental Computer Elements

Transistors

The fundamental building block of digital circuits used to construct processors, memories, and other
digital logic devices is the transistor. The active part of the transistor is made of silicon or some other
semiconductor material that can change its electrical state when pulsed. In its normal state, the
material may be nonconductive or conductive, either impeding or allowing current flow. When voltage
is applied to the gate, the transistor changes its state.

A single, self-contained transistor is called a discrete component. Throughout the 1950s and early
1960s, electronic equipment was composed largely of discrete components—transistors, resistors,
capacitors, and so on. Discrete components were manufactured separately, packaged in their own
containers, and soldered or wired together onto Masonite-like circuit boards, which were then installed
in computers, oscilloscopes, and other electronic equipment. Whenever an electronic device called for
a transistor, a little tube of metal containing a pinhead-sized piece of silicon had to be soldered to a
circuit board. The entire manufacturing process, from transistor to circuit board, was expensive and
cumbersome.

These facts of life were beginning to create problems in the computer industry. Early second-
generation computers contained about 10,000 transistors. This figure grew to the hundreds of
thousands, making the manufacture of newer, more powerful machines increasingly difficult.

Microelectronic Chips

Microelectronics means, literally, “small electronics.” Since the beginning of digital electronics and the
computer industry, there has been a consistent trend toward the reduction in size of digital electronic
circuits. Before examining the implications and benefits of this trend, we need to say something about
the nature of digital electronics. A more detailed discussion is found in Chapter 12.

The integrated circuit exploits the fact that such components as transistors, resistors, and conductors
can be fabricated from a semiconductor such as silicon. It is merely an extension of the solid-state art
to fabricate an entire circuit in a tiny piece of silicon rather than assemble discrete components made
from separate pieces of silicon into the same circuit. Many transistors can be produced at the same
time on a single wafer of silicon. Equally important, these transistors can be connected with a process
of metallization to form circuits.

Figure 1.10 Relationship among Wafer, Chip, and Gate

Figure 1.10 depicts the key concepts in an integrated circuit. A thin wafer of silicon is divided into a

matrix of small areas, each a few millimeters square. The identical circuit pattern is fabricated in each
area, and the wafer is broken up into chips. Each chip consists of many gates and/or memory cells
plus a number of input and output attachment points. This chip is then packaged in housing that
protects it and provides pins for attachment to devices beyond the chip. A number of these packages
can then be interconnected on a printed circuit board to produce larger and more complex circuits.
Figure 1.11a indicates what a packaged processor or memory chip looks like, and Figure 1.11b
shows a packaged chip wired onto a motherboard.

Figure 1.11 Processor or Memory Chip on Motherboard
Krzysztof Gorski/Shutterstock

Nikolich/Shutterstock

Initially, only a few gates or memory cells could be reliably manufactured and packaged together.
These early integrated circuits are referred to as small-scale integration (SSI). As time went on, it
became possible to pack more and more components on the same chip. This growth in density is
illustrated in Figure 1.12; it is one of the most remarkable technological trends ever recorded. This
figure reflects the famous Moore’s law, which was propounded by Gordon Moore, cofounder of Intel,
in 1965 [MOOR65]. Moore observed that the number of transistors that could be put on a single chip
was doubling every year, and correctly predicted that this pace would continue into the near future. To
the surprise of many, including Moore, the pace continued year after year and decade after decade.
The pace slowed to a doubling every 18 months in the 1970s, but has sustained that rate ever since.

 Note that the vertical axis uses a log scale. A basic review of log scales is in the math refresher document at the
Computer Science Student Resource Site at ComputerScienceStudent.com.

6

6

Figure 1.12 Growth in Transistor Count on Integrated Circuits

The consequences of Moore’s law are profound:

1. The cost of a chip has remained virtually unchanged during this period of rapid growth in
density. This means that the cost of computer logic and memory circuitry has fallen at a
dramatic rate.

2. Because logic and memory elements are placed closer together on more densely packed chips,
the electrical path length is shortened, increasing operating speed.

3. The computer becomes smaller, making it more convenient to place in a variety of
environments.

4. There is a reduction in power requirements.
5. The interconnections on the integrated circuit are much more reliable than solder connections.

With more circuitry on each chip, there are fewer interchip connections.

Multichip Module

The increasing requirements for denser and faster memories have led to efforts to further compact
standard packaging approaches, with one of the most important and widely used being the multichip
module. In traditional system design, each individual process or memory chip is packaged and then
wired to a motherboard (see Figure 1.11).

Figure 1.13 Multichip Module

The basic idea behind developing MCM technology is to decrease the average spacing between ICs
in an electronic system. An MCM is a chip package that contains several bare chips mounted close
together on a substrate (base) of some kind and interconnected by conductors in that base. The short
tracks between the chips increase performance and eliminate much of the noise that external tracks
between individual chip packages can pick up.

MCMs are classified by substrate, which include the following types [BLUM99]:

MCM-L: composed of metal traces on stacked organic laminate sheets.
MCM-C: metal patterned and interconnected on co-fired ceramic layers.
MCM-D: vapor-deposited, patterned metal layers alternating sequentially with spun-on or vapor-
deposited dielectric thin films.

The basic architecture of an MCM is composed of (Figure 1.13):

Integrated circuits: Bare chips mounted on/in the surface of the substrate.
Level-1 interconnections: Connections between chips through paths in the substrate.
Substrate: The common base that provides all the signal interconnections and the mechanical
support for all chips
MCM package: Provides a degree of protection to the circuits in addition to heat removal and
interconnections.
Level-2 interconnections: Provides the necessary interface to the printed circuit board on which
the MCM is mounted.

1.5 The Evolution of the Intel x86 Architecture
Throughout this book, we rely on many concrete examples of computer design and implementation to
illustrate concepts and to illuminate trade-offs. Numerous systems, both contemporary and historical,
provide examples of important computer architecture design features. But the book relies principally
on examples from two processor families: the Intel x86 and the ARM architectures. The current x86
offerings represent the results of decades of design effort oncomplex instruction set computers
(CISCs). The x86 incorporates the sophisticated design principles once found only on mainframes
and supercomputers and serves as an excellent example of CISC design. An alternative approach to
processor design is the reduced instruction set computer (RISC) . The ARM architecture is used
in a wide variety of embedded systems and is one of the most powerful and best-designed RISC-
based systems on the market. In this section and the next, we provide a brief overview of these two
systems.

In terms of market share, Intel has ranked as the number one maker of microprocessors for non-
embedded systems for decades, a position it seems unlikely to yield. The evolution of its flagship
microprocessor product serves as a good indicator of the evolution of computer technology in general.

Table 1.3 shows that evolution. Interestingly, as microprocessors have grown faster and much more
complex, Intel has actually picked up the pace. Intel used to develop microprocessors one after
another, every four years. But Intel hopes to keep rivals at bay by trimming a year or two off this
development time, and has done so with the most recent x86 generations.

 Intel refers to this as the tick-tock model. Using this model, Intel has successfully delivered next-generation silicon

technology as well as new processor microarchitecture on alternating years for the past several years. See
http://www.intel.com/content/www/us/en/silicon-innovations/intel-tick-tock-model-general.html.

Table 1.3 Evolution of Intel Microprocessors (page 1 of 2)

(a) 1970s Processors

4004 8008 8080 8086 8088

Introduced 1971 1972 1974 1978 1979

Clock speeds 108 kHz 108 kHz 2 MHz 5 MHz, 8 MHz, 10 MHz 5 MHz, 8 MHz

Bus width 4 bits 8 bits 8 bits 16 bits 8 bits

Number of transistors 2,300 3,500 6,000 29,000 29,000

Feature size (µm) 10 8 6 3 6

Addressable memory 640 bytes 16 KB 64 KB 1 MB 1 MB

(b) 1980s Processors

7

7

80286 386TM DX 386TM SX 486TM DX CPU

Introduced 1982 1985 1988 1989

Clock speeds 6–12.5 MHz 16–33 MHz 16–33 MHz 25–50 MHz

Bus width 16 bits 32 bits 16 bits 32 bits

Number of transistors 134,000 275,000 275,000 1.2 million

Feature size (µm) 1.5 1 1 0.8–1

Addressable memory 16 MB 4 GB 16 MB 4 GB

Virtual memory 1 GB 64 TB 64 TB 64 TB

Cache — — — 8 kB

(c) 1990s Processors

486TM SX Pentium Pentium Pro Pentium II

Introduced 1991 1993 1995 1997

Clock speeds 16–33 MHz 60–166 MHz, 150–200 MHz 200–300 MHz

Bus width 32 bits 32 bits 64 bits 64 bits

Number of transistors 1.185 million 3.1 million 5.5 million 7.5 million

Feature size (µm) 1 0.8 0.6 0.35

Addressable memory 4 GB 4 GB 64 GB 64 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB

Cache 8 kB 8 kB 512 kB L1 and 1 MB L2 512 kB L2

(d) Recent Processors

Pentium III Pentium 4 Core 2 Duo Core i7 EE 4960X Core i9-
7900X

Introduced 1999 2000 2006 2013 2017

Clock speeds 450–660
MHz

1.3–1.8
GHz

1.06–1.2
GHz

4 GHz 4.3 GHz

Bus width 64 bits 64 bits 64 bits 64 bits 64 bits

Number of
transistors

9.5 million 42 million 167 million 1.86 billion 7.2 billion

Feature size (nm) 250 180 65 22 14

Addressable
memory

64 GB 64 GB 64 GB 64 GB 128 GB

Virtual memory 64 TB 64 TB 64 TB 64 TB 64 TB

Cache 512 kB L2 256 kB L2 2 MB L2 1.5 MB L2/ 15 MB
L3

14 MB L3

Number of cores 1 1 2 6 10

It is worthwhile to list some of the highlights of the evolution of the Intel product line:

8080: The world’s first general-purpose microprocessor. This was an 8-bit machine, with an 8-bit
data path to memory. The 8080 was used in the first personal computer, the Altair.
8086: A far more powerful, 16-bit machine. In addition to a wider data path and larger registers, the
8086 sported an instruction cache, or queue, that prefetches a few instructions before they are
executed. A variant of this processor, the 8088, was used in IBM’s first personal computer,
securing the success of Intel. The 8086 is the first appearance of the x86 architecture.
80286: This extension of the 8086 enabled addressing a 16-MB memory instead of just 1 MB.
80386: Intel’s first 32-bit machine, and a major overhaul of the product. With a 32-bit architecture,
the 80386 rivaled the complexity and power of minicomputers and mainframes introduced just a
few years earlier. This was the first Intel processor to support multitasking, meaning it could run
multiple programs at the same time.
80486: The 80486 introduced the use of much more sophisticated and powerful cache technology
and sophisticated instruction pipelining. The 80486 also offered a built-in math coprocessor,
offloading complex math operations from the main CPU.
Pentium: With the Pentium, Intel introduced the use of superscalar techniques, which allow
multiple instructions to execute in parallel.
Pentium Pro: The Pentium Pro continued the move into superscalar organization begun with the
Pentium, with aggressive use of register renaming, branch prediction, data flow analysis, and
speculative execution.
Pentium II: The Pentium II incorporated Intel MMX technology, which is designed specifically to
process video, audio, and graphics data efficiently.
Pentium III: The Pentium III incorporates additional floating-point instructions: The Streaming
SIMD Extensions (SSE) instruction set extension added 70 new instructions designed to increase
performance when exactly the same operations are to be performed on multiple data objects.
Typical applications are digital signal processing and graphics processing.
Pentium 4: The Pentium 4 includes additional floating-point and other enhancements for

multimedia.
Core: This is the first Intel x86 microprocessor with a dual core, referring to the implementation of
two cores on a single chip.
Core 2: The Core 2 extends the Core architecture to 64 bits. The Core 2 Quad provides four cores
on a single chip. More recent Core offerings have up to 10 cores per chip. An important addition to
the architecture was the Advanced Vector Extensions instruction set that provided a set of 256-bit,
and then 512-bit, instructions for efficient processing of vector data.

Almost 40 years after its introduction in 1978, the x86 architecture continues to dominate the
processor market outside of embedded systems. Although the organization and technology of the x86
machines have changed dramatically over the decades, the instruction set architecture has evolved to
remain backward compatible with earlier versions. Thus, any program written on an older version of
the x86 architecture can execute on newer versions. All changes to the instruction set architecture
have involved additions to the instruction set, with no subtractions. The rate of change has been the
addition of roughly one instruction per month added to the architecture [ANTH08], so that there are
now thousands of instructions in the instruction set.

The x86 provides an excellent illustration of the advances in computer hardware over the past 35
years. The 1978 8086 was introduced with a clock speed of 5 MHz and had 29,000 transistors. A six-
core Core i7 EE 4960X introduced in 2013 operates at 4 GHz, a speedup of a factor of 800, and has
1.86 billion transistors, about 64,000 times as many as the 8086. Yet the Core i7 EE 4960X is in only
a slightly larger package than the 8086 and has a comparable cost.

1.6 Embedded Systems
The term embedded system refers to the use of electronics and software within a product, as opposed
to a general-purpose computer, such as a laptop or desktop system. Millions of computers are sold
every year, including laptops, personal computers, workstations, servers, mainframes, and
supercomputers. In contrast, billions of computer systems are produced each year that are embedded
within larger devices. Today many, perhaps most, devices that use electric power have an embedded
computing system. It is likely that in the near future virtually all such devices will have embedded
computing systems.

Types of devices with embedded systems are almost too numerous to list. Examples include cell
phones, digital cameras, video cameras, calculators, microwave ovens, home security systems,
washing machines, lighting systems, thermostats, printers, various automotive systems (e.g.,
transmission control, cruise control, fuel injection, anti-lock brakes, and suspension systems), tennis
rackets, toothbrushes, and numerous types of sensors and actuators in automated systems.

Often, embedded systems are tightly coupled to their environment. This can give rise to real-time
constraints imposed by the need to interact with the environment. Constraints, such as required
speeds of motion, required precision of measurement, and required time durations, dictate the timing
of software operations. If multiple activities must be managed simultaneously, this imposes more
complex real-time constraints.

Figure 1.14 shows in general terms an embedded system organization. In addition to the processor
and memory, there are a number of elements that differ from the typical desktop or laptop computer:

Figure 1.14 Possible Organization of an Embedded System

There may be a variety of interfaces that enable the system to measure, manipulate, and otherwise
interact with the external environment. Embedded systems often interact (sense, manipulate, and

communicate) with the external world through sensors and actuators, and hence are typically
reactive systems; a reactive system is in continual interaction with the environment and executes at
a pace determined by that environment.
The human interface may be as simple as a flashing light or as complicated as real-time robotic
vision. In many cases, there is no human interface.
The diagnostic port may be used for diagnosing the system that is being controlled—not just for
diagnosing the computer.
Special-purpose field programmable (FPGA), application-specific (ASIC), or even nondigital
hardware may be used to increase performance or reliability.
Software often has a fixed function and is specific to the application.
Efficiency is of paramount importance for embedded systems. They are optimized for energy, code
size, execution time, weight and dimensions, and cost.

There are several noteworthy areas of similarity to general-purpose computer systems as well:

Even with nominally fixed function software, the ability to field upgrade to fix bugs, to improve
security, and to add functionality, has become very important for embedded systems, and not just
in consumer devices.
One comparatively recent development has been of embedded system platforms that support a
wide variety of apps. Good examples of this are smartphones and audio/visual devices, such as
smart TVs.

The Internet of Things

It is worthwhile to separately call out one of the major drivers in the proliferation of embedded
systems. The Internet of things (IoT) is a term that refers to the expanding interconnection of smart
devices, ranging from appliances to tiny sensors. A dominant theme is the embedding of short-range
mobile transceivers into a wide array of gadgets and everyday items, enabling new forms of
communication between people and things, and between things themselves. The Internet now
supports the interconnection of billions of industrial and personal objects, usually through cloud
systems. The objects deliver sensor information, act on their environment, and, in some cases, modify
themselves to create overall management of a larger system, like a factory or city.

The IoT is primarily driven by deeply embedded devices (defined below). These devices are low-
bandwidth, low-repetition data-capture, and low-bandwidth data-usage appliances that communicate
with each other and provide data via user interfaces. Embedded appliances, such as high-resolution
video security cameras, video VoIP phones, and a handful of others, require high-bandwidth
streaming capabilities. Yet countless products simply require packets of data to be intermittently
delivered.

With reference to the end systems supported, the Internet has gone through roughly four generations
of deployment culminating in the IoT:

1. Information technology (IT): PCs, servers, routers, firewalls, and so on, bought as IT devices
by enterprise IT people and primarily using wired connectivity.

2. Operational technology (OT): Machines/appliances with embedded IT built by non-IT
companies, such as medical machinery, SCADA (supervisory control and data acquisition),
process control, and kiosks, bought as appliances by enterprise OT people and primarily using
wired connectivity.

3. Personal technology: Smartphones, tablets, and eBook readers bought as IT devices by
consumers (employees) exclusively using wireless connectivity and often multiple forms of
wireless connectivity.

4. Sensor/actuator technology: Single-purpose devices bought by consumers, IT, and OT

people exclusively using wireless connectivity, generally of a single form, as part of larger
systems.

It is the fourth generation that is usually thought of as the IoT, and it is marked by the use of billions of
embedded devices.

Embedded Operating Systems

There are two general approaches to developing an embedded operating system (OS). The first
approach is to take an existing OS and adapt it for the embedded application. For example, there are
embedded versions of Linux, Windows, and Mac, as well as other commercial and proprietary
operating systems specialized for embedded systems. The other approach is to design and implement
an OS intended solely for embedded use. An example of the latter is TinyOS, widely used in wireless
sensor networks. This topic is explored in depth in [STAL18].

Application Processors versus Dedicated Processors

In this subsection, and the next two, we briefly introduce some terms commonly found in the literature
on embedded systems. Application processors are defined by the processor’s ability to execute
complex operating systems, such as Linux, Android, and Chrome. Thus, the application processor is
general-purpose in nature. A good example of the use of an embedded application processor is the
smartphone. The embedded system is designed to support numerous apps and perform a wide
variety of functions.

Most embedded systems employ a dedicated processor, which, as the name implies, is dedicated to
one or a small number of specific tasks required by the host device. Because such an embedded
system is dedicated to a specific task or tasks, the processor and associated components can be
engineered to reduce size and cost.

Microprocessors versus Microcontrollers

As we have seen, early microprocessor chips included registers, an ALU, and some sort of
control unit or instruction processing logic. As transistor density increased, it became possible to
increase the complexity of the instruction set architecture, and ultimately to add memory and more
than one processor. Contemporary microprocessor chips, as shown in Figure 1.2, include multiple
cores and a substantial amount of cache memory.

A microcontroller chip makes a substantially different use of the logic space available. Figure 1.15
shows in general terms the elements typically found on a microcontroller chip. As shown, a
microcontroller is a single chip that contains the processor, non-volatile memory for the program
(ROM), volatile memory for input and output (RAM), a clock, and an I/O control unit. The processor
portion of the microcontroller has a much lower silicon area than other microprocessors and much
higher energy efficiency. We examine microcontroller organization in more detail in Section 1.7.

Figure 1.15 Typical Microcontroller Chip Elements

Also called a “computer on a chip,” billions of microcontroller units are embedded each year in myriad
products from toys to appliances to automobiles. For example, a single vehicle can use 70 or more
microcontrollers. Typically, especially for the smaller, less expensive microcontrollers, they are used
as dedicated processors for specific tasks. For example, microcontrollers are heavily utilized in
automation processes. By providing simple reactions to input, they can control machinery, turn fans on
and off, open and close valves, and so forth. They are integral parts of modern industrial technology
and are among the most inexpensive ways to produce machinery that can handle extremely complex
functionalities.

Microcontrollers come in a range of physical sizes and processing power. Processors range from 4-bit
to 32-bit architectures. Microcontrollers tend to be much slower than microprocessors, typically
operating in the MHz range rather than the GHz speeds of microprocessors. Another typical feature of
a microcontroller is that it does not provide for human interaction. The microcontroller is programmed
for a specific task, embedded in its device, and executes as and when required.

Embedded versus Deeply Embedded Systems

We have, in this section, defined the concept of an embedded system. A subset of embedded
systems, and a quite numerous subset, is referred to as deeply embedded systems. Although this
term is widely used in the technical and commercial literature, you will search the Internet in vain (or at
least I did) for a straightforward definition. Generally, we can say that a deeply embedded system has
a processor whose behavior is difficult to observe both by the programmer and the user. A deeply
embedded system uses a microcontroller rather than a microprocessor, is not programmable once the

program logic for the device has been burned into ROM (read-only memory), and has no interaction
with a user.

Deeply embedded systems are dedicated, single-purpose devices that detect something in the
environment, perform a basic level of processing, and then do something with the results. Deeply
embedded systems often have wireless capability and appear in networked configurations, such as
networks of sensors deployed over a large area (e.g., factory, agricultural field). The Internet of things
depends heavily on deeply embedded systems. Typically, deeply embedded systems have extreme
resource constraints in terms of memory, processor size, time, and power consumption.

1.7 ARM Architecture
The ARM architecture refers to a processor architecture that has evolved from RISC design principles
and is used in embedded systems. Chapter 7 examines RISC design principles in detail. In this
section, we give a brief overview of the ARM architecture.

ARM Evolution

ARM is a family of RISC-based microprocessors and microcontrollers designed by ARM Holdings,
Cambridge, England. The company doesn’t make processors but instead designs microprocessor and
multicore architectures and licenses them to manufacturers. ARM Holdings has two types of
licensable products: processors and processor architectures. For processors, the customer buys the
rights to use ARM-supplied design in their own chips. For a processor architecture, the customer buys
the rights to design their own processor compliant with ARM’s architecture.

ARM chips are high-speed processors that are known for their small die size and low power
requirements. They are widely used in smartphones and other handheld devices, including game
systems, as well as a large variety of consumer products. ARM chips are the processors in Apple’s
popular iPod and iPhone devices, and are used in virtually all Android smartphones as well. ARM’s
partners shipped 16.7 billion ARM-based chips in 2016. ARM is probably the most widely used
embedded processor architecture and indeed the most widely used processor architecture of any kind
in the world [VANC14].

The origins of ARM technology can be traced back to the British-based Acorn Computers company. In
the early 1980s, Acorn was awarded a contract by the British Broadcasting Corporation (BBC) to
develop a new microcomputer architecture for the BBC Computer Literacy Project. The success of this
contract enabled Acorn to go on to develop the first commercial RISC processor, the Acorn RISC
Machine (ARM). The first version, ARM1, became operational in 1985 and was used for internal
research and development as well as being used as a coprocessor in the BBC machine.

In this early stage, Acorn used the company VLSI Technology to do the actual fabrication of the
processor chips. VLSI was licensed to market the chip on its own and had some success in getting
other companies to use the ARM in their products, particularly as an embedded processor.

The ARM design matched a growing commercial need for a high-performance, low-power-
consumption, small-size, and low-cost processor for embedded applications. But further development
was beyond the scope of Acorn’s capabilities. Accordingly, a new company was organized, with
Acorn, VLSI, and Apple Computer as founding partners, known as ARM Ltd. The Acorn RISC
Machine became Advanced RISC Machines. ARM was acquired by Japanese telecommunications
company SoftBank Group in 2016.

 The company dropped the designation Advanced RISC Machines in the late 1990s. It is now simply known as the

ARM architecture.

Instruction Set Architecture

The ARM instruction set is highly regular, designed for efficient implementation of the processor and
efficient execution. All instructions are 32 bits long and follow a regular format. This makes the ARM
ISA suitable for implementation over a wide range of products.

8

8

Augmenting the basic ARM ISA is the Thumb instruction set, which is a re-encoded subset of the
ARM instruction set. Thumb is designed to increase the performance of ARM implementations that
use a 16-bit or narrower memory data bus, and to allow better code density than provided by the ARM
instruction set. The Thumb instruction set contains a subset of the ARM 32-bit instruction set recoded
into 16-bit instructions. The current defined version is Thumb-2.

The ARM and Thumb-2 ISAs are discussed in Chapters 12 and 13.

ARM Products

ARM Holdings licenses a number of specialized microprocessors and related technologies, but the
bulk of their product line is the Cortex family of microprocessor architectures. There are three Cortex
architectures, conveniently labeled with the initials A, R, and M.

CORTEX-A

The Cortex-A series of processors are application processors, intended for mobile devices such as
smartphones and eBook readers, as well as consumer devices such as digital TV and home gateways
(e.g., DSL and cable Internet modems). These processors run at higher clock frequency (over 1 GHz),
and support a memory management unit (MMU), which is required for full feature OSs such as Linux,
Android, MS Windows, and mobile OSs. An MMU is a hardware module that supports virtual memory
and paging by translating virtual addresses into physical addresses; this topic is explored in Chapter
8.

The two architectures use both the ARM and Thumb-2 instruction. Some of the processors in this
series are 32-bit machines and others are 64-bit machines.

CORTEX-R

The Cortex-R is designed to support real-time applications, in which the timing of events needs to be
controlled with rapid response to events. They can run at a fairly high clock frequency (e.g., 2 MHz to
4 MHz) and have very low response latency. The Cortex-R includes enhancements both to the
instruction set and to the processor organization to support deeply embedded real-time devices. Most
of these processors do not have MMU; the limited data requirements and the limited number of
simultaneous processes eliminates the need for elaborate hardware and software support for virtual
memory. The Cortex-R does have a Memory Protection Unit (MPU), cache, and other memory
features designed for industrial applications. An MPU is a hardware module that prohibits one
program in memory from accidentally accessing memory assigned to another active program. Using
various methods, a protective boundary is created around the program, and instructions within the
program are prohibited from referencing data outside of that boundary.

Examples of embedded systems that would use the Cortex-R are automotive braking systems, mass
storage controllers, and networking and printing devices.

CORTEX-M

Cortex-M series processors have been developed primarily for the microcontroller domain where the
need for fast, highly deterministic interrupt management is coupled with the desire for extremely low
gate count and lowest possible power consumption. As with the Cortex-R series, the Cortex-M
architecture has an MPU but no MMU. The Cortex-M uses only the Thumb-2 instruction set. The
market for the Cortex-M includes IoT devices, wireless sensor/actuator networks used in factories and
other enterprises, automotive body electronics, and so on.

There are currently seven versions of the Cortex-M series:

Cortex-M0: Designed for 8- and 16-bit applications, this model emphasizes low cost, ultra low
power, and simplicity. It is optimized for small silicon die size (starting from 12k gates) and use in
the lowest cost chips.
Cortex-M0+: An enhanced version of the M0 that is more energy efficient.
Cortex-M3: Designed for 16- and 32-bit applications, this model emphasizes performance and
energy efficiency. It also has comprehensive debug and trace features to enable software
developers to develop their applications quickly.
Cortex-M4: This model provides all the features of the Cortex-M3, with additional instructions to
support digital signal processing tasks.
Cortex-M7: Provides higher performance than the M4. It is still primarily a 32-bit machine but uses
64-bit wide instruction and data buses.
Cortex-M23: This model is similar to the M0+, and adds integer divide instructions and some
security features.
Cortex-M33: This model is similar to the M4, and adds some security features.

In this text, we will primarily use the ARM Cortex-M3 as our example embedded system processor. It
is the best suited of all ARM models for general-purpose microcontroller use. The Cortex-M3 is used
by a variety of manufacturers of microcontroller products. Initial microcontroller devices from lead
partners already combine the Cortex-M3 processor with flash, SRAM, and multiple peripherals to
provide a competitive offering at the price of just $1.

Figure 1.16 provides a block diagram of the EFM32 microcontroller from Silicon Labs. The figure also
shows detail of the Cortex-M3 processor and core components. We examine each level in turn.

Figure 1.16 Typical Microcontroller Chip Based on Cortex-M3

The Cortex-M3 core makes use of separate buses for instructions and data. This arrangement is
sometimes referred to as a Harvard architecture, in contrast with the von Neumann architecture, which
uses the same signal buses and memory for both instructions and data. By being able to read both an
instruction and data from memory at the same time, the Cortex-M3 processor can perform many
operations in parallel, speeding application execution. The core contains a decoder for Thumb
instructions, an advanced ALU with support for hardware multiply and divide, control logic, and
interfaces to the other components of the processor. In particular, there is an interface to the nested
vector interrupt controller (NVIC) and the embedded trace macrocell (ETM) module.

The core is part of a module called the Cortex-M3 processor. This term is somewhat misleading,
because typically in the literature, the terms core and processor are viewed as equivalent. In addition
to the core, the processor includes the following elements:

NVIC: Provides configurable interrupt handling abilities to the processor. It facilitates low-latency
exception and interrupt handling, and controls power management.
ETM: An optional debug component that enables reconstruction of program execution. The ETM is
designed to be a high-speed, low-power debug tool that only supports instruction trace.
Debug access port (DAP): This provides an interface for external debug access to the processor.
Debug logic: Basic debug functionality includes processor halt, single-step, processor core
register access, unlimited software breakpoints, and full system memory access.
ICode interface: Fetches instructions from the code memory space.
SRAM & peripheral interface: Read/write interface to data memory and peripheral devices.
Bus matrix: Connects the core and debug interfaces to external buses on the microcontroller.
Memory protection unit: Protects critical data used by the operating system from user

applications, separating processing tasks by disallowing access to each other’s data, disabling
access to memory regions, allowing memory regions to be defined as read-only, and detecting
unexpected memory accesses that could potentially break the system.

The upper part of Figure 1.16 shows the block diagram of a typical microcontroller built with the
Cortex-M3, in this case the EFM32 microcontroller. This microcontroller is marketed for use in a wide
variety of devices, including energy, gas, and water metering; alarm and security systems; industrial
automation devices; home automation devices; smart accessories; and health and fitness devices.
The silicon chip consists of 10 main areas:

Core and memory: This region includes the Cortex-M3 processor, static RAM (SRAM) data
memory, and flash memory for storing program instructions and nonvarying application data.
Flash memory is nonvolatile (data is not lost when power is shut off) and so is ideal for this
purpose. The SRAM stores variable data. This area also includes a debug interface, which makes
it easy to reprogram and update the system in the field.
 Static RAM (SRAM) is a form of random-access memory used for cache memory; see Chapter 6.

 Flash memory is a versatile form of memory used both in microcontrollers and as external memory; it is
discussed in Chapter 7.

Parallel I/O ports: Configurable for a variety of parallel I/O schemes.
Serial interfaces: Supports various serial I/O schemes.
Analog interfaces: Analog-to-digital and digital-to-analog logic to support sensors and actuators.
Timers and triggers: Keeps track of timing and counts events, generates output waveforms, and
triggers timed actions in other peripherals.
Clock management: Controls the clocks and oscillators on the chip. Multiple clocks and oscillators
are used to minimize power consumption and provide short startup times.
Energy management: Manages the various low-energy modes of operation of the processor and
peripherals to provide real-time management of the energy needs so as to minimize energy
consumption.
Security: The chip includes a hardware implementation of the Advanced Encryption Standard
(AES).
32-bit bus: Connects all of the components on the chip.
Peripheral bus: A network which lets the different peripheral modules communicate directly with
each other without involving the processor. This supports timing-critical operation and reduces
software overhead.

Comparing Figure 1.16 with Figure 1.2, you will see many similarities and the same general
hierarchical structure. Note, however, that the top level of a microcontroller computer system is a
single chip, whereas for a multicore computer, the top level is a motherboard containing a number of
chips. Another noteworthy difference is that there is no cache, either in the Cortex-M3 processor or in
the microcontroller as a whole, which plays an important role if the code or data resides in external
memory. Though the number of cycles to read the instruction or data varies depending on cache hit or
miss, the cache greatly improves the performance when external memory is used. Such overhead is
not needed for a microcontroller.

9 10

9

10

1.8 Key Terms, Review Questions, and Problems

Key Terms

application processor

arithmetic and logic unit (ALU)

ARM

central processing unit (CPU)

chip

computer architecture

computer organization

control unit

core

dedicated processor

deeply embedded system

embedded system

gate

input–output (I/O)

instruction set architecture (ISA)

integrated circuit

Intel x86

Internet of things (IoT)

main memory

memory cell

memory management unit (MMU)

memory protection unit (MPU)

microcontroller

microelectronics

microprocessor

motherboard

multichip module (MCM)

multicore

multicore processor

printed circuit board

processor

registers

semiconductor

semiconductor memory

system bus

system interconnection

transistor

Review Questions

Problems

1.1 What, in general terms, is the distinction between computer organization and computer
architecture?
1.2 What, in general terms, is the distinction between computer structure and computer
function?
1.3 What are the four main functions of a computer?
1.4 List and briefly define the main structural components of a computer.
1.5 List and briefly define the main structural components of a processor.
1.6 What is a stored program computer?
1.7 Explain Moore’s law.
1.8 What is the key distinguishing feature of a microprocessor?

1.1 You are to write an IAS program to compute the results of the following equation.

Assume that the computation does not result in an arithmetic overflow and that X, Y, and N are
positive integers with Note: The IAS did not have assembly language, only machine
language.

a. Use the equation when writing the IAS program.
b. Do it the “hard way,” without using the equation from part (a).

1.2
a. On the IAS, what would the machine code instruction look like to load the contents of

memory address 2 to the accumulator?
b. How many trips to memory does the CPU need to make to complete this instruction

during the instruction cycle?

1.3 On the IAS, describe in English the process that the CPU must undertake to read a value
from memory and to write a value to memory in terms of what is put into the MAR, MBR,
address bus, data bus, and control bus.
1.4 Given the memory contents of the IAS computer shown below,

Address Contents

Y = N∑
X = 1

X

N ≥ 1.

Sum(Y)=
N (N + 1)

2

08A 010FA210FB

08B 010FA0F08D

08C 020FA210FB

show the assembly language code for the program, starting at address 08A. Explain what this
program does.
1.5 In Figure 1.6 , indicate the width, in bits, of each data path (e.g., between AC and ALU).
1.6 In the IBM 360 Models 65 and 75, addresses are staggered in two separate main memory
units (e.g., all even-numbered words in one unit and all odd-numbered words in another). What
might be the purpose of this technique?
1.7 The relative performance of the IBM 360 Model 75 is 50 times that of the 360 Model 30, yet
the instruction cycle time is only 5 times as fast. How do you account for this discrepancy?
1.8 While browsing at Billy Bob’s computer store, you overhear a customer asking Billy Bob
what is the fastest computer in the store that he can buy. Billy Bob replies, “You’re looking at
our Macintoshes. The fastest Mac we have runs at a clock speed of 1.2 GHz. If you really want
the fastest machine, you should buy our 2.4-GHz Intel Pentium IV instead.” Is Billy Bob correct?
What would you say to help this customer?
1.9 The ENIAC, a precursor to the ISA machine, was a decimal machine, in which each register
was represented by a ring of 10 vacuum tubes. At any time, only one vacuum tube was in the
ON state, representing one of the 10 decimal digits. Assuming that ENIAC had the capability to
have multiple vacuum tubes in the ON and OFF state simultaneously, why is this representation
“wasteful” and what range of integer values could we represent using the 10 vacuum tubes?
1.10 For each of the following examples, determine whether this is an embedded system,
explaining why or why not.

a. Are programs that understand physics and/or hardware embedded? For example, one
that uses finite-element methods to predict fluid flow over airplane wings?

b. Is the internal microprocessor controlling a disk drive an example of an embedded
system?

c. I/O drivers control hardware, so does the presence of an I/O driver imply that the
computer executing the driver is embedded?

d. Is a PDA (Personal Digital Assistant) an embedded system?
e. Is the microprocessor controlling a cell phone an embedded system?
f. Are the computers in a big phased-array radar considered embedded? These radars are

10-story buildings with one to three 100-foot diameter radiating patches on the sloped
sides of the building.

g. Is a traditional flight management system (FMS) built into an airplane cockpit considered
embedded?

h. Are the computers in a hardware-in-the-loop (HIL) simulator embedded?
i. Is the computer controlling a pacemaker in a person’s chest an embedded computer?
j. Is the computer controlling fuel injection in an automobile engine embedded?

Chapter 2 Performance Concepts

2.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the key performance issues that relate to computer design.
Explain the reasons for the move to multicore organization, and understand the trade-off between
cache and processor resources on a single chip.
Distinguish among multicore, MIC, and GPGPU organizations.
Summarize some of the issues in computer performance assessment.
Discuss the SPEC benchmarks.
Explain the differences among arithmetic, harmonic, and geometric means.

This chapter addresses the issue of computer system performance. We begin with
a consideration of the need for balanced utilization of computer resources, which
provides a perspective that is useful throughout the book. Next we look at
contemporary computer organization designs intended to provide performance to
meet current and projected demand. Finally, we look at tools and models that have

2.1 Designing for Performance
Microprocessor Speed
Performance Balance
Improvements in Chip Organization and Architecture

2.2 Multicore, MICs, and GPGPUs
2.3 Two Laws that Provide Insight: Amdahl’s Law and Little’s Law

Amdahl’s Law
Little’s Law

2.4 Basic Measures of Computer Performance
Clock Speed
Instruction Execution Rate

2.5 Calculating the Mean
Arithmetic Mean
Harmonic Mean
Geometric Mean

2.6 Benchmarks and SPEC
Benchmark Principles
SPEC Benchmarks

been developed to provide a means of assessing comparative computer system
performance.

2.1 Designing for Performance
Year by year, the cost of computer systems continues to drop dramatically, while the performance and
capacity of those systems continue to rise equally dramatically. Today’s laptops have the computing
power of an IBM mainframe from 10 or 15 years ago. Thus, we have virtually “free” computer power.
Processors are so inexpensive that we now have microprocessors we throw away. The digital
pregnancy test is an example (used once and then thrown away). And this continuing technological
revolution has enabled the development of applications of astounding complexity and power. For
example, desktop applications that require the great power of today’s microprocessor-based systems
include:

Image processing
Three-dimensional rendering
Speech recognition
Videoconferencing
Multimedia authoring
Voice and video annotation of files
Simulation modeling

Workstation systems now support highly sophisticated engineering and scientific applications and
have the capacity to support image and video applications. In addition, businesses are relying on
increasingly powerful servers to handle transaction and database processing and to support massive
client/server networks that have replaced the huge mainframe computer centers of yesteryear. As
well, cloud service providers use massive high-performance banks of servers to satisfy high-volume,
high-transaction-rate applications for a broad spectrum of clients.

What is fascinating about all this from the perspective of computer organization and architecture is
that, on the one hand, the basic building blocks for today’s computer miracles are virtually the same
as those of the IAS computer from over 50 years ago, while on the other hand, the techniques for
squeezing the maximum performance out of the materials at hand have become increasingly
sophisticated.

This observation serves as a guiding principle for the presentation in this book. As we progress
through the various elements and components of a computer, two objectives are pursued. First, the
book explains the fundamental functionality in each area under consideration, and second, the book
explores those techniques required to achieve maximum performance. In the remainder of this
section, we highlight some of the driving factors behind the need to design for performance.

Microprocessor Speed

What gives Intel x86 processors or IBM mainframe computers such mind-boggling power is the
relentless pursuit of speed by processor chip manufacturers. The evolution of these machines
continues to bear out Moore’s law, described in Chapter 1. So long as this law holds, chipmakers can
unleash a new generation of chips every three years—with four times as many transistors. In memory
chips, this has quadrupled the capacity of dynamic random-access memory (DRAM), still the basic
technology for computer main memory, every three years. In microprocessors, the addition of new
circuits, and the speed boost that comes from reducing the distances between them, has improved
performance four- or fivefold every three years or so since Intel launched its x86 family in 1978.

But the raw speed of the microprocessor will not achieve its potential unless it is fed a constant stream
of work to do in the form of computer instructions. Anything that gets in the way of that smooth flow
undermines the power of the processor. Accordingly, while the chipmakers have been busy learning

how to fabricate chips of greater and greater density, the processor designers must come up with ever
more elaborate techniques for feeding the monster. Among the techniques built into contemporary
processors are the following:

Pipelining: The execution of an instruction involves multiple stages of operation, including fetching
the instruction, decoding the opcode, fetching operands, performing a calculation, and so on.
Pipelining enables a processor to work simultaneously on multiple instructions by performing a
different phase for each of the multiple instructions at the same time. The processor overlaps
operations by moving data or instructions into a conceptual pipe with all stages of the pipe
processing simultaneously. For example, while one instruction is being executed, the computer is
decoding the next instruction. This is the same principle as seen in an assembly line.
Branch prediction: The processor looks ahead in the instruction code fetched from memory and
predicts which branches, or groups of instructions, are likely to be processed next. If the processor
guesses right most of the time, it can prefetch the correct instructions and buffer them so that the
processor is kept busy. The more sophisticated examples of this strategy predict not just the next
branch but multiple branches ahead. Thus, branch prediction potentially increases the amount of
work available for the processor to execute.
Superscalar execution: This is the ability to issue more than one instruction in every processor
clock cycle. In effect, multiple parallel pipelines are used.
Data flow analysis: The processor analyzes which instructions are dependent on each other’s
results, or data, to create an optimized schedule of instructions. In fact, instructions are scheduled
to be executed when ready, independent of the original program order. This prevents unnecessary
delay.
Speculative execution: Using branch prediction and data flow analysis, some processors
speculatively execute instructions ahead of their actual appearance in the program execution,
holding the results in temporary locations. This enables the processor to keep its execution
engines as busy as possible by executing instructions that are likely to be needed.

These and other sophisticated techniques are made necessary by the sheer power of the processor.
Collectively they make it possible to execute many instructions per processor cycle, rather than to take
many cycles per instruction.

Performance Balance

While processor power has raced ahead at breakneck speed, other critical components of the
computer have not kept up. The result is a need to look for performance balance: an
adjustment/tuning of the organization and architecture to compensate for the mismatch among the
capabilities of the various components.

The problem created by such mismatches is particularly critical at the interface between processor
and main memory. While processor speed has grown rapidly, the speed with which data can be
transferred between main memory and the processor has lagged badly. The interface between
processor and main memory is the most crucial pathway in the entire computer because it is
responsible for carrying a constant flow of program instructions and data between memory chips and
the processor. If memory or the pathway fails to keep pace with the processor’s insistent demands,
the processor stalls in a wait state, and valuable processing time is lost.

A system architect can attack this problem in a number of ways, all of which are reflected in
contemporary computer designs. Consider the following examples:

Increase the number of bits that are retrieved at one time by making DRAMs “wider” rather than
“deeper” and by using wide bus data paths.
Change the DRAM interface to make it more efficient by including a cache or other buffering1

scheme on the DRAM chip.
 A cache is a relatively small fast memory interposed between a larger, slower memory and the logic that

accesses the larger memory. The cache holds recently accessed data and is designed to speed up subsequent
access to the same data. Caches are discussed in Chapter 4.

Reduce the frequency of memory access by incorporating increasingly complex and efficient cache
structures between the processor and main memory. This includes the incorporation of one or
more caches on the processor chip as well as on an off-chip cache close to the processor chip.
Increase the interconnect bandwidth between processors and memory by using higher-speed
buses and a hierarchy of buses to buffer and structure data flow.

Another area of design focus is the handling of I/O devices. As computers become faster and more
capable, more sophisticated applications are developed that support the use of peripherals with
intensive I/O demands. Figure 2.1 gives some examples of typical peripheral devices in use on
personal computers and workstations. These devices create tremendous data throughput demands.
While the current generation of processors can handle the data pumped out by these devices, there
remains the problem of getting that data moved between processor and peripheral. Strategies here
include caching and buffering schemes plus the use of higher-speed interconnection buses and more
elaborate interconnection structures. In addition, the use of multiple-processor configurations can aid
in satisfying I/O demands.

Figure 2.1 Typical I/O Device Data Rates

The key in all this is balance. Designers constantly strive to balance the throughput and processing
demands of the processor components, main memory, I/O devices, and the interconnection

1

structures. This design must constantly be rethought to cope with two constantly evolving factors:

The rate at which performance is changing in the various technology areas (processor, buses,
memory, peripherals) differs greatly from one type of element to another.
New applications and new peripheral devices constantly change the nature of the demand on the
system in terms of typical instruction profile and the data access patterns.

Thus, computer design is a constantly evolving art form. This book attempts to present the
fundamentals on which this art form is based and to present a survey of the current state of that art.

Improvements in Chip Organization and Architecture

As designers wrestle with the challenge of balancing processor performance with that of main memory
and other computer components, the need to increase processor speed remains. There are three
approaches to achieving increased processor speed:

Increase the hardware speed of the processor. This increase is fundamentally due to shrinking the
size of the logic gates on the processor chip so that more gates can be packed together more
tightly and to increasing the clock rate. With gates closer together, the propagation time for signals
is significantly reduced, enabling a speeding up of the processor. An increase in clock rate means
that individual operations are executed more rapidly.
Increase the size and speed of caches that are interposed between the processor and main
memory. In particular, by dedicating a portion of the processor chip itself to the cache, cache
access times drop significantly.
Make changes to the processor organization and architecture that increase the effective speed of
instruction execution. Typically, this involves using parallelism in one form or another.

Traditionally, the dominant factor in performance gains has been increases in clock speed and logic
density. However, as clock speed and logic density increase, a number of obstacles become more
significant [INTE04]:

Power: As the density of logic and the clock speed on a chip increase, so does the power density
. The difficulty of dissipating the heat generated on high-density, high-speed chips is

becoming a serious design issue [GIBB04, BORK03].
RC delay: The speed at which electrons can flow on a chip between transistors is limited by the
resistance and capacitance of the metal wires connecting them; specifically, delay increases as the
RC product increases. As components on the chip decrease in size, the wire interconnects become
thinner, increasing resistance. Also, the wires are closer together, increasing capacitance.
Memory latency and throughput: Memory access speed (latency) and transfer speed
(throughput) lag processor speeds, as previously discussed.

Thus, there will be more emphasis on organization and architectural approaches to improving
performance. These techniques are discussed in later chapters of the text.

Beginning in the late 1980s, and continuing for about 15 years, two main strategies have been used to
increase performance beyond what can be achieved simply by increasing clock speed. First, there has
been an increase in cache capacity. There are now typically two or three levels of cache between the
processor and main memory. As chip density has increased, more of the cache memory has been
incorporated on the chip, enabling faster cache access. For example, the original Pentium chip
devoted about 10% of on-chip area to a cache. Contemporary chips devote over half of the chip area
to caches. And, typically, about three-quarters of the other half is for pipeline-related control and
buffering.

Second, the instruction execution logic within a processor has become increasingly complex to enable
parallel execution of instructions within the processor. Two noteworthy design approaches have been

(Watts / cm2)

pipelining and superscalar. A pipeline works much like an assembly line in a manufacturing plant,
enabling different stages of execution of different instructions to occur at the same time along the
pipeline. A superscalar approach, in essence, allows multiple pipelines within a single processor, so
that instructions that do not depend on one another can be executed in parallel.

By the mid to late 90s, both of these approaches were reaching a point of diminishing returns. The
internal organization of contemporary processors is exceedingly complex and is able to squeeze a
great deal of parallelism out of the instruction stream. It seems likely that further significant increases
in this direction will be relatively modest [GIBB04]. With three levels of cache on the processor chip,
each level providing substantial capacity, it also seems that the benefits from the cache are reaching a
limit.

However, simply relying on increasing clock rate for increased performance runs into the power
dissipation problem already referred to. The faster the clock rate, the greater the amount of power to
be dissipated, and some fundamental physical limits are being reached.

Figure 2.2 illustrates the concepts we have been discussing. The top line shows that, as per Moore’s
Law, the number of transistors on a single chip continues to grow exponentially. Meanwhile, the clock
speed has leveled off, in order to prevent a further rise in power. To continue increasing performance,
designers have had to find ways of exploiting the growing number of transistors other than simply
building a more complex processor. The response in recent years has been the development of the
multicore computer chip.

 I am grateful to Professor Kathy Yelick of UC Berkeley, who provided this graph.

 The observant reader will note that the transistor count values in this figure are significantly less than those of
Figure 1.12. That latter figure shows the transistor count for a form of main memory known as DRAM (discussed in
Chapter 5), which supports higher transistor density than processor chips.

2
3

2

3

Figure 2.2 Processor Trends
Source: Graph provided by: Professor Kathy Yelick, Associate Laboratory Director for Computing Sciences Lawrence Berkeley National Laboratory, Computer

Science Division University of California at Berkeley.

2.2 Multicore, Mics, and GPGPUs
With all of the difficulties cited in the preceding section in mind, designers have turned to a
fundamentally new approach to improving performance: placing multiple processors on the same chip,
with a large shared cache. The use of multiple processors on the same chip, also referred to as
multiple cores, or multicore, provides the potential to increase performance without increasing the
clock rate. Studies indicate that, within a processor, the increase in performance is roughly
proportional to the square root of the increase in complexity [BORK03]. But if the software can support
the effective use of multiple processors, then doubling the number of processors almost doubles
performance. Thus, the strategy is to use two simpler processors on the chip, rather than one more
complex processor.

In addition, with two processors larger caches are justified. This is important because the power
consumption of memory logic on a chip is much less than that of processing logic.

As the logic density on chips continues to rise, the trend for both more cores and more cache on a
single chip continues. Two-core chips were quickly followed by four-core chips, then 8, then 16, and
so on. As the caches became larger, it made performance sense to create two and then three levels
of cache on a chip, with the first-level cache initially dedicated to an individual processor, and levels
two and three being shared by all the processors. It is now common for the second-level cache to also
be private to each core.

Chip manufacturers are now in the process of making a huge leap forward in the number of cores per
chip, with more than 50 cores per chip. The leap in performance as well as the challenges in
developing software to exploit such a large number of cores has led to the introduction of a new term:
many integrated core (MIC).

The multicore and MIC strategy involves a homogeneous collection of general-purpose processors on
a single chip. At the same time, chip manufacturers are pursuing another design option: a chip with
multiple general-purpose processors plus graphics processing units (GPUs) and specialized cores
for video processing and other tasks. In broad terms, a GPU is a core designed to perform parallel
operations on graphics data. Traditionally found on a plug-in graphics card (display adapter), it is used
to encode and render 2D and 3D graphics as well as process video.

Since GPUs perform parallel operations on multiple sets of data, they are increasingly being used as
vector processors for a variety of applications that require repetitive computations. This blurs the line
between the GPU and the CPU [AROR12, FATA08, PROP11]. When a broad range of applications
are supported by such a processor, the term general-purpose computing on GPUs (GPGPU) is
used.

We explore design characteristics of multicore computers in Chapter 18 and GPGPUs in Chapter 19.

2.3 Two Laws that Provide Insight: Ahmdahl’s Law and Little’s
Law
In this section, we look at two equations, called “laws.” The two laws are unrelated, but both provide
insight into the performance of parallel systems and multicore systems.

Amdahl’s Law

Computer system designers look for ways to improve system performance by advances in technology
or change in design. Examples include the use of parallel processors, the use of a memory cache
hierarchy, and speedup in memory access time and I/O transfer rate due to technology improvements.
In all of these cases, it is important to note that a speedup in one aspect of the technology or design
does not result in a corresponding improvement in performance. This limitation is succinctly expressed
by Amdahl’s law.

Amdahl’s law was first proposed by Gene Amdahl in 1967 ([AMDA67], [AMDA13]) and deals with the
potential speedup of a program using multiple processors compared to a single processor. Consider a
program running on a single processor such that a fraction of the execution time involves code
that is inherently sequential, and a fraction f that involves code that is infinitely parallelizable with no
scheduling overhead. Let T be the total execution time of the program using a single processor. Then
the speedup using a parallel processor with N processors that fully exploits the parallel portion of the
program is as follows:

This equation is illustrated in Figures 2.3 and 2.4. Two important conclusions can be drawn:

Figure 2.3 Illustration of Amdahl’s Law

(1 − f)

Speedup = Time to execute program on a single processor
Time to execute program on Nparallel processors

= T (1 − f) + Tf

T (1 − f) +
Tf
N

=
1

(1 − f) +
f
N

Figure 2.4 Amdahl’s Law for Multiprocessors

1. When f is small, the use of parallel processors has little effect.
2. As N approaches infinity, speedup is bound by so that there are diminishing returns

for using more processors.

These conclusions are too pessimistic, an assertion first put forward in [GUST88]. For example, a
server can maintain multiple threads or multiple tasks to handle multiple clients and execute the
threads or tasks in parallel up to the limit of the number of processors. Many database applications
involve computations on massive amounts of data that can be split up into multiple parallel tasks.
Nevertheless, Amdahl’s law illustrates the problems facing industry in the development of multicore
machines with an ever-growing number of cores: The software that runs on such machines must be
adapted to a highly parallel execution environment to exploit the power of parallel processing.

Amdahl’s law can be generalized to evaluate any design or technical improvement in a computer
system. Consider any enhancement to a feature of a system that results in a speedup. The speedup
can be expressed as

Suppose that a feature of the system is used during execution a fraction of the time f, before
enhancement, and that the speedup of that feature after enhancement is Then the overall
speedup of the system is

1 / (1 − f) ,

Speedup =
Performance after enhancement

Performance before enhancement =
Execution time before enhancement
Execution time after enhancement (2.1)

SU
f
.

Speedup =
1

(1 − f) +
f

SU
f

Example 2.1

Suppose that a task makes extensive use of floating-point operations, with 40% of the time
consumed by floating-point operations. With a new hardware design, the floating-point module is
sped up by a factor of K. Then the overall speedup is as follows:

Thus, independent of K, the maximum speedup is 1.67.

Little’s Law

A fundamental and simple relation with broad applications is Little’s Law [LITT61, LITT11]. We can
apply it to almost any system that is statistically in steady state, and in which there is no leakage.
Specifically, we have a steady state system to which items arrive at an average rate of items per
unit time. The items stay in the system an average of W units of time. Finally, there is an average of L
units in the system at any one time. Little’s Law relates these three variables as .

 The second reference is a retrospective article on his law that Little wrote 50 years after his original paper. That

must be unique in the history of the technical literature, although Amdahl comes close, with a 46-year gap between
[AMDA67] and [AMDA13].

Using queuing theory terminology, Little’s Law applies to a queuing system. The central element of the
system is a server, which provides some service to items. Items from some population of items arrive
at the system to be served. If the server is idle, an item is served immediately. Otherwise, an arriving
item joins a waiting line, or queue. There can be a single queue for a single server, a single queue for
multiple servers, or multiples queues, one for each of multiple servers. When a server has completed
serving an item, the item departs. If there are items waiting in the queue, one is immediately
dispatched to the server. The server in this model can represent anything that performs some function
or service for a collection of items. Examples: A processor provides service to processes; a
transmission line provides a transmission service to packets or frames of data; and an I/O device
provides a read or write service for I/O requests.

To understand Little’s formula, consider the following argument, which focuses on the experience of a
single item. When the item arrives, it will find on average L items ahead of it, one being serviced and
the rest in the queue. When the item leaves the system after being serviced, it will leave behind on
average the same number of items in the system, namely L, because L is defined as the average
number of items waiting. Further, the average time that the item was in the system was W. Since
items arrive at a rate of , we can reason that in the time W, a total of items must have arrived.

Thus .

To summarize, under steady state conditions, the average number of items in a queuing system
equals the average rate at which items arrive multiplied by the average time that an item spends in the
system. This relationship requires very few assumptions. We do not need to know what the service
time distribution is, what the distribution of arrival times is, or the order or priority in which items are
served. Because of its simplicity and generality, Little’s Law is extremely useful and has experienced
somewhat of a revival due to the interest in performance problems related to multicore computers.

Speedup =
1

0.6 +
0.4
K

4

λ

L = λW

4

λ λW

L = λW

A very simple example, from [LITT11], illustrates how Little’s Law might be applied. Consider a
multicore system, with each core supporting multiple threads of execution. At some level, the cores
share a common memory. The cores share a common main memory and typically share a common
cache memory as well. In any case, when a thread is executing, it may arrive at a point at which it
must retrieve a piece of data from the common memory. The thread stops and sends out a request for
that data. All such stopped threads are in a queue. If the system is being used as a server, an analyst
can determine the demand on the system in terms of the rate of user requests, and then translate that
into the rate of requests for data from the threads generated to respond to an individual user request.
For this purpose, each user request is broken down into subtasks that are implemented as threads.
We then have the average rate of total thread processing required after all members’ requests
have been broken down into whatever detailed subtasks are required. Define L as the average
number of stopped threads waiting during some relevant time. Then average response time. This

simple model can serve as a guide to designers as to whether user requirements are being met and, if
not, provide a quantitative measure of the amount of improvement needed.

λ =

W =

2.4 Basic Measures of Computer Performance
In evaluating processor hardware and setting requirements for new systems, performance is one of
the key parameters to consider, along with cost, size, security, reliability, and, in some cases, power
consumption.

It is difficult to make meaningful performance comparisons among different processors, even among
processors in the same family. Raw speed is far less important than how a processor performs when
executing a given application. Unfortunately, application performance depends not just on the raw
speed of the processor but also on the instruction set, choice of implementation language, efficiency
of the compiler, and skill of the programming done to implement the application.

In this section, we look at some traditional measures of processor speed. In the next section, we
examine benchmarking, which is the most common approach to assessing processor and computer
system performance. The following section discusses how to average results from multiple tests.

Clock Speed

Operations performed by a processor, such as fetching an instruction, decoding the instruction,
performing an arithmetic operation, and so on, are governed by a system clock. Typically, all
operations begin with the pulse of the clock. Thus, at the most fundamental level, the speed of a
processor is dictated by the pulse frequency produced by the clock, measured in cycles per second,
or Hertz (Hz).

Typically, clock signals are generated by a quartz crystal, which generates a constant sine wave while
power is applied. This wave is converted into a digital voltage pulse stream that is provided in a
constant flow to the processor circuitry (Figure 2.5). For example, a 1-GHz processor receives 1
billion pulses per second. The rate of pulses is known as the clock rate, or clock speed. One
increment, or pulse, of the clock is referred to as a clock cycle, or a clock tick. The time between
pulses is the cycle time.

Figure 2.5 System Clock

The clock rate is not arbitrary, but must be appropriate for the physical layout of the processor. Actions
in the processor require signals to be sent from one processor element to another. When a signal is
placed on a line inside the processor, it takes some finite amount of time for the voltage levels to settle
down so that an accurate value (logical 1 or 0) is available. Furthermore, depending on the physical
layout of the processor circuits, some signals may change more rapidly than others. Thus, operations
must be synchronized and paced so that the proper electrical signal (voltage) values are available for
each operation.

The execution of an instruction involves a number of discrete steps, such as fetching the instruction
from memory, decoding the various portions of the instruction, loading and storing data, and
performing arithmetic and logical operations. Thus, most instructions on most processors require
multiple clock cycles to complete. Some instructions may take only a few cycles, while others require

dozens. In addition, when pipelining is used, multiple instructions are being executed simultaneously.
Thus, a straight comparison of clock speeds on different processors does not tell the whole story
about performance.

Instruction Execution Rate

A processor is driven by a clock with a constant frequency f or, equivalently, a constant cycle time
where Define the instruction count, for a program as the number of machine instructions
executed for that program until it runs to completion or for some defined time interval. Note that this is
the number of instruction executions, not the number of instructions in the object code of the program.
An important parameter is the average cycles per instruction (CPI) for a program. If all instructions
required the same number of clock cycles, then CPI would be a constant value for a processor.
However, on any given processor, the number of clock cycles required varies for different types of
instructions, such as load, store, branch, and so on. Let be the number of cycles required for
instruction type i, and be the number of executed instructions of type i for a given program. Then we
can calculate an overall CPI as follows:

The processor time T needed to execute a given program can be expressed as

We can refine this formulation by recognizing that during the execution of an instruction, part of the
work is done by the processor, and part of the time a word is being transferred to or from memory. In
this latter case, the time to transfer depends on the memory cycle time, which may be greater than the
processor cycle time. We can rewrite the preceding equation as

where p is the number of processor cycles needed to decode and execute the instruction, m is the
number of memory references needed, and k is the ratio between memory cycle time and processor
cycle time. The five performance factors in the preceding equation are influenced by
four system attributes: the design of the instruction set (known as instruction set architecture);
compiler technology (how effective the compiler is in producing an efficient machine language
program from a high-level language program); processor implementation; and cache and memory
hierarchy. Table 2.1 is a matrix in which one dimension shows the five performance factors and the
other dimension shows the four system attributes. An X in a cell indicates a system attribute that
affects a performance factor.

Table 2.1 Performance Factors and System Attributes

p m k

Instruction set architecture X X

Compiler technology X X X

Processor implementation X X

τ ,
τ = 1 / f . Ic ,

CPIi

Ii

CPI =
∑n

i = 1(CPIi × Ii)
Ic

(2.2)

T=Ic×CPI×τ

T = Ic × [p + (m × k)] × τ

(Ic , p , m , k , τ)

Ic τ

Cache and memory hierarchy X X

A common measure of performance for a processor is the rate at which instructions are executed,
expressed as millions of instructions per second (MIPS), referred to as the MIPS rate. We can
express the MIPS rate in terms of the clock rate and CPI as follows:

Example 2.2

Consider the execution of a program that results in the execution of 2 million instructions on a 400-
MHz processor. The program consists of four major types of instructions. The instruction mix and
the CPI for each instruction type are given below, based on the result of a program trace
experiment:

Instruction Type CPI Instruction Mix (%)

Arithmetic and logic 1 60

Load/store with cache hit 2 18

Branch 4 12

Memory reference with cache miss 8 10

The average CPI when the program is executed on a uniprocessor with the above trace results is
 The corresponding MIPS rate is

Another common performance measure deals only with floating-point instructions. These are common
in many scientific and game applications. Floating-point performance is expressed as millions of
floating-point operations per second (MFLOPS), defined as follows:

MIPS rate =
Ic

T × 106 =
f

CPI × 106 (2.3)

CPI = 0.6 + (2 × 0.18) + (4 × 0.12) + (8 × 0.1) = 2.24.
(400 × 106) / (2.24 × 106) ≈ 178.

MFLOPS rate =
Number of executed floating − point operations in a program

Execution time × 106

2.5 Calculating the Mean
In evaluating some aspect of computer system performance, it is often the case that a single number,
such as execution time or memory consumed, is used to characterize performance and to compare
systems. Clearly, a single number can provide only a very simplified view of a system’s capability.
Nevertheless, and especially in the field of benchmarking, single numbers are typically used for
performance comparison [SMIT88].

As is discussed in Section 2.6, the use of benchmarks to compare systems involves calculating the
mean value of a set of data points related to execution time. It turns out that there are multiple
alternative algorithms that can be used for calculating a mean value, and this has been the source of
some controversy in the benchmarking field. In this section, we define these alternative algorithms and
comment on some of their properties. This prepares us for a discussion in the next section of mean
calculation in benchmarking.

The three common formulas used for calculating a mean are arithmetic, geometric, and harmonic.
Given a set of n real numbers the three means are defined as follows:

Arithmetic mean

Geometric mean

Harmonic mean

It can be shown that the following inequality holds:

The values are equal only if

We can get a useful insight into these alternative calculations by defining the functional mean. Let f(x)
be a continuous monotonic function defined in the interval . The functional mean with respect

to the function f(x) for n positive real numbers is defined as

Functional mean

(x1 , x2 , … , xn) ,

AM =
x1 + ⋯ + xn

n =
1
n n∑

i = 1
xi

(2.4)

GM = =
⎜⎜⎜⎜⎜⎜⎜⎜

n∏
i = 1

xi

⎟⎟⎟⎟⎟⎟⎟⎟

1 / n

=e

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1
n n∑

i = 1
ln (xi)

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
x1 × ⋯ × xnn

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

(2.5)

HM =
n

⎜⎜⎜⎜⎜⎜
1
x1

⎟⎟⎟⎟⎟⎟ + ⋯ +
⎜⎜⎜⎜⎜⎜

1
xn

⎟⎟⎟⎟⎟⎟

=
n

n∑
i = 1

⎜⎜⎜⎜⎜
1
xi

⎟⎟⎟⎟⎟

xi > 0
⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

(2.6)

AM ≥ GM ≥ HM

x1 = x2 = … xn .

0≤y<∞

x1 , x2 , … , xn

FM = f
− 1⎜⎜⎜⎜⎜⎜⎜⎜

f (x1) + ⋯ + f (xn)
n

⎟⎟⎟⎟⎟⎟⎟⎟
= f

− 1
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

1
n n∑

i = 1
f (xi)

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

where is the inverse of f(x). The mean values defined in Equations (2.1) through (2.3) are
special cases of the functional mean, as follows:

AM is the FM with respect to
GM is the FM with respect to
HM is the FM with respect to
Example 2.3

Figure 2.6 illustrates the three means applied to various data sets, each of which has eleven data
points and a maximum data point value of 11. The median value is also included in the chart.
Perhaps what stands out the most in this figure is that the HM has a tendency to produce a
misleading result when the data is skewed to larger values or when there is a small-value outlier.

f
− 1

(x)

f (x)=x
f (x)=ln x
f (x)=1/x

Figure 2.6 Comparison of Means on Various Data Sets (each set has a maximum data point
value of 11)

Let us now consider which of these means are appropriate for a given performance measure. As a
preface to these remarks, it should be noted that a number of papers ([CITR06], [FLEM86], [GILA95],
[JACO95], [JOHN04], [MASH04], [SMIT88]) and books ([HENN12], [HWAN93], [JAIN91], [LILJ00])

over the years have argued the pros and cons of the three means for performance analysis and come
to conflicting conclusions. To simplify a complex controversy, we just note that the conclusions
reached depend very much on the examples chosen and the way in which the objectives are stated.

Arithmetic Mean

An AM is an appropriate measure if the sum of all the measurements is a meaningful and interesting
value. The AM is a good candidate for comparing the execution time performance of several systems.
For example, suppose we were interested in using a system for large-scale simulation studies and
wanted to evaluate several alternative products. On each system we could run the simulation multiple
times with different input values for each run, and then take the average execution time across all
runs. The use of multiple runs with different inputs should ensure that the results are not heavily
biased by some unusual feature of a given input set. The AM of all the runs is a good measure of the
system’s performance on simulations, and a good number to use for system comparison.

The AM used for a time-based variable (e.g., seconds), such as program execution time, has the
important property that it is directly proportional to the total time. So, if the total time doubles, the
mean value doubles.

Harmonic Mean

For some situations, a system’s execution rate may be viewed as a more useful measure of the value
of the system. This could be either the instruction execution rate, measured in MIPS or MFLOPS, or a
program execution rate, which measures the rate at which a given type of program can be executed.
Consider how we wish the calculated mean to behave. It makes no sense to say that we would like
the mean rate to be proportional to the total rate, where the total rate is defined as the sum of the
individual rates. The sum of the rates would be a meaningless statistic. Rather, we would like the
mean to be inversely proportional to the total execution time. For example, if the total time to execute
all the benchmark programs in a suite of programs is twice as much for system C as for system D, we
would want the mean value of the execution rate to be half as much for system C as for system D.

Let us look at a basic example and first examine how the AM performs. Suppose we have a set of n
benchmark programs and record the execution times of each program on a given system as

 For simplicity, let us assume that each program executes the same number of

operations Z; we could weight the individual programs and calculate accordingly, but this would not
change the conclusion of our argument. The execution rate for each individual program is
We use the AM to calculate the average execution rate.

We see that the AM execution rate is proportional to the sum of the inverse execution times, which is
not the same as being inversely proportional to the sum of the execution times. Thus, the AM does not
have the desired property.

The HM yields the following result.

t1 , t2 , … , tn .

Ri = Z / ti .

AM =
1
n n∑

i = 1
Ri =

1
n n∑

i = 1

Z
ti =

Z
n n∑

i = 1

1
ti

HM =
n

n∑
i = 1

⎜⎜⎜⎜⎜⎜
1
Ri

⎟⎟⎟⎟⎟⎟

=
n

n∑
i = 1

⎜⎜⎜⎜⎜⎜
1

Z / ti
⎟⎟⎟⎟⎟⎟

=
nZ
n∑

i = 1
ti⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

The HM is inversely proportional to the total execution time, which is the desired property.

 Example 2.4

A simple numerical example will illustrate the difference between the two means in calculating a
mean value of the rates, shown in Table 2.2. The table compares the performance of three
computers on the execution of two programs. For simplicity, we assume that the execution of each
program results in the execution of floating-point operations. The left half of the table shows
the execution times for each computer running each program, the total execution time, and the AM
of the execution times. Computer A executes in less total time than B, which executes in less total
time than C, and this is reflected accurately in the AM.

Table 2.2 A Comparison of Arithmetic and Harmonic Means for Rates

Computer
A time
(secs)

Computer
B time
(secs)

Computer
C time
(secs)

Computer
A rate

(MFLOPS)

Computer
B rate

(MFLOPS)

Computer
C rate

(MFLOPS)

Program 1 (108
FP ops)

2.0 1.0 0.75 50 100 133.33

Program 2 (108
FP ops)

0.75 2.0 4.0 133.33 50 25

Total execution
time

2.75 3.0 4.75 — — —

Arithmetic
mean of times

1.38 1.5 2.38 — — —

Inverse of total
execution time
(1/sec)

0.36 0.33 0.21 — — —

Arithmetic
mean of rates

— — — 91.67 75.00 79.17

Harmonic mean
of rates

— — — 72.72 66.67 42.11

The right half of the table provides a comparison in terms of rates, expressed in MFLOPS. The
rate calculation is straightforward. For example, program 1 executes 100 million floating-point
operations. Computer A takes 2 seconds to execute the program for a MFLOPS rate of
. Next, consider the AM of the rates. The greatest value is for computer A, which suggests that A is
the fastest computer. In terms of total execution time, A has the minimum time, so it is the fastest
computer of the three. But the AM of rates shows B as slower than C, whereas in fact B is faster

108

100 / 2 = 50

than C. Looking at the HM values, we see that they correctly reflect the speed ordering of the
computers. This confirms that the HM is preferred when calculating rates.

The reader may wonder why go through all this effort. If we want to compare execution times, we
could simply compare the total execution times of the three systems. If we want to compare rates, we
could simply take the inverse of the total execution time, as shown in the table. There are two reasons
for doing the individual calculations rather than only looking at the aggregate numbers:

1. A customer or researcher may be interested not only in the overall average performance but
also performance against different types of benchmark programs, such as business
applications, scientific modeling, multimedia applications, and systems programs. Thus, a
breakdown by type of benchmark is needed, as well as a total.

2. Usually, the different programs used for evaluation are weighted differently. In Table 2.2, it is
assumed that the two test programs execute the same number of operations. If that is not the
case, we may want to weight accordingly. Or different programs could be weighted differently to
reflect importance or priority.

Let us see what the result is if test programs are weighted proportional to the number of operations.
Following the preceding notation, each program i executes Zi instructions in a time ti. Each rate is
weighted by the instructions count. The weighted HM is therefore:

We see that the weighted HM is the quotient of the sum of the operation count divided by the sum of
the execution times.

Geometric Mean

Looking at the equations for the three types of means, it is easier to get an intuitive sense of the
behavior of the AM and the HM than that of the GM. Several observations from [FEIT15] may be
helpful in this regard. First, we note that with respect to changes in values, the GM gives equal weight
to all of the values in the data set. For example, suppose the set of data values to be averaged
includes a few large values and more small values. Here, the AM is dominated by the large values. A
change of 10% in the largest value will have a noticeable effect, while a change in the smallest value
by the same factor will have a negligible effect. In contrast, a change in value by 10% of any of the
data values results in the same change in the GM:

Example 2.5

This point is illustrated by data set (e) in Figure 2.6. Here are the effects of increasing either the
maximum or the minimum value in the data set by 10%:

Geometric Mean Arithmetic Mean

Original value 3.37 4.45

WHM =
1

n∑
i = 1

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

Zi
∑n

j = 1Zj

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜
1
Ri

⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
n

n∑
i = 1

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

Zi
∑n

j = 1Zj

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

⎜⎜⎜⎜⎜⎜
tiZi

⎟⎟⎟⎟⎟⎟

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
∑n

j = 1Zj
n∑

i = 1
ti⎛

⎝

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎞

⎠

⎛

⎝

⎛

⎝

⎞

⎠

⎛
⎝

⎞
⎠

⎞

⎠

(2.7)

.1.1n

3.40 (+ 0.87%) 4.55 (+ 2.24%)

Increase max value from 11 to

Increase min value from 1 to

A second observation is that for the GM of a ratio, the GM of the ratios equals the ratio of the GMs:

Compare this with Equation 2.4.

For use with execution times, as opposed to rates, one drawback of the GM is that it may be non-
monotonic relative to the more intuitive AM. In other words there may be cases where the AM of one
data set is larger than that of another set, but the GM is smaller.

Example 2.6

In Figure 2.6, the AM for data set d is larger than the AM for data set c, but the opposite is true for
the GM.

Data set c Data set d

Arithmetic mean 7.00 7.55

Geometric mean 6.68 6.42

One property of the GM that has made it appealing for benchmark analysis is that it provides
consistent results when measuring the relative performance of machines. This is in fact what
benchmarks are primarily used for: to compare one machine with another in terms of performance
metrics. The results, as we have seen, are expressed in terms of values that are normalized to a
reference machine.

Example 2.7

A simple example will illustrate the way in which the GM exhibits consistency for normalized
results. In Table 2.3, we use the same performance results as were used in Table 2.2. In Table
2.3a, all results are normalized to Computer A, and the means are calculated on the normalized
values. Based on total execution time, A is faster than B, which is faster than C. Both the AMs and
GMs of the normalized times reflect this. In Table 2.3b, the systems are now normalized to B.
Again the GMs correctly reflect the relative speeds of the three computers, but now the AM
produces a different ordering.

Table 2.3 A Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

12.1 (+ 10%)

1.1 (+ 10%)
3.40 (+ 0.87%) 4.46 (+ 0.20%)

GM =
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

n∏
i = 1

Ziti

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

1 / n

=

⎜⎜⎜⎜⎜⎜⎜⎜
n∏

i = 1
Zi

⎟⎟⎟⎟⎟⎟⎟⎟

1 / n

⎜⎜⎜⎜⎜⎜⎜⎜
n∏

i = 1
ti

⎟⎟⎟⎟⎟⎟⎟⎟

1 / n

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

⎛

⎝

⎞

⎠

(2.8)

Computer A
time

Computer B
time

Computer C
time

Program 1 2.0 (1.0) 1.0 (0.5) 0.75 (0.38)

Program 2 0.75 (1.0) 2.0 (2.67) 4.0 (5.33)

Total execution time 2.75 3.0 4.75

Arithmetic mean of normalized
times

1.00 1.58 2.85

Geometric mean of normalized
times

1.00 1.15 1.41

(b) Results normalized to Computer B

Computer A
time

Computer B
time

Computer C
time

Program 1 2.0 (2.0) 1.0 (1.0) 0.75 (0.75)

Program 2 0.75 (0.38) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.75 3.0 4.75

Arithmetic mean of normalized
times

1.19 1.00 1.38

Geometric mean of normalized
times

0.87 1.00 1.22

Sadly, consistency does not always produce correct results. In Table 2.4, some of the execution
times are altered. Once again, the AM reports conflicting results for the two normalizations. The
GM reports consistent results, but the result is that B is faster than A and C, which are equal.

Table 2.4 Another Comparison of Arithmetic and Geometric Means for Normalized Results

(a) Results normalized to Computer A

Computer A
time

Computer B
time

Computer C
time

Program 1 2.0 (1.0) 1.0 (0.5) 0.20 (0.1)

Program 2 0.4 (1.0) 2.0 (5.0) 4.0 (10.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of normalized
times

1.00 2.75 5.05

Geometric mean of normalized
times

1.00 1.58 1.00

(b) Results normalized to Computer B

Computer A
time

Computer B
time

Computer C
time

Program 1 2.0 (2.0) 1.0 (1.0) 0.20 (0.2)

Program 2 0.4 (0.2) 2.0 (1.0) 4.0 (2.0)

Total execution time 2.4 3.00 4.2

Arithmetic mean of normalized
times

1.10 1.00 1.10

Geometric mean of normalized
times

0.63 1.00 0.63

It is examples like this that have fueled the “benchmark means wars” in the citations listed earlier. It is
safe to say that no single number can provide all the information that one needs for comparing
performance across systems. However, despite the conflicting opinions in the literature, SPEC has
chosen to use the GM, for several reasons:

1. As mentioned, the GM gives consistent results regardless of which system is used as a
reference. Because benchmarking is primarily a comparison analysis, this is an important
feature.

2. As documented in [MCMA93], and confirmed in subsequent analyses by SPEC analysts
[MASH04], the GM is less biased by outliers than the HM or AM.

3. [MASH04] demonstrates that distributions of performance ratios are better modeled by
lognormal distributions than by normal ones, because of the generally skewed distribution of the
normalized numbers. This is confirmed in [CITR06]. And, as shown in Equation (2.5), the GM
can be described as the back-transformed average of a lognormal distribution.

2.6 Benchmarks and Spec

Benchmark Principles

Measures such as MIPS and MFLOPS have proven inadequate to evaluating the performance of
processors. Because of differences in instruction sets, the instruction execution rate is not a valid
means of comparing the performance of different architectures.

Example 2.8

Consider this high-level language statement:

A = B + C /* assume all quantities in main memory */

With a traditional instruction set architecture, referred to as a complex instruction set computer
(CISC), this instruction can be compiled into one processor instruction:

add mem(B), mem(C), mem (A)

On a typical RISC machine, the compilation would look something like this:

load mem(B), reg(1);
load mem(C), reg(2);
add reg(1), reg(2), reg(3);
store reg(3), mem (A)

Because of the nature of the RISC architecture (discussed in Chapter 15), both machines may
execute the original high-level language instruction in about the same time. If this example is
representative of the two machines, then if the CISC machine is rated at 1 MIPS, the RISC
machine would be rated at 4 MIPS. But both do the same amount of high-level language work in
the same amount of time.

Another consideration is that the performance of a given processor on a given program may not be
useful in determining how that processor will perform on a very different type of application.
Accordingly, beginning in the late 1980s and early 1990s, industry and academic interest shifted to
measuring the performance of systems using a set of benchmark programs. The same set of
programs can be run on different machines and the execution times compared. Benchmarks provide
guidance to customers trying to decide which system to buy, and can be useful to vendors and
designers in determining how to design systems to meet benchmark goals.

[WEIC90] lists the following as desirable characteristics of a benchmark program:

1. It is written in a high-level language, making it portable across different machines.
2. It is representative of a particular kind of programming domain or paradigm, such as systems

programming, numerical programming, or commercial programming.
3. It can be measured easily.

4. It has wide distribution.

SPEC Benchmarks

The common need in industry and academic and research communities for generally accepted
computer performance measurements has led to the development of standardized benchmark suites.
A benchmark suite is a collection of programs, defined in a high-level language, that together attempt
to provide a representative test of a computer in a particular application or system programming area.
The best known such collection of benchmark suites is defined and maintained by the Standard
Performance Evaluation Corporation (SPEC), an industry consortium. This organization defines
several benchmark suites aimed at evaluating computer systems. SPEC performance measurements
are widely used for comparison and research purposes.

The best known of the SPEC benchmark suites is SPEC CPU2017. This is the industry standard suite
for processor-intensive applications. That is, SPEC CPU2017 is appropriate for measuring
performance for applications that spend most of their time doing computation rather than I/O.

Other SPEC suites include the following:

SPEC Cloud_IaaS: Benchmark addresses the performance of infrastructure-as-a-service (IaaS)
public or private cloud platforms.
SPECviewperf: Standard for measuring 3D graphics performance based on professional
applications.
SPECwpc: benchmark to measure all key aspects of workstation performance based on diverse
professional applications, including media and entertainment, product development, life sciences,
financial services, and energy.
SPECjvm2008: Intended to evaluate performance of the combined hardware and software aspects
of the Java Virtual Machine (JVM) client platform.
SPECjbb2015 (Java Business Benchmark): A benchmark for evaluating server-side Java-based
electronic commerce applications.
SPECsfs2014: Designed to evaluate the speed and request-handling capabilities of file servers.
SPECvirt_sc2013: Performance evaluation of datacenter servers used in virtualized server
consolidation. Measures the end-to-end performance of all system components including the
hardware, virtualization platform, and the virtualized guest operating system and application
software. The benchmark supports hardware virtualization, operating system virtualization, and
hardware partitioning schemes.

The CPU2017 suite is based on existing applications that have already been ported to a wide variety
of platforms by SPEC industry members. In order to make the benchmark results reliable and realistic,
the CPU2017 benchmarks are drawn from real-life applications, rather than using artificial loop
programs or synthetic benchmarks. The suite consists of 20 integer benchmarks and 23 floating-point
benchmarks written in C, C++, and Fortran (Table 2.5). For all of the integer benchmarks and most of
the floating-point benchmarks, there are both rate and speed benchmark programs. The differences
between corresponding rate and speed benchmarks include workload sizes, compile flags, and run
rules. The suite contains over 11 million lines of code. This is the sixth generation of processor-
intensive suites from SPEC; the fifth generation was CPU2006. CPU2017 is designed to provide a
contemporary set of benchmarks that reflect the dramatic changes in workload and performance
requirements in the 11 years since CPU2006 [MOOR17].

Table 2.5 SPEC CPU2017 Benchmarks
 (including comments/whitespace) for source files used in a build/1000

(a) Integer

Kloc = line count

Rate Speed Language Kloc Application Area

500.perlbench_r 600.perlbench_s C 363 Perl interpreter

502.gcc_r 602.gcc_s C 1304 GNU C compiler

505.mcf_r 605.mcf_s C 3 Route planning

520.omnetpp_r 620.omnetpp_s C++ 134 Discrete event simulation - computer
network

523.xalancbmk_r 623.xalancbmk_s C++ 520 XML to HTML conversion via XSLT

525.x264_r 625.x264_s C 96 Video compression

531.deepsjeng_r 631.deepsjeng_s C++ 10 AI: alpha-beta tree search (chess)

541.leela_r 641.leela_s C++ 21 AI: Monte Carlo tree search (Go)

548.exchange2_r 648.exchange2_s Fortran 1 AI: recursive solution generator
(Sudoku)

557.xz_r 657.xz_s C 33 General data compression

(b) Floating Point

503.bwaves_r 603.bwaves_s Fortran 1 Explosion modeling

507.cactuBSSN_r 607.cactuBSSN_s C++, C,
Fortran

257 Physics; relativity

508.namd_r C++, C 8 Molecular dynamics

510.parest_r C++ 427 Biomedical imaging; optical
tomography with finite elements

511.povray_r C++ 170 Ray tracing

519.ibm_r 619.ibm_s C 1 Fluid dynamics

521.wrf_r 621.wrf_s Fortran,
C

991 Weather forecasting

526.blender_r C++ 1577 3D rendering and animation

527.cam4_r 627.cam4_s Fortran,
C

407 Atmosphere modeling

628.pop2_s Fortran,
C

338 Wide-scale ocean modeling (climate
level)

538.imagick_r 638.imagick_s C 259 Image manipulation

544.nab_r 644.nab_s C 24 Molecular dynamics

549.fotonik3d_r 649.fotonik3d_s Fortran 14 Computational electromagnetics

554.roms_r 654.roms_s Fortran 210 Regional ocean modeling.

To better understand published results of a system using CPU2017, we define the following terms
used in the SPEC documentation:

Benchmark: A program written in a high-level language that can be compiled and executed on any
computer that implements the compiler.
System under test: This is the system to be evaluated.
Reference machine: This is a system used by SPEC to establish a baseline performance for all
benchmarks. Each benchmark is run and measured on this machine to establish a reference time
for that benchmark. A system under test is evaluated by running the CPU2017 benchmarks and
comparing the results for running the same programs on the reference machine.
Base metric: These are required for all reported results and have strict guidelines for compilation.
In essence, the standard compiler with more or less default settings should be used on each
system under test to achieve comparable results.
Peak metric: This enables users to attempt to optimize system performance by optimizing the
compiler output. For example, different compiler options may be used on each benchmark, and
feedback-directed optimization is allowed.
Speed metric: This is simply a measurement of the time it takes to execute a compiled
benchmark. The speed metric is used for comparing the ability of a computer to complete single
tasks.
Rate metric: This is a measurement of how many tasks a computer can accomplish in a certain
amount of time; this is called a throughput, capacity, or rate measure. The rate metric allows the
system under test to execute simultaneous tasks to take advantage of multiple processors.

SPEC uses a historical Sun system, the “Ultra Enterprise 2,” which was introduced in 1997, as the
reference machine. The reference machine uses a 296-MHz UltraSPARC II processor. It takes about
12 days to do a rule-conforming run of the base metrics for CINT2017 and CFP2017 on the CPU2017
reference machine. Tables 2.5 and 2.6 show the amount of time to run each benchmark using the
reference machine. The tables also show the dynamic instruction counts on the reference machine, as
reported in [PHAN07]. These values are the actual number of instructions executed during the run of
each program.

Table 2.6 SPEC CPU2017 Integer Benchmarks for HP Integrity Superdome X

(a) Rate Result (768 copies)

Base Peak

Benchmark Seconds Rate Seconds Rate

500.perlbench_r 1141 1070 933 1310

502.gcc_r 1303 835 1276 852

505.mcf_r 1433 866 1378 901

520.omnetpp_r 1664 606 1634 617

523.xalancbmk_r 722 1120 713 1140

525.x264_r 655 2053 661 2030

531.deepsjeng_r 604 1460 597 1470

541.leela_r 892 1410 896 1420

548.exchange2_r 833 2420 770 2610

557.xz_r 870 953 863 961

(b) Speed Result (384 threads)

Base Peak

Benchmark Seconds Ratio Seconds Ratio

600.perlbench_s 358 4.96 295 6.01

602.gcc_s 546 7.29 535 7.45

605.mcf_s 866 5.45 700 6.75

620.omnetpp_s 276 5.90 247 6.61

623.xalancbmk_s 188 7.52 179 7.91

625.x264_s 283 6.23 271 6.51

631.deepsjeng_s 407 3.52 343 4.18

641.leela_s 469 3.63 439 3.88

648.exchange2_s 329 8.93 299 9.82

657.xz_s 2164 2.86 2119 2.92

We now consider the specific calculations that are done to assess a system. We consider the integer
benchmarks; the same procedures are used to create a floating- point benchmark value. For the
integer benchmarks, there are 12 programs in the test suite. Calculation is a three-step process
(Figure 2.7):

Figure 2.7 SPEC Evaluation Flowchart

1. The first step in evaluating a system under test is to compile and run each program on the
system three times. For each program, the runtime is measured and the median value is
selected. The reason to use three runs and take the median value is to account for variations in
execution time that are not intrinsic to the program, such as disk access time variations, and OS
kernel execution variations from one run to another.

2. Next, each of the 12 results is normalized by calculating the runtime ratio of the reference run
time to the system run time. The ratio is calculated as follows:

where Trefi is the execution time of benchmark program i on the reference system and Tsuti is
the execution time of benchmark program i on the system under test. Thus, ratios are higher for
faster machines.

ri =
Trefi
Tsuti (2.9)

3. Finally, the geometric mean of the 12 runtime ratios is calculated to yield the overall metric:

For the integer benchmarks, four separate metrics can be calculated:

SPECspeed2017_int_base: The geometric mean of 12 normalized ratios when the benchmarks
are compiled with base tuning.
SPECspeed2017_int_peak: The geometric mean of 12 normalized ratios when the benchmarks
are compiled with peak tuning.
SPECrate2017_int_base: The geometric mean of 12 normalized throughput ratios when the
benchmarks are compiled with base tuning.
SPECrate2017_int_peak: The geometric mean of 12 normalized throughput ratios when the
benchmarks are compiled with peak tuning.

Table 2.6 shows the CPU2017 integer benchmarks reported for the HP Integrity Superdome X.

 Example 2.9

One of the SPEC CPU2017 integer speed benchmarks is 625.x264_s. This is an implementation
of H.264/AVC (Advanced Video Coding), the commonly used video compression standard. The
reference machine Sun Fire V490 executes this program in a median time of 1764 seconds for the
base speed metric. The HP Integrity Superdome X requires 283 seconds. The ratio is calculated
as: . Similar calculations are done to determine the ratios for the other benchmark
programs. The SPECspeed2017_int_base speed metric is calculated by taking the tenth root of
the product of the ratios:

The rate metrics take into account a system with multiple processors. To test a machine, a number of
copies N is selected—usually this is equal to the number of processors or the number of simultaneous
threads of execution on the test system. Each individual test program’s rate is determined by taking
the median of three runs. Each run consists of N copies of the program running simultaneously on the
test system. The execution time is the time it takes for all the copies to finish (i.e., the time from when
the first copy starts until the last copy finishes). The rate metric for that program is calculated by the
following formula:

The rate score for the system under test is determined from a geometric mean of rates for each
program in the test suite.

Example 2.10

The results for the HP Integrity Superdome X are shown in Table 2.6a. This system has 16
processor chips, with 24 cores per chip, for a total of 384 cores. Two threads are run per core so
that a total of 768 copies of a program are run simultaneously. To get the rate metric, each
benchmark program is executed simultaneously on all threads, with the execution time being the
time from the start of all 768 copies to the end of the slowest run. The speed ratio is calculated as
before, and the rate value is simply 384 times the speed ratio. For example, for the integer rate
benchmark SPECrate2017_int_base, the reference machine report a speed of 1751 seconds, and

rG =
⎜⎜⎜⎜⎜⎜⎜⎜

12∏
i = 1

ri

⎟⎟⎟⎟⎟⎟⎟⎟

1 / 12⎛

⎝

⎞

⎠

1764 / 283 = 6.23

(4.96 × 7.29 × 5.45 × 5.90 × 7.52 × 6.23 × 3.52 × 3.63×

8.93×2.86)1 / 10=5.31

ratei = N ×
Trefi
Tsuti

the system under test reports a speed of 655 seconds. The rate is calculated as
. The final rate metric is found by taking the geometric mean of the rate

values:

SPEC CPU2017 introduces an additional, experimental, metric that enables measurement of power
consumption while running the benchmark, giving users insight into the relationship between
performance and power. A vendor can measure and report power statistics, including maximum power
(W), average power (W), and total energy used (kJ) and compare these to the reference machine. The
results for the reference machine are shown in Table 2.7.

Table 2.7 SPECspeed2017_int_base Benchmark Results for Reference Machine (1 thread)

Benchmark Seconds Energy (kJ) Average Power (W) Maximum Power (W)

600.perlbench_s 1774 1920 1080 1090

602.gcc_s 3981 4330 1090 1110

605.mcf_s 4721 5150 1090 1120

620.omnetpp_s 1630 1770 1090 1090

623.xalancbmk_s 1417 1540 1090 1090

625.x264_s 1764 1920 1090 1100

631.deepsjeng_s 1432 1560 1090 1130

641.leela_s 1706 1850 1090 1090

648.exchange2_s 2939 3200 1080 1090

657.xz_s 6182 6730 1090 1140

768×(1751 / 655)=2053

(1070 × 835 × 866 × 606 × 1120 × 2053 × 1460 × 1410×

2420×953)1 / 10=1223

2.7 Key Terms, Review Questions, and Problems

Key Terms

Amdahl’s law

arithmetic mean (AM)

base metric

benchmark

clock cycle

clock cycle time

clock rate

clock speed

clock tick

cycles per instruction (CPI)

functional mean (FM)

general-purpose computing on GPU (GPGPU)

geometric mean (GM)

graphics processing unit (GPU)

harmonic mean (HM)

instruction execution rate

Little’s law

many integrated core (MIC)

microprocessor

MIPS rate

multicore

peak metric

rate metric

reference machine

speed metric

SPEC

system under test

throughput

Review Questions

Problems

2.1 List and briefly define some of the techniques used in contemporary processors to increase
speed.
2.2 Explain the concept of performance balance.
2.3 Explain the differences among multicore systems, MICs, and GPGPUs.
2.4 Briefly characterize Amdahl’s law.
2.5 Briefly characterize Little’s law.
2.6 Define MIPS and FLOPS.
2.7 List and define three methods for calculating a mean value of a set of data values.
2.8 List the desirable characteristics of a benchmark program.
2.9 What are the SPEC benchmarks?
2.10 What are the differences among base metric, peak metric, speed metric, and rate metric?

2.1 A benchmark program is run on a 40 MHz processor. The executed program consists of
100,000 instruction executions, with the following instruction mix and clock cycle count:

Instruction Type Instruction Count Cycles per Instruction

Integer arithmetic 45,000 1

Data transfer 32,000 2

Floating point 15,000 2

Control transfer 8000 2

Determine the effective CPI, MIPS rate, and execution time for this program.
2.2 Consider two different machines, with two different instruction sets, both of which have a
clock rate of 200 MHz. The following measurements are recorded on the two machines running
a given set of benchmark programs:

Instruction Type Instruction Count (millions) Cycles per Instruction

Machine A

Arithmetic and logic 8 1

Load and store 4 3

Branch 2 4

Others 4 3

Machine A

Arithmetic and logic 10 1

Load and store 8 2

Branch 2 4

Others 4 3

a. Determine the effective CPI, MIPS rate, and execution time for each machine.
b. Comment on the results.

2.3 Early examples of CISC and RISC design are the VAX 11/780 and the IBM RS/6000,
respectively. Using a typical benchmark program, the following machine characteristics result:

Processor Clock Frequency (MHz) Performance (MIPS) CPU Time (secs)

VAX 11/780 5 1 12 x

IBM RS/6000 25 18 x

The final column shows that the VAX required 12 times longer than the IBM measured in CPU
time.

a. What is the relative size of the instruction count of the machine code for this benchmark
program running on the two machines?

b. What are the CPI values for the two machines?

2.4 Four benchmark programs are executed on three computers with the following results:

Computer A Computer B Computer C

Program 1 1 10 20

Program 2 1000 100 20

Program 3 500 1000 50

Program 4 100 800 100

The table shows the execution time in seconds, with 100,000,000 instructions executed in each
of the four programs. Calculate the MIPS values for each computer for each program. Then
calculate the arithmetic and harmonic means assuming equal weights for the four programs,
and rank the computers based on arithmetic mean and harmonic mean.
2.5 The following table, based on data reported in the literature [HEAT84], shows the execution
times, in seconds, for five different benchmark programs on three machines.

Benchmark Processor

R M Z

E 417 244 134

F 83 70 70

H 66 153 135

I 39,449 35,527 66,000

K 772 368 369

a. Compute the speed metric for each processor for each benchmark, normalized to
machine R. That is, the ratio values for R are all 1.0. Other ratios are calculated using
Equation (2.5) with R treated as the reference system. Then compute the arithmetic
mean value for each system using Equation (2.3) . This is the approach taken in
[HEAT84].

b. Repeat part (a) using M as the reference machine. This calculation was not tried in
[HEAT84].

c. Which machine is the slowest based on each of the preceding two calculations?
d. Repeat the calculations of parts (a) and (b) using the geometric mean, defined in

Equation (2.6) . Which machine is the slowest based on the two calculations?

2.6 To clarify the results of the preceding problem, we look at a simpler example.

Benchmark Processor

X Y Z

1 20 10 40

2 40 80 20

a. Compute the arithmetic mean value for each system using X as the reference machine
and then using Y as the reference machine. Argue that intuitively, the three machines
have roughly equivalent performance and that the arithmetic mean gives misleading
results.

b. Compute the geometric mean value for each system, using X as the reference machine
and then using Y as the reference machine. Argue that the results are more realistic than
with the arithmetic mean.

2.7 Consider the example in Section 2.5 for the calculation of average CPI and MIPS rate,
which yielded the result of and MIPS Now assume that the program can be
executed in eight parallel tasks or threads, with roughly equal number of instructions executed
in each task. Execution is on an 8-core system, with each core (processor) having the same
performance as the single processor originally used. Coordination and synchronization between
the parts adds an extra 25,000 instruction executions to each task. Assume the same
instruction mix as in the example for each task, but increase the CPI for memory reference with
cache miss to 12 cycles due to contention for memory.

a. Determine the average CPI.
b. Determine the corresponding MIPS rate.

CPI=2.24 rate=178.

c. Calculate the speedup factor.
d. Compare the actual speedup factor with the theoretical speedup factor determined by

Amdhal’s law.

2.8 A processor accesses main memory with an average access time of A smaller cache
memory is interposed between the processor and main memory. The cache has a significantly
faster access time of The cache holds, at any time, copies of some main memory words
and is designed so that the words more likely to be accessed in the near future are in the cache.
Assume that the probability that the next word accessed by the processor is in the cache is H,
known as the hit ratio.

a. For any single memory access, what is the theoretical speedup of accessing the word in
the cache rather than in main memory?

b. Let T be the average access time. Express T as a function of and H. What is the
overall speedup as a function of H?

c. In practice, a system may be designed so that the processor must first access the cache
to determine if the word is in the cache and, if it is not, then access main memory, so that
on a miss (opposite of a hit), memory access time is Express T as a function of

 and H. Now calculate the speedup and compare to the result produced in part (b).

2.9 The owner of a shop observes that on average 18 customers per hour arrive, and there are
typically 8 customers in the shop. What is the average length of time each customer spends in
the shop?
2.10 We can gain more insight into Little’s law by considering Figure 2.8a . Over a period of
time T, a total of C items arrive at a system, wait for service, and complete service. The upper
solid line shows the time sequence of arrivals, and the lower solid line shows the time sequence
of departures. The shaded area bounded by the two lines represents the total “work” done by
the system in units of job-seconds; let A be the total work. We wish to derive the relationship
among L, W, and .

a. Figure 2.8b divides the total area into horizontal rectangles, each with a height of one
job. Picture sliding all these rectangles to the left so that their left edges line up at .
Develop an equation that relates A, C, and W.

b. Figure 2.8c divides the total area into vertical rectangles, defined by the vertical transition
boundaries indicated by the dashed lines. Picture sliding all these rectangles down so
that their lower edges line up at . Develop an equation that relates A, T, and L.

c. Finally, derive from the results of (a) and (b).

2.11 In Figure 2.8a , jobs arrive at times and 7.75. The corresponding
completion times are and 8.75.

a. Determine the area of each of the six rectangles in Figure 2.8b and sum to get the total
area A. Show your work.

b. Determine the area of each of the 10 rectangles in Figure 2.8c and sum to get the total
area A. Show your work.

T2.

T1<T2.

T1 , T2,

T1+T2.
T1 , T2,

λ

t = 0

N (t) = 0
L = λW

t = 0 , 1 , 1.5 , 3.25 , 5.25,
t = 2 , 3 , 3.5 , 4.25 , 8.25,

Figure 2.8 Illustration of Little’s Law

2.12 In Section 2.6 , we specified that the base ratio used for comparing a system under test to
a reference system is:

a. The preceding equation provides a measure of the speedup of the system under test
compared to the reference system. Assume that the number of floating-point operations
executed in the test program is Now show the speedup as a function of the instruction
execution rate FLOPS .

b. Another technique for normalizing performance is to express the performance of a
system as a percent change relative to the performance of another system. Express this
relative change first as a function of instruction execution rate, and then as a function of
execution times.

2.13 Assume that a benchmark program executes in 480 seconds on a reference machine A.
The same program executes on systems B, C, and D in 360, 540, and 210 seconds,
respectively.

ri =
Trefi
Tsuti

Ii .
i

a. Show the speedup of each of the three systems under test relative to A.
b. Now show the relative speedup of the three systems. Comment on the three ways of

comparing machines (execution time, speedup, relative speedup).

2.14 Repeat the preceding problem using machine D as the reference machine. How does this
affect the relative rankings of the four systems?
2.15 Recalculate the results in Table 2.2 using the computer time data of Table 2.4 and
comment on the results.
2.16 Equation 2.5 shows two different formulations of the geometric mean, one using a product
operator and one using a summation operator.

a. Show that the two formulas are equivalent.
b. Why would the summation formulation be preferred for calculating the geometric mean?

2.17 Project. Section 2.5 lists a number of references that document the “benchmark means
wars.” All of the referenced papers are available at box.com/COA10e. Read these papers and
summarize the case for and against the use of the geometric mean for SPEC calculations.

http://box.com/COA10e
http://box.com/COA10e

Part Two The Computer System

Chapter 3 A Top-Level View of Computer Function and
Interconnection

3.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the basic elements of an instruction cycle and the role of interrupts.
Describe the concept of interconnection within a computer system.
Assess the relative advantages of point-to-point interconnection compared to bus interconnection.
Present an overview of QPI.
Present an overview of PCIe.

At a top level, a computer consists of CPU (central processing unit), memory, and
I/O components, with one or more modules of each type. These components are
interconnected in some fashion to achieve the basic function of the computer,
which is to execute programs. Thus, at a top level, we can characterize a
computer system by describing (1) the external behavior of each component, that

3.1 Computer Components
3.2 Computer Function

Instruction Fetch and Execute
Interrupts
I/O Function

3.3 Interconnection Structures
3.4 Bus Interconnection
3.5 Point-to-Point Interconnect

QPI Physical Layer
QPI Link Layer
QPI Routing Layer
QPI Protocol Layer

3.6 PCI Express
PCI Physical and Logical Architecture
PCIe Physical Layer
PCIe Transaction Layer
PCIe Data Link Layer

is, the data and control signals that it exchanges with other components, and (2)
the interconnection structure and the controls required to manage the use of the
interconnection structure.

This top-level view of structure and function is important because of its explanatory
power in understanding the nature of a computer. Equally important is its use to
understand the increasingly complex issues of performance evaluation. A grasp of
the top-level structure and function offers insight into system bottlenecks, alternate
pathways, the magnitude of system failures if a component fails, and the ease of
adding performance enhancements. In many cases, requirements for greater
system power and fail-safe capabilities are being met by changing the design
rather than merely increasing the speed and reliability of individual components.

This chapter focuses on the basic structures used for computer component
interconnection. As background, the chapter begins with a brief examination of the
basic components and their interface requirements. Then a functional overview is
provided. We are then prepared to examine the use of buses to interconnect
system components.

3.1 Computer Components
As discussed in Chapter 1, virtually all contemporary computer designs are based on concepts
developed by John von Neumann at the Institute for Advanced Studies, Princeton. Such a design is
referred to as the von Neumann architecture and is based on three key concepts:

Data and instructions are stored in a single read–write memory.
The contents of this memory are addressable by location, without regard to the type of data
contained there.
Execution occurs in a sequential fashion (unless explicitly modified) from one instruction to the
next.

The reasoning behind these concepts was discussed in Chapter 2 but is worth summarizing here.
There is a small set of basic logic components that can be combined in various ways to store binary
data and perform arithmetic and logical operations on that data. If there is a particular computation to
be performed, a configuration of logic components designed specifically for that computation could be
constructed. We can think of the process of connecting the various components in the desired
configuration as a form of programming. The resulting “program” is in the form of hardware and is
termed a hardwired program.

Now consider this alternative. Suppose we construct a general-purpose configuration of arithmetic and
logic functions. This set of hardware will perform various functions on data depending on control
signals applied to the hardware. In the original case of customized hardware, the system accepts data
and produces results (Figure 3.1a). With general-purpose hardware, the system accepts data and
control signals and produces results. Thus, instead of rewiring the hardware for each new program,
the programmer merely needs to supply a new set of control signals.

How shall control signals be supplied? The answer is simple but subtle. The entire program is actually
a sequence of steps. At each step, some arithmetic or logical operation is performed on some data.
For each step, a new set of control signals is needed. Let us provide a unique code for each possible
set of control signals, and let us add to the general-purpose hardware a segment that can accept a
code and generate control signals (Figure 3.1b).

Figure 3.1 Hardware and Software Approaches

Programming is now much easier. Instead of rewiring the hardware for each new program, all we
need to do is provide a new sequence of codes. Each code is, in effect, an instruction, and part of the
hardware interprets each instruction and generates control signals. To distinguish this new method of
programming, a sequence of codes or instructions is called software.

Figure 3.1b indicates two major components of the system: an instruction interpreter and a module of
general-purpose arithmetic and logic functions. These two constitute the CPU. Several other
components are needed to yield a functioning computer. Data and instructions must be put into the
system. For this we need some sort of input module. This module contains basic components for
accepting data and instructions in some form and converting them into an internal form of signals
usable by the system. A means of reporting results is needed, and this is in the form of an output
module. Taken together, these are referred to as I/O components.

One more component is needed. An input device will bring instructions and data in sequentially. But a
program is not invariably executed sequentially; it may jump around (e.g., the IAS jump instruction).
Similarly, operations on data may require access to more than just one element at a time in a
predetermined sequence. Thus, there must be a place to temporarily store both instructions and data.
That module is called memory, or main memory, to distinguish it from external storage or peripheral
devices. Von Neumann pointed out that the same memory could be used to store both instructions
and data.

Figure 3.2 illustrates these top-level components and suggests the interactions among them. The

CPU exchanges data with memory. For this purpose, it typically makes use of two internal (to the
CPU) registers: a memory address register (MAR) , which specifies the address in memory for
the next read or write, and a memory buffer register (MBR) , which contains the data to be written
into memory or receives the data read from memory. Similarly, an I/O address register (I/OAR)
specifies a particular I/O device. An I/O buffer register (I/OBR) is used for the exchange of data
between an I/O module and the CPU.

Figure 3.2 Computer Components: Top-Level View

A memory module consists of a set of locations, defined by sequentially numbered addresses. Each
location contains a binary number that can be interpreted as either an instruction or data. An I/O
module transfers data from external devices to CPU and memory, and vice versa. It contains internal
buffers for temporarily holding these data until they can be sent on.

Having looked briefly at these major components, we now turn to an overview of how these
components function together to execute programs.

3.2 Computer Function
The basic function performed by a computer is execution of a program, which consists of a set of
instructions stored in memory. The processor does the actual work by executing instructions specified
in the program. This section provides an overview of the key elements of program execution. In its
simplest form, instruction processing consists of two steps. The processor reads (fetches) instructions
from memory one at a time, then executes each instruction. Program execution consists of repeating
the process of instruction fetch and instruction execution. The instruction execution may involve
several operations and depends on the nature of the instruction (see, for example, the lower portion of
Figure 2.4).

The processing required for a single instruction is called an instruction cycle . Using the simplified
two-step description given previously, the instruction cycle is depicted in Figure 3.3. The two steps
are referred to as the fetch cycle and the execute cycle . Program execution halts only if the
machine is turned off, some sort of unrecoverable error occurs, or a program instruction that halts the
computer is encountered.

Figure 3.3 Basic Instruction Cycle

Instruction Fetch and Execute

At the beginning of each instruction cycle, the processor fetches an instruction from memory. In a
typical processor, a register called the program counter (PC) holds the address of the instruction to be
fetched next. Unless told otherwise, the processor always increments the PC after each instruction
fetch so that it will fetch the next instruction in sequence (i.e., the instruction located at the next higher
memory address). So, for example, consider a computer in which each instruction occupies one 16-bit
word of memory. Assume that the program counter is set to memory location 300, where the location
address refers to a 16-bit word. The processor will next fetch the instruction at location 300. On
succeeding instruction cycles, it will fetch instructions from locations 301, 302, 303, and so on. This
sequence may be altered, as explained presently.

The fetched instruction is loaded into a register in the processor known as the instruction register (IR).
The instruction contains bits that specify the action the processor is to take. The processor interprets
the instruction and performs the required action. In general, these actions fall into four categories:

Processor-memory: Data may be transferred from processor to memory or from memory to
processor.
Processor-I/O: Data may be transferred to or from a peripheral device by transferring between the
processor and an I/O module.
Data processing: The processor may perform some arithmetic or logic operation on data.
Control: An instruction may specify that the sequence of execution be altered. For example, the
processor may fetch an instruction from location 149, which specifies that the next instruction be

from location 182. The processor will remember this fact by setting the program counter to 182.
Thus, on the next fetch cycle, the instruction will be fetched from location 182 rather than 150.

An instruction’s execution may involve a combination of these actions.

Consider a simple example using a hypothetical machine that includes the characteristics listed in
Figure 3.4. The processor contains a single data register, called an accumulator (AC). Both
instructions and data are 16 bits long. Thus, it is convenient to organize memory using 16-bit words.
The instruction format provides 4 bits for the opcode, so that there can be as many as different
opcodes, and up to (4K) words of memory can be directly addressed.

Figure 3.4 Characteristics of a Hypothetical Machine

Figure 3.5 illustrates a partial program execution, showing the relevant portions of memory and
processor registers. The program fragment shown adds the contents of the memory word at address
940 to the contents of the memory word at address 941 and stores the result in the latter location.
Three instructions, which can be described as three fetch and three execute cycles, are required:

 Hexadecimal notation is used, in which each digit represents 4 bits. This is the most convenient notation for
representing the contents of memory and registers when the word length is a multiple of 4. See Chapter 9 for a
basic refresher on number systems (decimal, binary, hexadecimal)

24 = 16
212 = 4096

1

1

Figure 3.5 Example of Program Execution (contents of memory and registers in hexadecimal)

1. The PC contains 300, the address of the first instruction. This instruction (the value 1940 in
hexadecimal) is loaded into the instruction register IR, and the PC is incremented. Note that this
process involves the use of a memory address register and a memory buffer register. For
simplicity, these intermediate registers are ignored.

2. The first 4 bits (first hexadecimal digit) in the IR indicate that the AC is to be loaded. The
remaining 12 bits (three hexadecimal digits) specify the address (940) from which data are to be
loaded.

3. The next instruction (5941) is fetched from location 301, and the PC is incremented.
4. The old contents of the AC and the contents of location 941 are added, and the result is stored

in the AC.
5. The next instruction (2941) is fetched from location 302, and the PC is incremented.
6. The contents of the AC are stored in location 941.

In this example, three instruction cycles, each consisting of a fetch cycle and an execute cycle, are
needed to add the contents of location 940 to the contents of 941. With a more complex set of
instructions, fewer cycles would be needed. Some older processors, for example, included instructions
that contain more than one memory address. Thus, the execution cycle for a particular instruction on
such processors could involve more than one reference to memory. Also, instead of memory
references, an instruction may specify an I/O operation.

For example, the PDP-11 processor includes an instruction, expressed symbolically as ADD B,A, that

stores the sum of the contents of memory locations B and A into memory location A. A single
instruction cycle with the following steps occurs:

Fetch the ADD instruction.
Read the contents of memory location A into the processor.
Read the contents of memory location B into the processor. In order that the contents of A are not
lost, the processor must have at least two registers for storing memory values, rather than a single
accumulator.
Add the two values.
Write the result from the processor to memory location A.

Thus, the execution cycle for a particular instruction may involve more than one reference to memory.
Also, instead of memory references, an instruction may specify an I/O operation. With these additional
considerations in mind, Figure 3.6 provides a more detailed look at the basic instruction cycle of
Figure 3.3. The figure is in the form of a state diagram. For any given instruction cycle, some states
may be null and others may be visited more than once. The states can be described as follows:

Figure 3.6 Instruction Cycle State Diagram

Instruction address calculation (iac): Determine the address of the next instruction to be
executed. Usually, this involves adding a fixed number to the address of the previous instruction.
For example, if each instruction is 16 bits long and memory is organized into 16-bit words, then add
1 to the previous address. If instead memory is organized as individually addressable 8-bit bytes,
then add 2 to the previous address.
Instruction fetch (if): Read instruction from its memory location into the processor.
Instruction operation decoding (iod): Analyze instruction to determine type of operation to be
performed and operand(s) to be used.
Operand address calculation (oac): If the operation involves reference to an operand in memory
or available via I/O, then determine the address of the operand.
Operand fetch (of): Fetch the operand from memory or read it in from I/O.
Data operation (do): Perform the operation indicated in the instruction.
Operand store (os): Write the result into memory or out to I/O.

States in the upper part of Figure 3.6 involve an exchange between the processor and either memory

or an I/O module. States in the lower part of the diagram involve only internal processor operations.
The oac state appears twice, because an instruction may involve a read, a write, or both. However,
the action performed during that state is fundamentally the same in both cases, and so only a single
state identifier is needed.

Also note that the diagram allows for multiple operands and multiple results, because some
instructions on some machines require this. For example, the PDP-11 instruction ADD A,B results in
the following sequence of states: iac, if, iod, oac, of, oac, of, do, oac, os.

Finally, on some machines, a single instruction can specify an operation to be performed on a vector
(one-dimensional array) of numbers or a string (one-dimensional array) of characters. As Figure 3.6
indicates, this would involve repetitive operand fetch and/or store operations.

Interrupts

Virtually all computers provide a mechanism by which other modules (I/O, memory) may interrupt the
normal processing of the processor. Table 3.1 lists the most common classes of interrupts. The
specific nature of these interrupts is examined later in this book, especially in Chapters 7 and 14.
However, we need to introduce the concept now to understand more clearly the nature of the
instruction cycle and the implications of interrupts on the interconnection structure. The reader need
not be concerned at this stage about the details of the generation and processing of interrupts, but
only focus on the communication between modules that results from interrupts.

Table 3.1 Classes of Interrupts

Program Generated by some condition that occurs as a result of an instruction execution, such
as arithmetic overflow, division by zero, attempt to execute an illegal machine
instruction, or reference outside a user’s allowed memory space.

Timer Generated by a timer within the processor. This allows the operating system to
perform certain functions on a regular basis.

I/O Generated by an I/O controller, to signal normal completion of an operation, request
service from the processor, or to signal a variety of error conditions.

Hardware
Failure

Generated by a failure such as power failure or memory parity error.

Interrupts are provided primarily as a way to improve processing efficiency. For example, most
external devices are much slower than the processor. Suppose that the processor is transferring data
to a printer using the instruction cycle scheme of Figure 3.3. After each write operation, the processor
must pause and remain idle until the printer catches up. The length of this pause may be on the order
of many hundreds or even thousands of instruction cycles that do not involve memory. Clearly, this is
a very wasteful use of the processor.

Figure 3.7a illustrates this state of affairs. The user program performs a series of WRITE calls
interleaved with processing. Code segments 1, 2, and 3 refer to sequences of instructions that do not
involve I/O. The WRITE calls are to an I/O program that is a system utility and that will perform the
actual I/O operation. The I/O program consists of three sections:

Figure 3.7 Program Flow of Control without and with Interrupts

A sequence of instructions, labeled 4 in the figure, to prepare for the actual I/O operation. This may
include copying the data to be output into a special buffer and preparing the parameters for a
device command.
The actual I/O command. Without the use of interrupts, once this command is issued, the program
must wait for the I/O device to perform the requested function (or periodically poll the device). The
program might wait by simply repeatedly performing a test operation to determine if the I/O
operation is done.
A sequence of instructions, labeled 5 in the figure, to complete the operation. This may include
setting a flag indicating the success or failure of the operation.

Because the I/O operation may take a relatively long time to complete, the I/O program is hung up
waiting for the operation to complete; hence, the user program is stopped at the point of the WRITE

call for some considerable period of time.

INTERRUPTS AND THE INSTRUCTION CYCLE

With interrupts, the processor can be engaged in executing other instructions while an I/O operation is
in progress. Consider the flow of control in Figure 3.7b. As before, the user program reaches a point
at which it makes a system call in the form of a WRITE call. The I/O program that is invoked in this
case consists only of the preparation code and the actual I/O command. After these few instructions
have been executed, control returns to the user program. Meanwhile, the external device is busy
accepting data from computer memory and printing it. This I/O operation is conducted concurrently
with the execution of instructions in the user program.

When the external device becomes ready to be serviced—that is, when it is ready to accept more data
from the processor—the I/O module for that external device sends an interrupt request signal to the
processor. The processor responds by suspending operation of the current program, branching off to
a program to service that particular I/O device, known as an interrupt handler, and resuming the
original execution after the device is serviced. The points at which such interrupts occur are indicated
by an asterisk in Figure 3.7b.

Let us try to clarify what is happening in Figure 3.7. We have a user program that contains two
WRITE commands. There is a segment of code at the beginning, then one WRITE command, then a
second segment of code, then a second WRITE command, then a third and final segment of code.
The WRITE command invokes the I/O program provided by the OS. Similarly, the I/O program
consists of a segment of code, followed by an I/O command, followed by another segment of code.
The I/O command invokes a hardware I/O operation.

From the point of view of the user program, an interrupt is just that: an interruption of the normal
sequence of execution. When the interrupt processing is completed, execution resumes (Figure 3.8).
Thus, the user program does not have to contain any special code to accommodate interrupts; the
processor and the operating system are responsible for suspending the user program and then
resuming it at the same point.

Figure 3.8 Transfer of Control via Interrupts

To accommodate interrupts, an interrupt cycle is added to the instruction cycle, as shown in Figure
3.9. In the interrupt cycle, the processor checks to see if any interrupts have occurred, indicated by the
presence of an interrupt signal. If no interrupts are pending, the processor proceeds to the fetch cycle
and fetches the next instruction of the current program. If an interrupt is pending, the processor does
the following:

Figure 3.9 Instruction Cycle with Interrupts

It suspends execution of the current program being executed and saves its context. This means
saving the address of the next instruction to be executed (current contents of the program counter)
and any other data relevant to the processor’s current activity.
It sets the program counter to the starting address of an interrupt handler routine.

The processor now proceeds to the fetch cycle and fetches the first instruction in the interrupt handler
program, which will service the interrupt. The interrupt handler program is generally part of the
operating system. Typically, this program determines the nature of the interrupt and performs
whatever actions are needed. In the example we have been using, the handler determines which I/O
module generated the interrupt and may branch to a program that will write more data out to that I/O
module. When the interrupt handler routine is completed, the processor can resume execution of the
user program at the point of interruption.

It is clear that there is some overhead involved in this process. Extra instructions must be executed (in
the interrupt handler) to determine the nature of the interrupt and to decide on the appropriate action.
Nevertheless, because of the relatively large amount of time that would be wasted by simply waiting
on an I/O operation, the processor can be employed much more efficiently with the use of interrupts.

To appreciate the gain in efficiency, consider Figure 3.10, which is a timing diagram based on the flow
of control in Figures 3.7a and 3.7b. In this figure, user program code segments are shaded green,
and I/O program code segments are shaded gray. Figure 3.10a shows the case in which interrupts
are not used. The processor must wait while an I/O operation is performed.

Figure 3.10 Program Timing: Short I/O Wait

Figures 3.7b and 3.10b assume that the time required for the I/O operation is relatively short: less
than the time to complete the execution of instructions between write operations in the user program.
In this case, the segment of code labeled code segment 2 is interrupted. A portion of the code (2a)
executes (while the I/O operation is performed) and then the interrupt occurs (upon the completion of
the I/O operation). After the interrupt is serviced, execution resumes with the remainder of code
segment 2 (2b).

The more typical case, especially for a slow device such as a printer, is that the I/O operation will take
much more time than executing a sequence of user instructions. Figure 3.7c indicates this state of
affairs. In this case, the user program reaches the second WRITE call before the I/O operation
spawned by the first call is complete. The result is that the user program is hung up at that point.
When the preceding I/O operation is completed, this new WRITE call may be processed, and a new
I/O operation may be started. Figure 3.11 shows the timing for this situation with and without the use
of interrupts. We can see that there is still a gain in efficiency because part of the time during which
the I/O operation is under way overlaps with the execution of user instructions.

Figure 3.11 Program Timing: Long I/O Wait

Figure 3.12 shows a revised instruction cycle state diagram that includes interrupt cycle processing.

Figure 3.12 Instruction Cycle State Diagram, with Interrupts

MULTIPLE INTERRUPTS

The discussion so far has focused only on the occurrence of a single interrupt. Suppose, however,
that multiple interrupts can occur. For example, a program may be receiving data from a
communications line and printing results. The printer will generate an interrupt every time it completes
a print operation. The communication line controller will generate an interrupt every time a unit of data
arrives. The unit could either be a single character or a block, depending on the nature of the
communications discipline. In any case, it is possible for a communications interrupt to occur while a
printer interrupt is being processed.

Two approaches can be taken to dealing with multiple interrupts. The first is to disable interrupts while
an interrupt is being processed. A disabled interrupt simply means that the processor can and will
ignore that interrupt request signal. If an interrupt occurs during this time, it generally remains pending
and will be checked by the processor after the processor has enabled interrupts. Thus, when a user
program is executing and an interrupt occurs, interrupts are disabled immediately. After the interrupt
handler routine completes, interrupts are enabled before resuming the user program, and the
processor checks to see if additional interrupts have occurred. This approach is nice and simple, as
interrupts are handled in strict sequential order (Figure 3.13a).

Figure 3.13 Transfer of Control with Multiple Interrupts

The drawback to the preceding approach is that it does not take into account relative priority or time-
critical needs. For example, when input arrives from the communications line, it may need to be
absorbed rapidly to make room for more input. If the first batch of input has not been processed before
the second batch arrives, data may be lost.

A second approach is to define priorities for interrupts and to allow an interrupt of higher priority to
cause a lower-priority interrupt handler to itself be interrupted (Figure 3.13b). As an example of this
second approach, consider a system with three I/O devices: a printer, a disk, and a communications
line, with increasing priorities of 2, 4, and 5, respectively. Figure 3.14 illustrates a possible sequence.
A user program begins at . At a printer interrupt occurs; user information is placed on the
system stack and execution continues at the printer interrupt service routine (ISR). While this
routine is still executing, at a communications interrupt occurs. Because the communications
line has higher priority than the printer, the interrupt is honored. The printer ISR is interrupted, its state
is pushed onto the stack, and execution continues at the communications ISR. While this routine is
executing, a disk interrupt occurs . Because this interrupt is of lower priority, it is simply held,
and the communications ISR runs to completion.

Figure 3.14 Example Time Sequence of Multiple Interrupts

When the communications ISR is complete the previous processor state is restored, which is

t = 0 t = 10,

t = 15,

(t = 20)

(t = 25),

the execution of the printer ISR. However, before even a single instruction in that routine can be
executed, the processor honors the higher-priority disk interrupt and control transfers to the disk ISR.
Only when that routine is complete is the printer ISR resumed. When that routine completes

, control finally returns to the user program.

I/O Function

Thus far, we have discussed the operation of the computer as controlled by the processor, and we
have looked primarily at the interaction of processor and memory.

The discussion has only alluded to the role of the I/O component. This role is discussed in detail in
Chapter 7, but a brief summary is in order here.

An I/O module (e.g., a disk controller) can exchange data directly with the processor. Just as the
processor can initiate a read or write with memory, designating the address of a specific location, the
processor can also read data from or write data to an I/O module. In this latter case, the processor
identifies a specific device that is controlled by a particular I/O module. Thus, an instruction sequence
similar in form to that of Figure 3.5 could occur, with I/O instructions rather than memory-referencing
instructions.

In some cases, it is desirable to allow I/O exchanges to occur directly with memory. In such a case,
the processor grants to an I/O module the authority to read from or write to memory, so that the I/O-
memory transfer can occur without tying up the processor. During such a transfer, the I/O module
issues read or write commands to memory, relieving the processor of responsibility for the exchange.
This operation is known as direct memory access (DMA) and is examined in Chapter 7.

(t = 35)
(t = 40)

3.3 Interconnection Structures
A computer consists of a set of components or modules of three basic types (processor, memory, I/O)
that communicate with each other. In effect, a computer is a network of basic modules. Thus, there
must be paths for connecting the modules.

The collection of paths connecting the various modules is called the interconnection structure. The
design of this structure will depend on the exchanges that must be made among modules.

Figure 3.15 suggests the types of exchanges that are needed by indicating the major forms of input
and output for each module type :

 The wide arrows represent multiple signal lines carrying multiple bits of information in parallel. Each narrow arrow

represents a single signal line.

2

2

Figure 3.15 Computer Modules

Memory: Typically, a memory module will consist of N words of equal length. Each word is
assigned a unique numerical address . A word of data can be read from or written

into the memory. The nature of the operation is indicated by read and write control signals. The
location for the operation is specified by an address.
I/O module: From an internal (to the computer system) point of view, I/O is functionally similar to
memory. There are two operations; read and write. Further, an I/O module may control more than
one external device. We can refer to each of the interfaces to an external device as a port and give
each a unique address . In addition, there are external data paths for the

input and output of data with an external device. Finally, an I/O module may be able to send
interrupt signals to the processor.
Processor: The processor reads in instructions and data, writes out data after processing, and
uses control signals to control the overall operation of the system. It also receives interrupt signals.

The preceding list defines the data to be exchanged. The interconnection structure must support the
following types of transfers:

Memory to processor: The processor reads an instruction or a unit of data from memory.
Processor to memory: The processor writes a unit of data to memory.
I/O to processor: The processor reads data from an I/O device via an I/O module.
Processor to I/O: The processor sends data to the I/O device.
I/O to or from memory: For these two cases, an I/O module is allowed to exchange data directly
with memory, without going through the processor, using direct memory access.

Over the years, a number of interconnection structures have been tried. By far the most common are
(1) the bus and various multiple-bus structures, and (2) point-to-point interconnection structures
with packetized data transfer. We devote the remainder of this chapter to a discussion of these
structures.

(0 , 1 , … , N − 1)

(e . g . , 0 , 1 , … , M − 1)

3.4 Bus Interconnection
The bus was the dominant means of computer system component interconnection for decades. For
general-purpose computers, it has gradually given way to various point-to-point interconnection
structures, which now dominate computer system design. However, bus structures are still commonly
used for embedded systems, particularly microcontrollers. In this section, we give a brief overview of
bus structure. Appendix A provides more detail.

A bus is a communication pathway connecting two or more devices. A key characteristic of a bus is
that it is a shared transmission medium. Multiple devices connect to the bus, and a signal transmitted
by any one device is available for reception by all other devices attached to the bus. If two devices
transmit during the same time period, their signals will overlap and become garbled. Thus, only one
device at a time can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each line is capable of
transmitting signals representing binary 1 and binary 0. Over time, a sequence of binary digits can be
transmitted across a single line. Taken together, several lines of a bus can be used to transmit binary
digits simultaneously (in parallel). For example, an 8-bit unit of data can be transmitted over eight bus
lines.

Computer systems contain a number of different buses that provide pathways between components at
various levels of the computer system hierarchy. A bus that connects major computer components
(processor, memory, I/O) is called a system bus . The most common computer interconnection
structures are based on the use of one or more system buses.

A system bus consists, typically, of from about fifty to hundreds of separate lines. Each line is
assigned a particular meaning or function. Although there are many different bus designs, on any bus
the lines can be classified into three functional groups (Figure 3.16): data, address, and control lines.
In addition, there may be power distribution lines that supply power to the attached modules.

Figure 3.16 Bus Interconnection Scheme

The data lines provide a path for moving data among system modules. These lines, collectively, are
called the data bus . The data bus may consist of 32, 64, 128, or even more separate lines, the
number of lines being referred to as the width of the data bus. Because each line can carry only one
bit at a time, the number of lines determines how many bits can be transferred at a time. The width of
the data bus is a key factor in determining overall system performance. For example, if the data bus is
32 bits wide and each instruction is 64 bits long, then the processor must access the memory module
twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on the data bus. For
example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the
address of the desired word on the address lines. Clearly, the width of the address bus
determines the maximum possible memory capacity of the system. Furthermore, the address lines are
generally also used to address I/O ports. Typically, the higher-order bits are used to select a particular
module on the bus, and the lower-order bits select a memory location or I/O port within the module.
For example, on an 8-bit address bus, address 01111111 and below might reference locations in a
memory module (module 0) with 128 words of memory, and address 10000000 and above refer to
devices attached to an I/O module (module 1).

The control lines are used to control the access to and the use of the data and address lines.
Because the data and address lines are shared by all components, there must be a means of
controlling their use. Control signals transmit both command and timing information among system
modules. Timing signals indicate the validity of data and address information. Command signals
specify operations to be performed. Typical control lines include:

Memory write: causes data on the bus to be written into the addressed location.
Memory read: causes data from the addressed location to be placed on the bus.
I/O write: causes data on the bus to be output to the addressed I/O port.
I/O read: causes data from the addressed I/O port to be placed on the bus.
Transfer ACK: indicates that data have been accepted from or placed on the bus.
Bus request: indicates that a module needs to gain control of the bus.
Bus grant: indicates that a requesting module has been granted control of the bus.
Interrupt request: indicates that an interrupt is pending.
Interrupt ACK: acknowledges that the pending interrupt has been recognized.
Clock: is used to synchronize operations.
Reset: initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to another, it must do two
things: (1) obtain the use of the bus, and (2) transfer data via the bus. If one module wishes to request
data from another module, it must (1) obtain the use of the bus, and (2) transfer a request to the other
module over the appropriate control and address lines. It must then wait for that second module to
send the data.

3.5 Point-to-Point Interconnect
The shared bus architecture was the standard approach to interconnection between the processor
and other components (memory, I/O, and so on) for decades. But contemporary systems increasingly
rely on point-to-point interconnection rather than shared buses.

The principal reason driving the change from bus to point-to-point interconnect was the electrical
constraints encountered with increasing the frequency of wide synchronous buses. At higher and
higher data rates, it becomes increasingly difficult to perform the synchronization and arbitration
functions in a timely fashion. Further, with the advent of multicore chips, with multiple processors and
significant memory on a single chip, it was found that the use of a conventional shared bus on the
same chip magnified the difficulties of increasing bus data rate and reducing bus latency to keep up
with the processors. Compared to the shared bus, the point-to-point interconnect has lower latency,
higher data rate, and better scalability.

In this section, we look at an important and representative example of the point-to-point interconnect
approach: Intel’s QuickPath Interconnect (QPI), which was introduced in 2008.

The following are significant characteristics of QPI and other point-to-point interconnect schemes:

Multiple direct connections: Multiple components within the system enjoy direct pairwise
connections to other components. This eliminates the need for arbitration found in shared
transmission systems.
Layered protocol architecture: As found in network environments, such as TCP/IP-based data
networks, these processor-level interconnects use a layered protocol architecture, rather than the
simple use of control signals found in shared bus arrangements.
Packetized data transfer: Data are not sent as a raw bit stream. Rather, data are sent as a
sequence of packets, each of which includes control headers and error control codes.

Figure 3.17 illustrates a typical use of QPI on a multicore computer. The QPI links (indicated by the
green arrow pairs in the figure) form a switching fabric that enables data to move throughout the
network. Direct QPI connections can be established between each pair of core processors. If core A in
Figure 3.17 needs to access the memory controller in core D, it sends its request through either cores
B or C, which must in turn forward that request on to the memory controller in core D. Similarly, larger
systems with eight or more processors can be built using processors with three links and routing traffic
through intermediate processors.

Figure 3.17 Multicore Configuration Using QPI

In addition, QPI is used to connect to an I/O module, called an I/O hub (IOH). The IOH acts as a
switch directing traffic to and from I/O devices. Typically in newer systems, the link from the IOH to the
I/O device controller uses an interconnect technology called PCI Express (PCIe), described later in
this chapter. The IOH translates between the QPI protocols and formats and the PCIe protocols and
formats. A core also links to a main memory module (typically the memory uses dynamic access
random memory (DRAM) technology) using a dedicated memory bus.

QPI is defined as a four-layer protocol architecture, encompassing the following layers (Figure 3.18):

Figure 3.18 QPI Layers

Physical: Consists of the actual wires carrying the signals, as well as circuitry and logic to support
ancillary features required in the transmission and receipt of the 1s and 0s. The unit of transfer at
the Physical layer is 20 bits, which is called a Phit (physical unit).
Link: Responsible for reliable transmission and flow control. The Link layer’s unit of transfer is an
80-bit Flit (flow control unit).
Routing: Provides the framework for directing packets through the fabric.
Protocol: The high-level set of rules for exchanging packets of data between devices. A packet is
comprised of an integral number of Flits.

QPI Physical Layer

Figure 3.19 shows the physical architecture of a QPI port. The QPI port consists of 84 individual links
grouped as follows. Each data path consists of a pair of wires that transmits data one bit at a time; the
pair is referred to as a lane. There are 20 data lanes in each direction (transmit and receive), plus a
clock lane in each direction. Thus, QPI is capable of transmitting 20 bits in parallel in each direction.
The 20-bit unit is referred to as a phit. Typical signaling speeds of the link in current products calls for
operation at 6.4 GT/s (transfers per second). At 20 bits per transfer, that adds up to 16 GB/s, and
since QPI links involve dedicated bidirectional pairs, the total capacity is 32 GB/s.

Figure 3.19 Physical Interface of the Intel QPI Interconnect

The lanes in each direction are grouped into four quadrants of 5 lanes each. In some applications, the
link can also operate at half or quarter widths in order to reduce power consumption or work around
failures.

The form of transmission on each lane is known as differential signaling, or balanced
transmission. With balanced transmission, signals are transmitted as a current that travels down one
conductor and returns on the other. The binary value depends on the voltage difference. Typically,
one line has a positive voltage value and the other line has zero voltage, and one line is associated
with binary 1 and the other is associated with binary 0. Specifically, the technique used by QPI is
known as low-voltage differential signaling (LVDS). In a typical implementation, the transmitter injects
a small current into one wire or the other, depending on the logic level to be sent. The current passes
through a resistor at the receiving end, and then returns in the opposite direction along the other wire.
The receiver senses the polarity of the voltage across the resistor to determine the logic level.

Another function performed by the physical layer is that it manages the translation between 80-bit flits
and 20-bit phits using a technique known as multilane distribution. The flits can be considered as a
bit stream that is distributed across the data lanes in a round-robin fashion (first bit to first lane,
second bit to second lane, etc.), as illustrated in Figure 3.20. This approach enables QPI to achieve
very high data rates by implementing the physical link between two ports as multiple parallel channels.

Figure 3.20 QPI Multilane Distribution

QPI Link Layer

The QPI link layer performs two key functions: flow control and error control. These functions are
performed as part of the QPI link layer protocol, and operate on the level of the flit (flow control unit).
Each flit consists of a 72-bit message payload and an 8-bit error control code called a cyclic
redundancy check (CRC). We discuss error control codes in Chapter 5.

A flit payload may consist of data or message information. The data flits transfer the actual bits of data
between cores or between a core and an IOH. The message flits are used for such functions as flow
control, error control, and cache coherence. We discuss cache coherence in Chapters 5 and 17.

The flow control function is needed to ensure that a sending QPI entity does not overwhelm a
receiving QPI entity by sending data faster than the receiver can process the data and clear buffers for
more incoming data. To control the flow of data, QPI makes use of a credit scheme. During
initialization, a sender is given a set number of credits to send flits to a receiver. Whenever a flit is sent
to the receiver, the sender decrements its credit counters by one credit. Whenever a buffer is freed at
the receiver, a credit is returned to the sender for that buffer. Thus, the receiver controls that pace at
which data is transmitted over a QPI link.

Occasionally, a bit transmitted at the physical layer is changed during transmission, due to noise or
some other phenomenon. The error control function at the link layer detects and recovers from such
bit errors, and so isolates higher layers from experiencing bit errors. The procedure works as follows
for a flow of data from system A to system B:

1. As mentioned, each 80-bit flit includes an 8-bit CRC field. The CRC is a function of the value of
the remaining 72 bits. On transmission, A calculates a CRC value for each flit and inserts that
value into the flit.

2. When a flit is received, B calculates a CRC value for the 72-bit payload and compares this value
with the value of the incoming CRC value in the flit. If the two CRC values do not match, an
error has been detected.

3. When B detects an error, it sends a request to A to retransmit the flit that is in error. However,
because A may have had sufficient credit to send a stream of flits, so that additional flits have
been transmitted after the flit in error and before A receives the request to retransmit. Therefore,
the request is for A to back up and retransmit the damaged flit plus all subsequent flits.

QPI Routing Layer

The routing layer is used to determine the course that a packet will traverse across the available
system interconnects. Routing tables are defined by firmware and describe the possible paths that a
packet can follow. In small configurations, such as a two-socket platform, the routing options are
limited and the routing tables quite simple. For larger systems, the routing table options are more
complex, giving the flexibility of routing and rerouting traffic depending on how (1) devices are
populated in the platform, (2) system resources are partitioned, and (3) reliability events result in
mapping around a failing resource.

QPI Protocol Layer

In this layer, the packet is defined as the unit of transfer. The packet contents definition is
standardized with some flexibility allowed to meet differing market segment requirements. One key
function performed at this level is a cache coherency protocol, which deals with making sure that main
memory values held in multiple caches are consistent. A typical data packet payload is a block of data
being sent to or from a cache.

3.6 PCI Express
The peripheral component interconnect (PCI) is a popular high-bandwidth, processor-independent
bus that can function as a mezzanine or peripheral bus. Compared with other common bus
specifications, PCI delivers better system performance for high-speed I/O subsystems (e.g., graphic
display adapters, network interface controllers, and disk controllers).

Intel began work on PCI in 1990 for its Pentium-based systems. Intel soon released all the patents to
the public domain and promoted the creation of an industry association, the PCI Special Interest
Group (SIG), to develop further and maintain the compatibility of the PCI specifications. The result is
that PCI has been widely adopted and is finding increasing use in personal computer, workstation,
and server systems. Because the specification is in the public domain and is supported by a broad
cross-section of the microprocessor and peripheral industry, PCI products built by different vendors
are compatible.

As with the system bus discussed in the preceding sections, the bus-based PCI scheme has not been
able to keep pace with the data rate demands of attached devices. Accordingly, a new version, known
as PCI Express (PCIe) has been developed. PCIe, as with QPI, is a point-to-point interconnect
scheme intended to replace bus-based schemes such as PCI.

A key requirement for PCIe is high capacity to support the needs of higher data rate I/O devices, such
as Gigabit Ethernet. Another requirement deals with the need to support time-dependent data
streams. Applications such as video-on-demand and audio redistribution are putting real-time
constraints on servers too. Many communications applications and embedded PC control systems
also process data in real-time. Today’s platforms must also deal with multiple concurrent transfers at
ever-increasing data rates. It is no longer acceptable to treat all data as equal—it is more important,
for example, to process streaming data first since late real-time data is as useless as no data. Data
needs to be tagged so that an I/O system can prioritize its flow throughout the platform.

PCI Physical and Logical Architecture

Figure 3.21 shows a typical configuration that supports the use of PCIe. A root complex device, also
referred to as a chipset or a host bridge, connects the processor and memory subsystem to the PCI
Express switch fabric comprising one or more PCIe and PCIe switch devices. The root complex acts
as a buffering device, to deal with differences in data rates between I/O controllers and memory and
processor components. The root complex also translates between PCIe transaction formats and the
processor and memory signal and control requirements. The chipset will typically support multiple
PCIe ports, some of which attach directly to a PCIe device, and one or more that attach to a switch
that manages multiple PCIe streams. PCIe links from the chipset may attach to the following kinds of
devices that implement PCIe:

Figure 3.21 Typical Configuration Using PCIe

Switch: The switch manages multiple PCIe streams.
PCIe endpoint: An I/O device or controller that implements PCIe, such as a Gigabit ethernet
switch, a graphics or video controller, disk interface, or a communications controller.
Legacy endpoint: Legacy endpoint category is intended for existing designs that have been
migrated to PCI Express, and it allows legacy behaviors such as use of I/O space and locked
transactions. PCI Express endpoints are not permitted to require the use of I/O space at runtime
and must not use locked transactions. By distinguishing these categories, it is possible for a
system designer to restrict or eliminate legacy behaviors that have negative impacts on system
performance and robustness.
PCIe/PCI bridge: Allows older PCI devices to be connected to PCIe-based systems.

As with QPI, PCIe interactions are defined using a protocol architecture. The PCIe protocol
architecture encompasses the following layers (Figure 3.22):

Figure 3.22 PCIe Protocol Layers

Physical: Consists of the actual wires carrying the signals, as well as circuitry and logic to support
ancillary features required in the transmission and receipt of the 1s and 0s.
Data link: Is responsible for reliable transmission and flow control. Data packets generated and
consumed by the DLL are called Data Link Layer Packets (DLLPs).
Transaction: Generates and consumes data packets used to implement load/store data transfer
mechanisms and also manages the flow control of those packets between the two components on
a link. Data packets generated and consumed by the TL are called Transaction Layer Packets
(TLPs).

Above the TL are software layers that generate read and write requests that are transported by the
transaction layer to the I/O devices using a packet-based transaction protocol.

PCIe Physical Layer

Similar to QPI, PCIe is a point-to-point architecture. Each PCIe port consists of a number of
bidirectional lanes (note that in QPI, the lane refers to transfer in one direction only). Transfer in each
direction in a lane is by means of differential signaling over a pair of wires. A PCI port can provide 1, 4,
6, 16, or 32 lanes. In what follows, we refer to the PCIe 3.0 specification, introduced in late 2010.

As with QPI, PCIe uses a multilane distribution technique. Figure 3.23 shows an example for a PCIe
port consisting of four lanes. Data are distributed to the four lanes 1 byte at a time using a simple
round-robin scheme. At each physical lane, data are buffered and processed 16 bytes (128 bits) at a
time. Each block of 128 bits is encoded into a unique 130-bit codeword for transmission; this is
referred to as 128b/130b encoding. Thus, the effective data rate of an individual lane is reduced by a
factor of 128/130.

Figure 3.23 PCIe Multilane Distribution

To understand the rationale for the 128b/130b encoding, note that unlike QPI, PCIe does not use its
clock line to synchronize the bit stream. That is, the clock line is not used to determine the start and
end point of each incoming bit; it is used for other signaling purposes only. However, it is necessary
for the receiver to be synchronized with the transmitter, so that the receiver knows when each bit
begins and ends. If there is any drift between the clocks used for bit transmission and reception of the
transmitter and receiver, errors may occur. To compensate for the possibility of drift, PCIe relies on
the receiver synchronizing with the transmitter based on the transmitted signal. As with QPI, PCIe
uses differential signaling over a pair of wires. Synchronization can be achieved by the receiver
looking for transitions in the data and synchronizing its clock to the transition. However, consider that
with a long string of 1s or 0s using differential signaling, the output is a constant voltage over a long
period of time. Under these circumstances, any drift between the clocks of the transmitter and receiver
will result in loss of synchronization between the two.

A common approach, and the one used in PCIe 3.0, to overcoming the problem of a long string of bits
of one value is scrambling. Scrambling, which does not increase the number of bits to be transmitted,
is a mapping technique that tends to make the data appear more random. At the receiving end, a
descrambling algorithm recovers the original data sequence. The scrambling tends to spread out the
number of transitions so that they appear at the receiver more uniformly spaced, which is good for
synchronization. Also, other transmission properties, such as spectral properties, are enhanced if the
data are more nearly of a random nature rather than constant or repetitive.

Another technique that can aid in synchronization is encoding, in which additional bits are inserted into
the bit stream to force transitions. For PCIe 3.0, each group of 128 bits of input is mapped into a 130-
bit block by adding a 2-bit block sync header. The value of the header is 10 for a data block and 01 for
what is called an ordered set block, which refers to a link-level information block.

Figure 3.24 illustrates the use of scrambling and encoding. Data to be transmitted are fed into a
scrambler. The scrambled output is then fed into a 128b/130b encoder, which buffers 128 bits and
then maps the 128-bit block into a 130-bit block. This block then passes through a parallel-to-serial
converter and is transmitted one bit at a time using differential signaling.

Figure 3.24 PCIe Transmit and Receive Block Diagrams

At the receiver, a clock is synchronized to the incoming data to recover the bit stream. This then
passes through a serial-to-parallel converter to produce a stream of 130-bit blocks. Each block is
passed through a 128b/130b decoder to recover the original scrambled bit pattern, which is then
descrambled to produce the original bit stream.

Using these techniques, a data rate of 16 GB/s can be achieved. One final detail to mention; each
transmission of a block of data over a PCI link begins and ends with an 8-bit framing sequence
intended to give the receiver time to synchronize with the incoming physical layer bit stream.

PCIe Transaction Layer

The transaction layer (TL) receives read and write requests from the software above the TL and
creates request packets for transmission to a destination via the link layer. Most transactions use a
split transaction technique, which works in the following fashion. A request packet is sent out by a
source PCIe device, which then waits for a response, called a completion packet. The completion
following a request is initiated by the completer only when it has the data and/or status ready for
delivery. Each packet has a unique identifier that enables completion packets to be directed to the
correct originator. With the split transaction technique, the completion is separated in time from the
request, in contrast to a typical bus operation in which both sides of a transaction must be available to
seize and use the bus. Between the request and the completion, other PCIe traffic may use the link.

TL messages and some write transactions are posted transactions, meaning that no response is
expected.

The TL packet format supports 32-bit memory addressing and extended 64-bit memory addressing.
Packets also have attributes such as “no-snoop,” “relaxed-ordering,” and “priority,” which may be used
to optimally route these packets through the I/O subsystem.

ADDRESS SPACES AND TRANSACTION TYPES

The TL supports four address spaces:

Memory: The memory space includes system main memory. It also includes PCIe I/O devices.
Certain ranges of memory addresses map into I/O devices.
I/O: This address space is used for legacy PCI devices, with reserved memory address ranges
used to address legacy I/O devices.
Configuration: This address space enables the TL to read/write configuration registers associated
with I/O devices.
Message: This address space is for control signals related to interrupts, error handling, and power
management.

Table 3.2 shows the transaction types provided by the TL. For memory, I/O, and configuration
address spaces, there are read and write transactions. In the case of memory transactions, there is
also a read lock request function. Locked operations occur as a result of device drivers requesting
atomic access to registers on a PCIe device. A device driver, for example, can atomically read,
modify, and then write to a device register. To accomplish this, the device driver causes the processor
to execute an instruction or set of instructions. The root complex converts these processor instructions
into a sequence of PCIe transactions, which perform individual read and write requests for the device
driver. If these transactions must be executed atomically, the root complex locks the PCIe link while
executing the transactions. This locking prevents transactions that are not part of the sequence from
occurring. This sequence of transactions is called a locked operation. The particular set of processor
instructions that can cause a locked operation to occur depends on the system chip set and processor
architecture.

Table 3.2 PCIe TLP Transaction Types

Address Space TLP Type Purpose

Memory Memory Read
Request

Transfer data to or from a location in the system
memory map.

Memory Read Lock
Request

Memory Write
Request

I/O I/O Read Request Transfer data to or from a location in the system
memory map for legacy devices.

I/O Write Request

Configuration Config Type 0
Read Request

Transfer data to or from a location in the configuration
space of a PCIe device.

Config Type 0
Write Request

Config Type 1
Read Request

Config Type 1
Write Request

Message Message Request Provides in-band messaging and event reporting.

Message Request
with Data

Memory, I/O,
Configuration

Completion Returned for certain requests.

Completion with
Data

Completion Locked

Completion Locked
with Data

To maintain compatibility with PCI, PCIe supports both Type 0 and Type 1 configuration cycles. A
Type 1 cycle propagates downstream until it reaches the bridge interface hosting the bus (link) that
the target device resides on. The configuration transaction is converted on the destination link from
Type 1 to Type 0 by the bridge.

Finally, completion messages are used with split transactions for memory, I/O, and configuration
transactions.

TLP PACKET ASSEMBLY

PCIe transactions are conveyed using transaction layer packets, which are illustrated in Figure 3.25a.

A TLP originates in the transaction layer of the sending device and terminates at the transaction layer
of the receiving device.

Figure 3.25 PCIe Protocol Data Unit Format

Upper layer software sends to the TL the information needed for the TL to create the core of the TLP,
which consists of the following fields:

Header: The header describes the type of packet and includes information needed by the receiver
to process the packet, including any needed routing information. The internal header format is

discussed subsequently.
Data: A data field of up to 4096 bytes may be included in the TLP. Some TLPs do not contain a
data field.
ECRC: An optional end-to-end CRC field enables the destination TL layer to check for errors in the
header and data portions of the TLP.

PCIe Data Link Layer

The purpose of the PCIe data link layer is to ensure reliable delivery of packets across the PCIe link.
The DLL participates in the formation of TLPs and also transmits DLLPs.

DATA LINK LAYER PACKETS

Data link layer packets originate at the data link layer of a transmitting device and terminate at the DLL
of the device on the other end of the link. Figure 3.25b shows the format of a DLLP. There are three
important groups of DLLPs used in managing a link: flow control packets, power management
packets, and TLP ACK and NAK packets. Power management packets are used in managing power
platform budgeting. Flow control packets regulate the rate at which TLPs and DLLPs can be
transmitted across a link. The ACK and NAK packets are used in TLP processing, discussed in the
following paragraphs.

TRANSACTION LAYER PACKET PROCESSING

The DLL adds two fields to the core of the TLP created by the TL (Figure 3.25a): a 16-bit sequence
number and a 32-bit link-layer CRC (LCRC). Whereas the core fields created at the TL are only used
at the destination TL, the two fields added by the DLL are processed at each intermediate node on the
way from source to destination.

When a TLP arrives at a device, the DLL strips off the sequence number and LCRC fields and checks
the LCRC. There are two possibilities:

1. If no errors are detected, the core portion of the TLP is handed up to the local transaction layer.
If this receiving device is the intended destination, then the TL processes the TLP. Otherwise,
the TL determines a route for the TLP and passes it back down to the DLL for transmission over
the next link on the way to the destination.

2. If an error is detected, the DLL schedules an NAK DLL packet to return back to the remote
transmitter. The TLP is eliminated.

When the DLL transmits a TLP, it retains a copy of the TLP. If it receives a NAK for the TLP with this
sequence number, it retransmits the TLP. When it receives an ACK, it discards the buffered TLP.

3.7 Key Terms, Review Questions, and Problems

Key Terms

address bus

address lines

arbitration

balanced transmission

bus

control lines

data bus

data lines

differential signaling

disabled interrupt

distributed arbitration

error control function

execute cycle

fetch cycle

flit

flow control function

instruction cycle

interrupt

interrupt handler

interrupt service routine (ISR)

lane

memory address register (MAR)

memory buffer register (MBR)

multilane distribution

packets

PCI Express (PCIe)

peripheral component interconnect (PCI)

phit

QuickPath Interconnect (QPI)

root complex

system bus

Review Questions

Problems

3.1 What general categories of functions are specified by computer instructions?
3.2 List and briefly define the possible states that define an instruction execution.
3.3 List and briefly define two approaches to dealing with multiple interrupts.
3.4 What types of transfers must a computer’s interconnection structure (e.g., bus) support?
3.5 List and briefly define the QPI protocol layers.
3.6 List and briefly define the PCIe protocol layers.

3.1 The hypothetical machine of Figure 3.4 also has two I/O instructions:

In these cases, the 12-bit address identifies a particular I/O device. Show the program
execution (using the format of Figure 3.5) for the following program:

1. Load AC from device 5.
2. Add contents of memory location 940.
3. Store AC to device 6.

Assume that the next value retrieved from device 5 is 3 and that location 940 contains a value
of 2.
3.2 The program execution of Figure 3.5 is described in the text using six steps. Expand this
description to show the use of the MAR and MBR.
3.3 Consider a hypothetical 32-bit microprocessor having 32-bit instructions composed of two
fields: the first byte contains the opcode and the remainder the immediate operand or an
operand address.

a. What is the maximum directly addressable memory capacity (in bytes)?
b. Discuss the impact on the system speed if the microprocessor bus has:

1. 32-bit local address bus and a 16-bit local data bus, or
2. 16-bit local address bus and a 16-bit local data bus.

c. How many bits are needed for the program counter and the instruction register?

3.4 Consider a hypothetical microprocessor generating a 16-bit address (for example, assume
that the program counter and the address registers are 16 bits wide) and having a 16-bit data
bus.

a. What is the maximum memory address space that the processor can access directly if it
is connected to a “16-bit memory”?

b. What is the maximum memory address space that the processor can access directly if it
is connected to an “8-bit memory”?

c. What architectural features will allow this microprocessor to access a separate “I/O
space”?

d. If an input and an output instruction can specify an 8-bit I/O port number, how many 8-bit
I/O ports can the microprocessor support? How many 16-bit I/O ports? Explain.

0011 = Load AC from I/O
0111 = Store AC to I/O

3.5 Consider a 32-bit microprocessor, with a 16-bit external data bus, driven by an 8-MHz input
clock. Assume that this microprocessor has a bus cycle whose minimum duration equals four
input clock cycles. What is the maximum data transfer rate across the bus that this
microprocessor can sustain, in bytes/sec? To increase its performance, would it be better to
make its external data bus 32 bits or to double the external clock frequency supplied to the
microprocessor? State any other assumptions you make, and explain. Hint: Determine the
number of bytes that can be transferred per bus cycle.
3.6 Consider a computer system that contains an I/O module controlling a simple
keyboard/printer teletype. The following registers are contained in the processor and connected
directly to the system bus:
INPR: Input Register, 8 bits

OUTR: Output Register, 8 bits

FGI: Input Flag, 1 bit

FGO: Output Flag, 1 bit

IEN: Interrupt Enable, 1 bit

Keystroke input from the teletype and printer output to the teletype are controlled by the I/O
module. The teletype is able to encode an alphanumeric symbol to an 8-bit word and decode an
8-bit word into an alphanumeric symbol.

a. Describe how the processor, using the first four registers listed in this problem, can
achieve I/O with the teletype.

b. Describe how the function can be performed more efficiently by also employing IEN.

3.7 Consider two microprocessors having 8- and 16-bit-wide external data buses, respectively.
The two processors are identical otherwise and their bus cycles take just as long.

a. Suppose all instructions and operands are two bytes long. By what factor do the
maximum data transfer rates differ?

b. Repeat assuming that half of the operands and instructions are one byte long.

3.8 Figure 3.26 indicates a distributed arbitration scheme that can be used with an obsolete bus
scheme known as Multibus I. Agents are daisy-chained physically in priority order. The left-most
agent in the diagram receives a constant bus priority in (BPRN) signal indicating that no higher-
priority agent desires the bus. If the agent does not require the bus, it asserts its bus priority out
(BPRO) line. At the beginning of a clock cycle, any agent can request control of the bus by
lowering its BPRO line. This lowers the BPRN line of the next agent in the chain, which is in turn
required to lower its BPRO line. Thus, the signal is propagated the length of the chain. At the
end of this chain reaction, there should be only one agent whose BPRN is asserted and whose
BPRO is not. This agent has priority. If, at the beginning of a bus cycle, the bus is not busy
(BUSY inactive), the agent that has priority may seize control of the bus by asserting the BUSY
line.

Figure 3.26 Multibus I Distributed Arbitration

It takes a certain amount of time for the BPR signal to propagate from the highest-priority agent
to the lowest. Must this time be less than the clock cycle? Explain.
3.9 The VAX SBI bus uses a distributed, synchronous arbitration scheme. Each SBI device (i.e.,
processor, memory, I/O module) has a unique priority and is assigned a unique transfer request
(TR) line. The SBI has 16 such lines (TR0, TR1, . . ., TR15), with TR0 having the highest
priority. When a device wants to use the bus, it places a reservation for a future time slot by
asserting its TR line during the current time slot. At the end of the current time slot, each device
with a pending reservation examines the TR lines; the highest-priority device with a reservation
uses the next time slot.
A maximum of 17 devices can be attached to the bus. The device with priority 16 has no TR
line. Why not?
3.10 On the VAX SBI, the lowest-priority device usually has the lowest average wait time. For
this reason, the processor is usually given the lowest priority on the SBI. Why does the priority
16 device usually have the lowest average wait time? Under what circumstances would this not
be true?
3.11 For a synchronous read operation (Figure C.3 in Appendix C), the memory module must
place the data on the bus sufficiently ahead of the falling edge of the Read signal to allow for
signal settling. Assume a microprocessor bus is clocked at 10 MHz and that the Read signal
begins to fall in the middle of the second half of .

a. Determine the length of the memory read instruction cycle.
b. When, at the latest, should memory data be placed on the bus? Allow 20 ns for the

settling of data lines.

3.12 Consider a microprocessor that has a memory read timing (Figure C.3 in Appendix C).
After some analysis, a designer determines that the memory falls short of providing read data
on time by about 180 ns.

a. How many wait states (clock cycles) need to be inserted for proper system operation if
the bus clocking rate is 8 MHz?

b. To enforce the wait states, a Ready status line is employed. Once the processor has
issued a Read command, it must wait until the Ready line is asserted before attempting
to read data. At what time interval must we keep the Ready line low in order to force the
processor to insert the required number of wait states?

3.13 A microprocessor has a memory write timing Figure A.3 in Appendix A . Its manufacturer
specifies that the width of the Write signal can be determined by , where T is the clock
period in ns.

T3

T − 50

a. What width should we expect for the Write signal if bus clocking rate is 5 MHz?
b. The data sheet for the microprocessor specifies that the data remain valid for 20 ns after

the falling edge of the Write signal. What is the total duration of valid data presentation to
memory?

c. How many wait states should we insert if memory requires valid data presentation for at
least 190 ns?

3.14 A microprocessor has an increment memory direct instruction, which adds 1 to the value in
a memory location. The instruction has five stages: fetch opcode (four bus clock cycles), fetch
operand address (three cycles), fetch operand (three cycles), add 1 to operand (three cycles),
and store operand (three cycles).

a. By what amount (in percent) will the duration of the instruction increase if we have to
insert two bus wait states in each memory read and memory write operation?

b. Repeat assuming that the increment operation takes 13 cycles instead of 3 cycles.

3.15 The Intel 8088 microprocessor has a read bus timing similar to that of Figure C.3, but
requires four processor clock cycles. The valid data is on the bus for an amount of time that
extends into the fourth processor clock cycle. Assume a processor clock rate of 8 MHz.

a. What is the maximum data transfer rate?
b. Repeat, but assume the need to insert one wait state per byte transferred.

3.16 The Intel 8086 is a 16-bit processor similar in many ways to the 8-bit 8088. The 8086 uses
a 16-bit bus that can transfer 2 bytes at a time, provided that the lower-order byte has an even
address. However, the 8086 allows both even- and odd-aligned word operands. If an odd-
aligned word is referenced, two memory cycles, each consisting of four bus cycles, are required
to transfer the word. Consider an instruction on the 8086 that involves two 16-bit operands. How
long does it take to fetch the operands? Give the range of possible answers. Assume a clocking
rate of 4 MHz and no wait states.
3.17 Consider a 32-bit microprocessor whose bus cycle is the same duration as that of a 16-bit
microprocessor. Assume that, on average, 20% of the operands and instructions are 32 bits
long, 40% are 16 bits long, and 40% are only 8 bits long. Calculate the improvement achieved
when fetching instructions and operands with the 32-bit microprocessor.
3.18 The microprocessor of Problem 3.14 initiates the fetch operand stage of the increment
memory direct instruction at the same time that a keyboard activates an interrupt request line.
After how long does the processor enter the interrupt processing cycle? Assume a bus clocking
rate of 10 MHz.

Chapter 4 The Memory Hierarchy: Locality and Performance

4.1 Principle of Locality
4.2 Characteristics of Memory Systems
4.3 The Memory Hierarchy

Cost and Performance Characteristics
Typical Members of the Memory Hierarchy
The IBM z13 Memory Hierarchy
Design Principles for a Memory Hierarchy

4.4 Performance Modeling of a Multilevel Memory Hierarchy
Two-Level Memory Access
Multilevel Memory Access

4.5 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Present an overview of the principle of locality.
Describe key characteristics of a memory system.
Discuss how locality influences the development of a memory hierarchy.
Understand the performance implications of multiple levels of memory.

Although seemingly simple in concept, computer memory exhibits perhaps the
widest range of type, technology, organization, performance, and cost of any
feature of a computer system. No single technology is optimal in satisfying the
memory requirements for a computer system. As a consequence, the typical
computer system is equipped with a hierarchy of memory subsystems, some
internal to the system (directly accessible by the processor) and some external
(accessible by the processor via an I/O module).

This chapter focuses on the performance factors that drive the development of a
computer memory system with multiple levels using different technologies.
Section 4.1 introduces the key concept of locality of reference, which has a
profound influence on both the organization of memory and on operating system
memory management software. Following a brief discussion of key characteristics
of memory systems, the chapter turns to a presentation of the concept of a
memory hierarchy and indicates the typical components in contemporary systems.
Finally, Section 4.4 develops a simple but illuminating model of memory access
performance.

The next three chapters look at specific aspects of memory systems, using the
insights provided in this chapter. Chapter 5 examines an essential element of all

modern computer systems: cache memory. Chapter 6 then looks at the
technology options for internal memory, including cache and main memory.
Chapter 7 is devoted to external memory.

4.1 Principle Of Locality
One of the most important concepts related to computer systems is principle of locality [DENN05],
also referred to as the locality of reference. The principle reflects the observation that during the
course of execution of a program, memory references by the processor, for both instructions and data,
tend to cluster. Programs typically contain a number of iterative loops and subroutines. Once a loop or
subroutine is entered, there are repeated references to a small set of instructions. Similarly,
operations on tables and arrays involve access to a clustered set of data words. Over a long period of
time, the clusters in use change, but over a short period of time, the processor is primarily working
with fixed clusters of memory references.

We can put these observations more specifically. As we discuss in Section 4.3, for different types of
memory, memory is accessed and retrieved in units of different sizes, ranging from individual words to
large blocks of cache memory to much larger segments of disk memory. Denning observed that
locality is based on three assertions [DENN72]:

1. During any interval of time, a program references memory locations non-uniformly. That is,
some units of memory are more likely to be accessed than others.

2. As a function of time, the probability that a given unit of memory is referenced tends to change
slowly. Put another way, the probability distribution of memory references across the entire
memory space tends to change slowly over time.

3. The correlation between immediate past and immediate future memory reference patterns is
high, and tapers off as the time interval increases.

Intuitively, the principle of locality makes sense. Consider the following line of reasoning:

1. Except for branch and call instructions, which constitute only a small fraction of all program
instructions, program execution is sequential. Hence, in most cases, the next instruction to be
fetched immediately follows the last instruction fetched.

2. It is rare to have a long uninterrupted sequence of procedure calls followed by the
corresponding sequence of returns. Rather, a program remains confined to a rather narrow
window of procedure-invocation depth. Thus, over a short period of time, references to
instructions tend to be localized to a few procedures.

3. Most iterative constructs consist of a relatively small number of instructions repeated many
times. For the duration of the iteration, computation is therefore confined to a small contiguous
portion of a program.

4. In many programs, much of the computation involves processing data structures, such as
arrays or sequences of records. In many cases, successive references to these data structures
will be to closely located data items.

Numerous studies, stretching back to the early 1970s, confirm these observations. [FEIT15] provides
a summary of many of these studies.

A distinction is made in the literature between two forms of locality:

1. Temporal locality: Refers to the tendency of a program to reference in the near future those
units of memory referenced in the recent past. For example, when an iteration loop is executed,
the processor executes the same set of instructions repeatedly. Constants, temporary variables,
and working stacks are also constructs that lead to this principle.

2. Spatial locality: Refers to the tendency of a program to reference units of memory whose
addresses are near one another. That is, if a unit of memory x is referenced at time t, it is likely

that units in the range through will be referenced in the near future, for a relatively
small value of k. This reflects the tendency of a processor to access instructions sequentially.
Spatial location also reflects the tendency of a program to access data locations sequentially,
such as when processing a table of data.

A crude analogy may help illuminate the distinction between these two concepts (Figure 4.1).
Suppose that Bob is working in an office and spends much of his time dealing with documents in file
folders. Thousand of folders are stored in file cabinets in the next room, and for convenience Bob has
a file organizer on his desk that can hold a few dozen files. When Bob is working on a file and
temporarily is finished, it may be likely that he will need to read or write one of the documents in that
file in the near future, so he keeps it in his desk organizer. This is an example of exploiting temporal
locality. Bob also observes that when he retrieves a folder from the filing cabinets, it is likely that in the
near future he will need access to some of the nearby folders as well, so he retrieves the folder he
needs plus a few folders on either side at the same time. This is an example of exploiting spatial
locality. Of course, Bob's desktop file organizer soon fills up, so that when he goes to retrieve a folder
from the file cabinets, he needs to return folders from his desk. Bob needs some policy for replacing
folders. If he focuses on temporal locality, Bob could choose to replace only one folder at a time, on
the reasoning that he might need any of the folders currently on his desk in the near future. So Bob
could replace perhaps the folder that had been on the desk the longest or the one that had be the
least recently used. If Bob focuses on spatial locality, when he needs a folder not on his desk, he
could return and refile all the folders on his desk and retrieve a batch of contiguous folders that
includes the one he needs plus other nearby folders sufficient to fill up his desktop organizer. It is
likely that neither policy is optimal. In the first case, he might have to make frequent trips to the next
room to get one folder he doesn’t have but which is near one he does have. In the second case, he
might have to make frequent trips to the next room to get a folder that he had just recently put away.
So perhaps a policy of returning and retrieving in batches equal to 10% or 20% of his desktop capacity
would be closer to optimal.

Figure 4.1 Moving File Folders Between Smaller, Faster-Access Storage and Larger, Slower-
Access Storage
Gualtiero boffi/Shutterstock

For cache memory, temporal locality is traditionally exploited by keeping recently used instruction and
data values in cache memory and by exploiting a cache hierarchy. Spatial locality is generally
exploited by using larger cache blocks and by incorporating prefetching mechanisms (fetching items of
anticipated use) into the cache control logic. Over the years, there has been considerable research on

x − k x + k

refining these techniques to achieve greater performance, but the basic strategies remain the same.

Figure 4.2 provides a rough depiction of the behavior of programs that exhibit temporal locality. For a
unit of memory accessed at time t, the figure shows the distribution of probability of the time of the
next access to the same memory unit. Similarly, Figure 4.3 provides a rough depiction of the behavior
of programs that exhibit spatial locality. For spatial locality, the probability distribution curve is
symmetrical around the location of the most recent memory access address.

Figure 4.2 Idealized Temporal Locality Behavior: Probability Distribution for Time of Next
Memory Access to Memory Unit Accessed at Time t

Figure 4.3 Idealized Spatial Locality Behavior: Probability Distribution for Next Memory Access
(most recent data memory access at location x; most recent instruction fetch at location y)

Many programs exhibit both temporal and spatial locality for both instruction and data access. It has
been found that data access patterns generally show a greater variance than instruction access

patterns [AHO07]. Figure 4.3 suggests this distinction between the distribution of data location
accesses (read or write) and instruction fetch addresses. Typically, each instruction execution involves
fetching the instruction from memory and, during execution, accessing one or more data operands
from one or more regions of memory. Thus, there is a dual locality of data spatial locality and
instruction spatial locality. And, of course, temporal locality exhibits this same dual behavior: data
temporal locality and instruction temporal locality. That is, when an instruction is fetched from a
unit of memory, it is likely that in the near future, additional instructions will be fetched from that same
memory unit; and when a data location is accessed, it is likely that in the near future, additional
instructions will be fetched from that same memory unit.

An example of data locality is illustrated in Figure 4.4 [BAEN97]. This shows the results of a study of
Web-based document access patterns, where the documents are distributed among a number of
servers. In this case, the unit of access is a single document and temporal locality is measured. The
access scheme makes use of a document cache at the browser that can temporarily retain a small
number of documents to facilitate reuse. The study covered 220,000 documents distributed over
11,000 servers. As shown in Figure 4.4, only a very small subset of pages incorporates a high
number of references while most documents are accessed relatively infrequently.

Figure 4.4 Data Locality of Reference for Web-Based Document Access Application

Figure 4.5 shows an example of instruction locality based on executing the integer benchmark
programs in the SPEC CPU2006 benchmark suite; similar results were obtained for the floating-point
programs. The following terms are used in the plot:

1. Static instruction: An instruction that exists in the code to be executed.
2. Dynamic instruction: Instructions that appear in the execution trace of a program.

Figure 4.5 Instruction Locality Based on Code Reuse in Eleven Benchmark Programs in SPEC
CPU2006

Thus, each static instruction is represented by zero or more instances of dynamic instructions when
the program is executed. Each line in the graph represents a separate benchmark program. In the
figure, the cumulative percentage of dynamic instructions executed by a program is shown on the y-
axis and the cumulative count of static instructions is shown on the x-axis. The first point in the line
plot for each benchmark represents the most frequently called subroutine, with the x coordinate
showing the number of static instructions in the routine and y coordinate showing the percentage of
dynamic instructions that it represents. The second, third, fourth, and fifth points respectively
represent the top 5, 10, 15, and 20 most frequently called subroutines. Many programs initially show a
steep upward climb as the static instruction count increases, which suggests very good instruction
locality.

4.2 Characteristics Of Memory Systems
The complex subject of computer memory is made more manageable if we classify memory systems
according to their key characteristics. The most important of these are listed in Table 4.1.

Table 4.1 Key Characteristics of Computer Memory Systems

Location

Internal (e.g., processor registers, cache, main memory)

External (e.g., optical disks, magnetic disks, tapes)

Capacity

Number of words

Number of bytes

Unit of Transfer

Word

Block

Access Method

Sequential

Direct

Random

Associative

Performance

Access time

Cycle time

Transfer rate

Physical Type

Semiconductor

Magnetic

Optical

Magneto-optical

Physical Characteristics

Volatile/nonvolatile

Erasable/nonerasable

Organization

Memory modules

The term location in Table 4.1 refers to whether memory is internal or external to the computer.
Internal memory is often equated with main memory, but there are other forms of internal memory.
The processor requires its own local memory, in the form of registers (e.g., see Figure 2.3). Further,
as we will see, the control unit portion of the processor may also require its own internal memory. We
will defer discussion of these latter two types of internal memory to later chapters. Cache is another
form of internal memory. External memory consists of peripheral storage devices, such as disk and
tape, that are accessible to the processor via I/O controllers.

An obvious characteristic of memory is its capacity. For internal memory, this is typically expressed in
terms of bytes or words. Common word lengths are 8, 16, and 32 bits. External
memory capacity is typically expressed in terms of bytes.

A related concept is the unit of transfer. For internal memory, the unit of transfer is equal to the
number of electrical lines into and out of the memory module. This may be equal to the word length,

(1byte = 8bits)

but is often larger, such as 64, 128, or 256 bits. To clarify this point, consider three related concepts
for internal memory:

Word: The “natural” unit of organization of memory. The size of a word is typically equal to the
number of bits used to represent an integer and to the instruction length. Unfortunately, there are
many exceptions. For example, the CRAY C90 (an older model CRAY supercomputer) has a 64-bit
word length but uses a 46-bit integer representation. The Intel x86 architecture has a wide variety
of instruction lengths, expressed as multiples of bytes, and a word size of 32 bits.
Addressable units: In some systems, the addressable unit is the word. However, many systems
allow addressing at the byte level. In any case, the relationship between the length in bits A of an
address and the number N of addressable units is
Unit of transfer: For main memory, this is the number of bits read out of or written into memory at
a time. The unit of transfer need not equal a word or an addressable unit. For external memory,
data are often transferred in much larger units than a word, and these are referred to as blocks.

Another distinction among memory types is the method of accessing units of data. These include the
following:

Sequential access: Memory is organized into units of data, called records. Access must be made
in a specific linear sequence. Stored addressing information is used to separate records and assist
in the retrieval process. A shared read–write mechanism is used, and this must be moved from its
current location to the desired location, passing and rejecting each intermediate record. Thus, the
time to access an arbitrary record is highly variable. Tape units, discussed in Chapter 7, are
sequential access.
Direct access: As with sequential access, direct access involves a shared read–write mechanism.
However, individual blocks or records have a unique address based on physical location. Access is
accomplished by direct access to reach a general vicinity plus sequential searching, counting, or
waiting to reach the final location. Again, access time is variable. Disk units, discussed in Chapter
6, are direct access.
Random access: Each addressable location in memory has a unique, physically wired-in
addressing mechanism. The time to access a given location is independent of the sequence of
prior accesses and is constant. Thus, any location can be selected at random and directly
addressed and accessed. Main memory and some cache systems are random access.
Associative: This is a random access type of memory that enables one to make a comparison of
desired bit locations within a word for a specified match, and to do this for all words simultaneously.
Thus, a word is retrieved based on a portion of its contents rather than its address. As with ordinary
random-access memory, each location has its own addressing mechanism, and retrieval time is
constant independent of location or prior access patterns. Cache memories may employ
associative access.

From a user’s point of view, the two most important characteristics of memory are capacity and
performance. Three performance parameters are used:

Access time (latency): For random-access memory, this is the time it takes to perform a read or
write operation, that is, the time from the instant that an address is presented to the memory to the
instant that data have been stored or made available for use. For non-random-access memory,
access time is the time it takes to position the read–write mechanism at the desired location.
Memory cycle time: This concept is primarily applied to random-access memory and consists of
the access time plus any additional time required before a second access can commence. This
additional time may be required for transients to die out on signal lines or to regenerate data if they
are read destructively. Note that memory cycle time is concerned with the system bus, not the
processor.
Transfer rate: This is the rate at which data can be transferred into or out of a memory unit. For
random-access memory, it is equal to 1/(cycle time). For non-random-access memory, the

2A
= N .

following relationship holds:

where

A variety of physical types of memory have been employed. The most common today are
semiconductor memory, magnetic surface memory, used for disk and tape, and optical and magneto-
optical.

Several physical characteristics of data storage are important. In a volatile memory, information
decays naturally or is lost when electrical power is switched off. In a nonvolatile memory, information
once recorded remains without deterioration until deliberately changed; no electrical power is needed
to retain information. Magnetic-surface memories are nonvolatile. Semiconductor memory (memory on
integrated circuits) may be either volatile or nonvolatile. Nonerasable memory cannot be altered,
except by destroying the storage unit. Semiconductor memory of this type is known as read-only
memory (ROM). Of necessity, a practical nonerasable memory must also be nonvolatile.

For random-access memory, the organization is a key design issue. In this context, organization
refers to the physical arrangement of bits to form words. The obvious arrangement is not always used,
as is explained in Chapter 6.

Tn = TA +
n
R (4.1)

Tn = Average time to read or writenbits
TA = Average access time
n = Number of bits
R = Transfer rate , in bits per second(bps)

4.3 The Memory Hierarchy
The design constraints on a computer's memory can be summed up by three questions: How much?
How fast? How expensive?

The question of how much is somewhat open ended. If the capacity is there, applications will likely be
developed to use it. The question of how fast is, in a sense, easier to answer. To achieve greatest
performance, the memory must be able to keep up with the processor. That is, as the processor is
executing instructions, we would not want it to have to pause waiting for instructions or operands. The
final question must also be considered. For a practical system, the cost of memory must be
reasonable in relationship to other components.

As might be expected, there is a trade-off among the three key characteristics of memory: capacity,
access time, and cost. A variety of technologies are used to implement memory systems, and across
this spectrum of technologies, the following relationships hold:

Faster access time, greater cost per bit
Greater capacity, smaller cost per bit
Greater capacity, slower access time

The dilemma facing the designer is clear. The designer would like to use memory technologies that
provide for large-capacity memory, both because the capacity is needed and because the cost per bit
is low. However, to meet performance requirements, the designer needs to use expensive, relatively
lower-capacity memories with short access times.

Cost and Performance Characteristics

The way out of this dilemma is not to rely on a single memory component or technology, but to employ
a memory hierarchy. A typical hierarchy is illustrated in Figure 4.6. As one goes down the hierarchy,
the following occur:

a. Decreasing cost per bit
b. Increasing capacity
c. Increasing access time
d. Decreasing frequency of access of the memory by the processor

Figure 4.6 The Memory Hierarchy

Let us label the memory at level i of the memory hierarchy such that is closer to the processor

than If and are respectively the cost per byte, average access time, average data

transfer rate, and total memory size at level i, then the following relationships typically hold between
levels i and

Figure 4.7 (in a general way and not to scale) illustrates these relationships across the memory
hierarchy.

M
i
, M

i
Mi + 1. Ci , Ti , Ri , Si

i + 1:

Ci > Ci + 1
Ti < Ti + 1
Ri > Ri + 1
Si < Si + 1

Figure 4.7 Relative Cost, Size, and Speed Characteristics Across the Memory Hierarchy

Thus, smaller, more expensive, faster memories are supplemented by larger, cheaper, slower
memories. The key to the success of this organization is item (d): decreasing frequency of access,
which can be achieved by exploiting the principle of locality, described in Section 4.1. We discuss
techniques for exploiting locality in the treatment of cache, in Chapter 5, and virtual memory, in
Chapter 9. A general discussion is provided at this point.

It is possible to organize data across the hierarchy such that the percentage of accesses to each
successively lower level is substantially less than that of the level above. Consider the following
example:

EXAMPLE 4.1

Suppose that the processor has access to two levels of memory. Level 1 contains X words and
has an access time of level 2 contains words and has an access time of
Assume that if a word to be accessed is in level 1, then the processor accesses it directly. If it is in
level 2, then the word is first transferred to level 1 and then accessed by the processor. For
simplicity, we ignore the time required for the processor to determine whether the word is in level 1
or level 2. Figure 4.8 shows the general shape of the curve that covers this situation. The figure
shows the average access time to a two-level memory as a function of the hit ratio H, where H is
defined as the fraction of all memory accesses that are found in the faster memory (e.g., the

0.01µs ; 1000 × X 0.1μs.

cache), is the access time to level 1, and is the access time to level 2. As can be seen, for
high percentages of level 1 access, the average total access time is much closer to that of level 1
than that of level 2.

 If the accessed word is found in the faster memory, that is defined as a hit. A miss occurs if the accessed

word is not found in the faster memory.

Figure 4.8 Performance of Accesses Involving only Level 1 (hit ratio)

In our example, suppose that 95% of the memory accesses are found in Level 1. Then the
average time to access a word can be expressed as

The average access time is much closer to than to as desired.

Let level 2 memory contain all program instructions and data. Currently used clusters can be
temporarily placed in level 1. From time to time, one of the clusters in level 1 will have to be
swapped back to level 2 to make room for a new cluster coming in to level 1. On average,
however, most references will be to instructions and data contained in level 1.

The use of two levels of memory to reduce average access time works in principle, but only if
conditions (a) through (d) apply. By employing a variety of technologies, a spectrum of memory
systems exists that satisfies conditions (a) through (c). Fortunately, condition (d) is also generally valid
due to the principle of locality.

This principle can be applied across multiple levels of memory, as suggested by the hierarchy shown

T1 T2
1

1

(0.95) (0.01μs) + (0.05) (0.01μs + 0.1μs) = 0.0095 + 0.0055 = 0.015μs

0.01μs 0.1μs,

in Figure 4.6. In practice, the dynamic movement of chunks of data between levels during program
execution involves registers, one or more levels of cache, main memory, and virtual memory stored on
disk. This is shown in Figure 4.9, with an indication of the size of the chunks of data exchanged
between levels.

Figure 4.9 Exploiting Locality in the Memory Hierarchy (with typical transfer size)

Typical Members of the Memory Hierarchy

Table 4.2 lists some characteristics of key elements of the memory hierarchy. The fastest, smallest,
and most expensive type of memory consists of the registers internal to the processor. Typically, a
processor will contain a few dozen such registers, although some machines contain hundreds of
registers. Next will be typically multiple layers of cache. Level 1 cache (L1 cache), closest to the
processor registers, is almost always divided into an instruction cache and a data cache. This split is
also common for L2 caches. Most contemporary machines also have an L3 cache and some have an
L4 cache; these two caches generally are not split between instruction and data and may be shared
by multiple processors. Traditionally, cache memory has been constructed using a technology called
static random access memory (SRAM). More recently, higher levels of cache on many systems have
been implemented using embedded dynamic RAM (eDRAM), which is slower than SRAM but faster
than the DRAM used to implement the main memory of the computer.

Table 4.2 Characteristics of Memory Devices in a Memory Architecture

Memory level Typical technology Unit of transfer with next larger
level (typical size)

Managed by

Registers CMOS Word (32 bits) Compiler

Cache Static RAM (SRAM);

Embedded dynamic RAM
(eDRAM)

Cache block (32 bytes) Processor
hardware

Main memory DRAM Virtual memory page (1 kB) Operating
system (OS)

Secondary
memory

Magnetic disk Disk sector (512 bytes) OS/user

Offline bulk
memory

Magnetic tape OS/User

Main memory is the principal internal memory system of the computer. Each location in main memory
has a unique address. Main memory is visible to the programmer, whereas cache memory is not. The
various levels of cache are controlled by hardware and are used for staging the movement of data
between main memory and processor registers to improve performance.

The three forms of memory just described are, typically, volatile and employ semiconductor
technology. The use of three levels exploits the fact that semiconductor memory comes in a variety of
types, which differ in speed and cost. Data are stored more permanently on external mass storage
devices, of which the most common are hard disk and removable media, such as removable magnetic
disk, tape, and optical storage. External, nonvolatile memory is also referred to as secondary
memory or auxiliary memory. These are used to store program and data files and are usually
visible to the programmer only in terms of files and records, as opposed to individual bytes or words.
Disk is also used to provide an extension to main memory known as virtual memory, which is
discussed in Chapter 9. Other forms of secondary memory include optical disks and flash memory.

The IBM z13 Memory Hierarchy

Figure 4.10 illustrates the memory hierarchy for the IBM z13 mainframe computer [LASC16]. It
consists of the following levels:

Figure 4.10 IBM z13 Memory Hierarchy

L1 and L2 caches use SRAM, and are private for each core (Figure 1.5).
L3 cache uses eDRAM and is shared by all eight cores within the PU chip (Figure 1.4). Each CPC
drawer has six L3 caches. A four-CPC drawer system therefore has 24 of them, resulting in 1536
MB of this shared PU chip-level cache.

L4 cache also uses eDRAM, and is shared by all PU chips on the node of a CPC drawer. Each L4
cache has 480 MB for previously owned and some least recently used (LRU) L3-owned lines and
224 MB for a non-data inclusive coherent (NIC) directory that points to L3 owned lines that have
not been included in L4 cache. A four-CPC drawer system has 3840 MB of

shared L4 cache and 1792 MB of NIC directory.

Main storage has up to 2.5 TB addressable memory per CPC drawer, using DRAM. A four-CPC
drawer system can have up to 10 TB of main storage.
Secondary memory holds virtual memory and is stored in disks accessed by various I/O
technologies.

(24 × 64MB)

(4 × 2 × 384MB)
(4 × 2 × 224MB)

Design Principles for a Memory Hierarchy

Three principles guide the design of a memory hierarchy and the supporting memory management
hardware and software:

1. Locality: Locality is the principle that makes effective use of a memory hierarchy possible.
2. Inclusion: This principle dictates that all information items are originally stored in level

where n is the level most remote from the processor. During the processing, subsets of are

copied into similarity, subsets of are copied into and so on. This is

expressed concisely as Thus, this is in contrast to our simple example of Figure
4.1, where Bob moved a folder from the file cabinet to his desk. With the memory hierarchy,
units of data are copied rather than moved, so that the data unit that is moved to remains in

 Thus, if a word is found in then copies of the same word also exist in all subsequent

layers

3. Coherence: Copies of the same data unit in adjacent memory levels must be consistent. If a
word is modified in the cache, copies of that word must be updated immediately or eventually at
all higher levels.

Coherence has both vertical and horizontal implications, and is required because multiple memories at
one level may share the same memory at the next higher (greater value of i) level. For example, for
the IBMz13, eight L2 caches share the same L3 cache, and three L3 caches share the same L4
cache. This leads to two requirements:

Vertical coherence: If one core makes a change to a cache block of data at L2, that update must
be returned to L3 before another L2 retrieves that block.
Horizontal coherence: If two L2 caches that share the same L3 cache have copies of the same
block of data, then if the block in one L2 cache is updated, the other L2 cache must be alerted that
its copy is obsolete. The topic of coherence is discussed in future chapters.

Mn ,

Mn

Mn − 1. Mn − 1 Mn − 2,

M
i
⊆ Mi + 1.

M
i

Mi + 1. M
i
,

Mi + 1 , Mi + 2 , … , Mn .

4.4 Performance Modeling Of A Multilevel Memory Hierarchy
This section provides an overview of performance characteristics of memory access in a multilevel
memory hierarchy. To gain insight, we begin with a look at the simplest case of two levels, and then
develop models for multiple levels.

Two-Level Memory Access

In this chapter, reference is made to a cache that acts as a buffer between main memory and
processor, creating a two-level internal memory. In the simplest case, rarely implemented in modern
systems, there is a single level of cache to interact with main memory. This two-level architecture
exploits locality to provide improved performance over a comparable one-level memory.

The main memory cache mechanism is part of the computer architecture, implemented in hardware
and typically invisible to the operating system. There are two other instances of a two-level memory
approach that also exploit locality and that are, at least partially, implemented in the operating system:
virtual memory and the disk cache. Virtual memory is explored in Chapter 9; disk cache is beyond the
scope of this book but is examined in [STAL18]. In this subsection, we look at some of the
performance characteristics of two-level memories that are common to all three approaches.

OPERATION OF TWO-LEVEL MEMORY

The locality property can be exploited in the formation of a two-level memory. The upper-level memory
(M1) is smaller, faster, and more expensive (per bit) than the lower-level memory (M2). M1 is used as
a temporary store for part of the contents of the larger M2. When a memory reference is made, an
attempt is made to access the item in M1. If this succeeds, then a quick access is made. If not, then a
block of memory locations is copied from M2 to M1 and the access then takes place via M1. Because
of locality, once a block is brought into M1, there should be a number of accesses to locations in that
block, resulting in fast overall service.

To express the average time to access an item, we must consider not only the speeds of the two
levels of memory, but also the probability that a given reference can be found in M1. We have

where

Figure 4.8 shows average access time as a function of hit ratio. As can be seen, for a high
percentage of hits, the average total access time is much closer to that of M1 than M2.

PERFORMANCE

Let us look at some of the parameters relevant to an assessment of a two-level memory mechanism.
First consider cost. We have

Ts = H × T1 + (1 − H) × (T1 + T2)
= T1 + (1 − H) × T2

(4.2)

Ts = average (system) access time
T1 = access time of M1 (e . g . , cache)
T2 = access time of M2 (e . g . , main memory)
H = hit ratio (fraction of time reference is found in M1)

C1S1 + C2S2

where

We would like Given that this requires Figure 4.11 shows the relationship.

Figure 4.11 Relationship of Average Memory Cost to Relative Memory Size for a Two-Level
Memory

Next, consider access time. For a two-level memory to provide a significant performance
improvement, we need to have approximately equal to Given that is much less
than a hit ratio of close to 1 is needed.

So we would like M1 to be small to hold down cost, and large to improve the hit ratio and therefore the
performance. Is there a size of M1 that satisfies both requirements to a reasonable extent? We can
answer this question with a series of subquestions:

Cs = S1 + S2 (4.3)

Cs = average cost per bit for the combined two-level memory
C1 = average cost per bit of upper-level memory M1
C2 = average cost per bit of lower-level memory M2
S1 = size of M1
S2 = size of M2

Cs ≈ C2. C1 ≫ C2, S1 < S2.

Ts T1 (Ts ≈ T1) . T1

T2 (T1 < < T2) ,

What value of hit ratio is needed so that ?
What size of M1 will assure the needed hit ratio?
Does this size satisfy the cost requirement?

To get at this, consider the quantity which is referred to as the access efficiency. It is a
measure of how close average access time is to M1 access time From Equation (4.2),

Figure 4.12 plots as a function of the hit ratio H, with the quantity as a parameter.
Typically, on-chip cache access time is about 25 to 50 times faster than main memory access time
(i.e., is 25 to 50), off-chip cache access time is about 5 to 15 times faster than main memory
access time (i.e., is 5 to 15), and main memory access time is about 1000 times faster than
disk access time Thus, a hit ratio in the range of near 0.9 would seem to be needed
to satisfy the performance requirement.

Figure 4.12 Access Efficiency as a Function of Hit Ratio

We can now phrase the question about relative memory size more exactly. Is a hit ratio of, say, 0.8 or
better reasonable for ? This will depend on a number of factors, including the nature of the
software being executed and the details of the design of the two-level memory. The main determinant
is, of course, the degree of locality. Figure 4.13 suggests the effect that locality has on the hit ratio.
Clearly, if M1 is the same size as M2, then the hit ratio will be 1.0: All of the items in M2 are always

Ts ≈ T1

T1 / Ts ,
(Ts) (T1) .

T1
Ts =

1

1 + (1 − H)
T2
T1

(4.4)

T1 / Ts T2 / T1

T2 / T1

T2 / T1

(T2 / T1 = 1000) .

(r = T2 / T1)

S1 < < S2

also stored in M1. Now suppose that there is no locality; that is, references are completely random. In
that case, the hit ratio should be a strictly linear function of the relative memory size. For example, if
M1 is half the size of M2, then at any time half of the items from M2 are also in M1 and the hit ratio will
be 0.5. In practice, however, there is some degree of locality in the references. The effects of
moderate and strong locality are indicated in the figure. Note that Figure 4.13 is not derived from any
specific data or model; the figure suggests the type of performance that is seen with various degrees
of locality.

Figure 4.13 Hit Ratio as a Function of Relative Memory Size

So if there is strong locality, it is possible to achieve high values of hit ratio even with relatively small
upper-level memory size. For example, numerous studies have shown that rather small cache sizes
will yield a hit ratio above 0.75 regardless of the size of main memory (e.g., [AGAR89], [PRZY88],
[STRE83], and [SMIT82]). A cache in the range of 1K to 128K words is generally adequate, whereas
main memory is now typically in the gigabyte range. When we consider virtual memory and disk
cache, we will cite other studies that confirm the same phenomenon, namely that a relatively small M1
yields a high value of hit ratio because of locality.

This brings us to the last question listed earlier: Does the relative size of the two memories satisfy the
cost requirement? The answer is clearly yes. If we need only a relatively small upper-level memory to
achieve good performance, then the average cost per bit of the two levels of memory will approach
that of the cheaper lower-level memory.

Multilevel Memory Access2

2

 I would like to thank Professor Roger Kieckhafer of Michigan Technological University for permission to use his

lecture notes in developing this section.

This subsection develops a model for memory access performance in a memory hierarchy that has
more than two levels. The following terminology is used:

 is the performance metric that is of most interest. It measures the average time to access data,
regardless of which level of the hierarchy needs to be accessed at the time of the access request. The
higher the hit ratio at each level, the lower will be the value of Ideally, we would like to be very
close to 1.0, in which case will be very close to

Figure 4.14 is a flowchart that provides a simplified memory access model for a memory hierarchy,
which we can use to develop a formula for the average access time. It can be described as follows:

1. The processor generates a memory address request. The first step is to determine if the cache
block containing that address resides in the L1 cache (memory level). The probability of that

is If the desired word is present in the cache, that word is delivered to the processor. The
average time required for this operation is

2. For subsequent levels i, if the addressed word is not found in then the memory

management hardware checks to determine if it is in which occurs with a probability of If

the desired word is present in the word is delivered from to the processor, and the

appropriate size block containing the word is copied to The average time for this

operation is
3. In the typical memory hierarchy, is a disk used in a virtual memory scheme. In this case, if

the word is not found in any of the preceding levels and is found in then the word must be

first moved as part of a page into main memory from where it can be transferred to

the processor. We designate the total time for this operation as

M
i

= Memory level (i) where 1 ≤ i ≤ n , with nlevels of memory.
Si = Size, or capacity of level M

i
(Bytes)

ti = Total time needed to access data in level M
i—Is the sum of all times in the path to a hit in level M

i
—May be an average (ti)

hi = Hit ratio of level M
i= Conditional probability that the data for a memory access is resident in

level M
i
given that it is not resident in Mi − 1

Ts = Mean time needed to access data

Ts

Ts . h1

Ts t1.

M1

h1.
t1.

2 ≤ i < n , Mi − 1,

M
i
, hi .

M
i
, M

i
Mi − 1.

ti − 1.
Mn

Mn ,

(Mn − 1) ,

tn .

Figure 4.14 Multilevel Memory Access Performance Model

Each of the consists of a number of components, including checking for the presence of the
required word in level i, accessing the data if it is in level i, and transporting the data to the processor.
The total value of must also include the amount of time to check for a hit on all previous levels and
experiencing a miss. If we designate the time expended in determining a miss at level i as then

 must include In addition, Figure 4.14 indicates that the process of

accessing memory and delivering a word to the processor is performed parallel to the process of
copying the appropriate block of data to the preceding level in the hierarchy. If the two operations are
performed in sequence, then the extra time involved is added to

Looking at Figure 4.14, there are a number of different paths from start to finish. The average time
can be expressed as the weighted average of the time of each path:

ti

ti
tm is i ,

ti tm is 1 + tm is 2 + … + tm is i − 1.

ti .

Ts

Ts = ∑
all paths

[Probability of taking a path × Duration of that a path]
(4.5)

where is assigned the value 0.

For example, consider a simple system consisting of one level of cache main memory

and secondary memory Then,

Note that Equation (4.5) works whether the time delays for a given path are constants or variables. If
the time delays are constant, then is a constant equal to the sum of all the time delays (e.g.
checking for presence, data access, and delivery to CPU). If one or more of the elements in the total
time delay are variable, then is the mean time delay calculated as the sum of the mean time delays
of the component delays.

To use this model in designing a memory hierarchy, estimates are needed for the and These
can be developed either by simulation or by setting up a real system and varying the sizes of the
various

=
∑

all paths

⎢⎢⎢⎢⎢ ∏ (All probabilities in the path) × ∑ (All times in that path)
⎥⎥⎥⎥⎥

=
n∑

i = 1

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

i − 1∏
j = 0

(1 − hj) hI × tI

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡
⎣

⎤
⎦

⎡

⎣

⎤

⎦

h0

(M
1

) , (M
2

) ,

(M
3

) .

Ts = h1 × t1
+ (1 − h1) h2 × t2
+ (1 − h1) (1 − h2) × t3

ti

ti

hi ti .

M
i
.

4.5 Key Terms, Review Questions, and Problems

Key Terms

access time

addressable unit

associative memory

auxiliary memory

cache memory

coherence

data spatial locality

data temporal locality

direct access

dynamic instruction

hit ratio

horizontal coherence inclusion

instruction cache

instruction spatial locality

instruction temporal locality

L1 cache

L2 cache

L3 cache

L4 cache

locality

locality of reference

memory hierarchy

memory cycle time

multilevel cache

multilevel memory

random access

secondary memory

sequential access

spatial locality

static instruction

temporal locality

transfer rate

unit of transfer

vertical coherence

word

Review Questions

Problems

4.1 What are the differences among sequential access, direct access, and random access?
4.2 What is the general relationship among access time, memory cost, and capacity?
4.3 How does the principle of locality relate to the use of multiple memory levels?
4.4 What is the distinction between spatial locality and temporal locality?
4.5 In general, what are the strategies for exploiting spatial locality and temporal locality?
4.6 How do data locality and instruction locality relate to spatial locality and temporal locality?

4.1 Consider these terms: instruction spatial locality, instruction temporal locality, data spatial
locality, data temporal locality. Match each of these terms to one of the following definitions:

a. Locality is quantified by computing the average distance (in terms of number of operand
memory accesses) between two consecutive accesses to the same address, for every
unique address in the program. The evaluation is performed in four distinct window sizes,
analogous to cache block sizes.

b. Locality metric is quantified by computing the average distance (in terms of number of
instructions) between two consecutive accesses to the same static instruction, for every
unique static instruction in the program that is executed at least twice.

c. Locality for operand memory accesses is characterized by the ratio of the locality metric
for window sizes mentioned in (a).

d. Locality is characterized by the ratio of the locality metric for the window sizes mentioned
in (b).

4.2 Consider these two programs:

for (i = 1; i < n; i++) {

 Z[i] = X[i] – Y[i]

 Z[i] = Z[i] * Z[i]

}

for (i = 1; i < n; i++) {

 Z[i] = X[i] – Y[i]

}

for (i = 1; i < n; i++) {

 Z[i] = Z[i] * Z[i]

}

Program A Program B

a. The two programs perform the same function. Describe it.
b. Which version performs better, and why?

4.3 Consider the following code:

for (i = 0; i < 20; i++)
 for (j = 0; j < 10; j++)
 a[i] = a[i] * j

a. Give one example of the spatial locality in the code.
b. Give one example of the temporal locality in the code.

4.4 Consider a memory system with the following parameters:

a. What is the cost of 1 MB of main memory?
b. What is the cost of 1 MB of main memory using cache memory technology?
c. If the effective access time is 10% greater than the cache access time, what is the hit

ratio H?

4.5
a. Consider an L1 cache with an access time of 1 ns and a hit ratio of Suppose

that we can change the cache design (size of cache, cache organization) such that we
increase H to 0.97, but increase access time to 1.5 ns. What conditions must be met for
this change to result in improved performance?

b. Explain why this result makes intuitive sense.

4.6 Consider a single-level cache with an access time of 2.5 ns, a block size of 64 bytes, and a
hit ratio of Main memory uses a block transfer capability that has a first-word (4 bytes)
access time of 50 ns and an access time of 5 ns for each word thereafter.

a. What is the access time when there is a cache miss? Assume that the cache waits until
the line has been fetched from main memory and then re-executes for a hit.

b. Suppose that increasing the block size to 128 bytes increases the H to 0.97. Does this
reduce the average memory access time?

4.7 A computer has a cache, main memory, and a disk used for virtual memory. If a referenced
word is in the cache, 20 ns are required to access it. If it is in main memory but not in the cache,
60 ns are needed to load it into the cache, and then the reference is started again. If the word is
not in main memory, 12 ns are required to fetch the word from the disk, followed by 60 ns to
copy it to the cache, and then the reference is started again. The cache hit ratio is 0.9 and the
main memory hit ratio is 0.6. What is the average time in nanoseconds required to access a
referenced word on this system?
4.8 On the Motorola 68020 microprocessor, a cache access takes two clock cycles. Data
access from main memory over the bus to the processor takes three clock cycles in the case of
no wait state insertion; the data are delivered to the processor in parallel with delivery to the
cache.

Tc = 100ns
Cc = 10

− 4
$ / bit

Tm = 1200ns
Cm = 10

− 5
$ / bit

H = 0.95.

H = 0.95.

a. Calculate the effective length of a memory cycle given a hit ratio of 0.9 and a clocking
rate of 16.67 MHz.

b. Repeat the calculations assuming insertion of two wait states of one cycle each per
memory cycle. What conclusion can you draw from the results?

4.9 Assume a processor having a memory cycle time of 300 ns and an instruction processing
rate of 1 MIPS. On average, each instruction requires one bus memory cycle for instruction
fetch and one for the operand it involves.

a. Calculate the utilization of the bus by the processor.
b. Suppose that the processor is equipped with an instruction cache and the associated hit

ratio is 0.5. Determine the impact on bus utilization.

4.10 The performance of a single-level cache system for a read operation can be characterized
by the following equation:

where is the average access time, is the cache access time, is the memory access
time (memory to processor register), and H is the hit ratio. For simplicity, we assume that the
word in question is loaded into the cache in parallel with the load to processor register. This is
the same form as Equation (4.2) .

a. Define to transfer a block between cache and main memory, and of

write references. Revise the preceding equation to account for writes as well as reads,
using a write-through policy.

b. Define as the probability that a block in the cache has been altered. Provide an

equation for for the write-back policy.

4.11 For a system with two levels of cache, define cache access time;
 cache access time; access time; cache hit ratio;

 first/second level cache hit ratio. Provide an equation for for a read operation.
4.12 Assume the following performance characteristics on a cache read miss: one clock cycle to
send an address to main memory and four clock cycles to access a 32-bit word from main
memory and transfer it to the processor and cache.

a. If the cache block size is one word, what is the miss penalty (i.e., additional time required
for a read in the event of a read miss)?

b. What is the miss penalty if the cache block size is four words and a multiple, nonburst
transfer is executed?

c. What is the miss penalty if the cache block size is four words and a transfer is executed,
with one clock cycle per word transfer?

4.13 For the cache design of the preceding problem, suppose that increasing the line size from
one word to four words results in a decrease of the read miss rate from 3.2% to 1.1%. For both
the nonburst transfer and the burst transfer case, what is the average miss penalty, averaged
over all reads, for the two different line sizes?
4.14 Consider a two-level system with L1 instruction and data caches. For a given application,
assume the following: instruction cache miss data cache miss and the
fraction of instructions that are The ideal value of CPI (cycles per instruction)
without cache misses is 2.0. The penalty for a cache miss is 40 cycles. Calculate the CPI,
taking misses into account.

Ta = Tc + (1 − H) Tm

Ta Tc Tm

Tb = time W = fraction

Wb

Ta

Tc1 = first-level
Tc2 = second-level Tm = memory H1 = first-level

H2 = combined Ta

ratio = 0.02, ratio = 0.04,
load / store = 0.36.

4.15 Define that the data for a memory access is resident in level

a. Equation 4.5 uses the conditional probabilities Explain why in this form the equation
is correct with the conditional probabilities rather than the unconditional probabilities
That is, show that the following expression does not equal

b. Rewrite Equation 4.5 using instead of

4.16 Define the access frequency as the probability of successfully accessing (hit) when

there are misses at the preceding levels.
a. Derive an expression for
b. Rewrite Equation 4.5 using instead of

H
i
= probability M

i
.

hi .
H

i
.

Ts .

n∑
i − 1

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

i − 1∏
j = 1

(1 − hj) hI × tI

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡

⎣

⎤

⎦

H
i

hi .

fi M
i

i − 1
fi .

fi hi .

Chapter 5 Cache Memory

5.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Discuss the key elements of cache design.
Distinguish among direct mapping, associative mapping, and set- ​associative mapping.
Understand the principles of content-addressable memory.
Explain the reasons for using multiple levels of cache.
Understand the performance implications of cache design decisions.

With the exception of smaller embedded systems, all modern computer systems
employ one or more layers of cache memory. Cache memory is vital to achieving
high performance. This chapter begins with an overview of the basic principles of
cache memory, then looks in detail at the key elements of cache design. This is
followed by a discussion of the cache structures used in the Intel x86 family and
the IBM z13 mainframe system. Finally, the chapter introduces some
straightforward performance models that provide insight into cache design.

5.1 Cache Memory Principles
5.2 Elements of Cache Design

Cache Addresses
Cache Size
Logical Cache Organization
Replacement Algorithms
Write Policy
Line Size
Number of Caches
Inclusion Policy

5.3 Intel x86 Cache Organization
5.4 The IBM z13 Cache Organization
5.5 Cache Performance Models

Cache Timing Model
Design Option for Improving Performance

5.1 Cache Memory Principles
Cache memory is designed to combine the memory access time of expensive, high- ​speed
memory combined with the large memory size of less expensive, lower- ​speed memory. The concept
is illustrated in Figure 5.1a. There is a relatively large and slow main memory together with a smaller,
faster cache memory. The cache contains a copy of portions of the main memory. When the
processor attempts to read a word of memory, a check is made to determine if the word is in the
cache. If so, the word is delivered to the processor. If not, a block of main memory, consisting of some
fixed number of words, is read into the cache and then the word is delivered to the processor.
Because of the phenomenon of locality of reference, when a block of data is fetched into the cache to
satisfy a single memory reference, it is likely that there will be future references to that same memory
location or to other words in the block.

Figure 5.1 Cache and Main Memory

Figure 5.1b depicts the use of multiple levels of cache. The L2 cache is slower and typically larger
than the L1 cache, and the L3 cache is slower and typically larger than the L2 cache.

Figure 5.2 depicts the structure of a cache/main- ​memory system. Several terms are introduced:

Figure 5.2 Cache/Main Memory Structure

Block: The minimum unit of transfer between cache and main memory. In most of the literature,
the term block refers both to the unit of data transferred and to the physical location in main
memory or cache.
Frame: To distinguish between the data transferred and the chunk of physical memory, the term
frame, or block frame, is sometimes used with reference to caches. Some texts and some literature
use the term with reference to the cache and some with reference to main memory. It use is not
necessary for purposes of this text.
Line: A portion of cache memory capable of holding one block, so-called because it is usually
drawn as a horizontal object (i.e., all bytes of the line are typically drawn in one row). A line also
includes control information.
Tag: A portion of a cache line that is used for addressing purposes, as explained subsequently. A
cache line may also include other control bits, as will be shown.

Main memory consists of up to addressable words, with each word having a unique n-bit address.
For mapping purposes, this memory is considered to consist of a number of fixed- ​length blocks of K
words each. That is, there are blocks in main memory. The cache consists of m lines. Each

line contains K words, plus a tag. Each line also includes control bits (not shown), such as a bit to
indicate whether the line has been modified since being loaded into the cache. The length of a line,
not including tag and control bits, is the line size. That is, the term line size refers to the number of
data bytes, or block size, contained in a line. They may be as small as 32 bits, with each “word” being

2n

M = 2n /K

a single byte; in this case the line size is 4 bytes. The number of lines is considerably less than the
number of main memory blocks . At any time, some subset of the blocks of memory resides

in lines in the cache. If a word in a block of memory is read, that block is transferred to one of the lines
of the cache. Because there are more blocks than lines, an individual line cannot be uniquely and
permanently dedicated to a particular block. Thus, each line includes a tag that identifies which
particular block is currently being stored. The tag is usually a portion of the main memory address, as
described later in this section.

Figure 5.3 illustrates the read operation. The processor generates the read address (RA) of a word to
be read. If the word is contained in the cache (cache hit), it is delivered to the processor.

Figure 5.3 Cache Read Operation

(m ≪ M)

If a cache miss occurs, two things must be accomplished: the block containing the word must be
loaded in to the cache, and the word must be delivered to the processor. When a block is brought into
a cache in the event of a miss, the block is generally not transferred in a single event. Typically, the
transfer size between cache and main memory is less than the line size, with 128 bytes being a typical
line size and a cache-main memory transfer size of 64 bits (2 bytes). To improve performance, the
critical word first technique is commonly used. When there is a cache miss, the hardware requests
the missed word first from memory and sends it to the processor as soon as it arrives. This enables
the processor to continue execution while filling the rest of the words in the block. Figure 5.3 shows
these last two operations occurring in parallel and reflects the organization shown in Figure 5.4, which
is typical of contemporary cache organizations. In this organization, the cache connects to the
processor via data, control, and address lines. The data and address lines also attach to data and
address buffers, which attach to a system bus from which main memory is reached. When a cache hit
occurs, the data and address buffers are disabled and communication is only between processor and
cache, with no system bus traffic. When a cache miss occurs, the desired address is loaded onto the
system bus and the data are returned through the data buffer to both the cache and the processor.

Figure 5.4 Typical Cache Organization

5.2 Elements of Cache Design
This section provides an overview of cache design parameters and reports some typical results. We
occasionally refer to the use of caches in high-​performance computing (HPC) . HPC deals with
supercomputers and their software, especially for scientific applications that involve large amounts of
data, vector and matrix computation, and the use of parallel algorithms. Cache design for HPC is quite
different than for other hardware platforms and applications. Indeed, many researchers have found
that HPC applications perform poorly on computer architectures that employ caches [BAIL93]. Other
researchers have since shown that a cache hierarchy can be useful in improving performance if the
application software is tuned to exploit the cache [WANG99, PRES01].

 For a general discussion of HPC, see [DOWD98].

Although there are a large number of cache implementations, there are a few basic design elements
that serve to classify and differentiate cache architectures. Table 5.1 lists key elements.

Table 5.1 Elements of Cache Design

Cache Addresses

  Logical

  Physical

Cache Size

Mapping Function

  Direct

  Associative

  Set associative

Replacement Algorithm

  Least recently used (LRU)

  First in first out (FIFO)

  Least frequently used (LFU)

  Random

Write Policy

  Write through

  Write back

Line Size

Number of Caches

  Single or two level

  Unified or split

Cache Addresses

4

4

Almost all nonembedded processors, and many embedded processors, support virtual memory, a
concept discussed in Chapter 9. In essence, virtual memory is a facility that allows programs to
address memory from a logical point of view, without regard to the amount of main memory physically
available. When virtual memory is used, the address fields of machine instructions contain virtual
addresses. For reads to and writes from main memory, a hardware memory management unit (MMU)
translates each virtual address into a physical address in main memory.

When virtual addresses are used, the system designer may choose to place the cache between the
processor and the MMU or between the MMU and main memory (Figure 5.5). A logical cache, also
known as a virtual cache, stores data using virtual addresses. The processor accesses the cache
directly, without going through the MMU. A physical cache stores data using main memory physical
addresses.

Figure 5.5 Logical and Physical Caches

One obvious advantage of the logical cache is that cache access speed is faster than for a physical
cache, because the cache can respond before the MMU performs an address translation. The
disadvantage has to do with the fact that most virtual memory systems supply each application with
the same virtual memory address space. That is, each application sees a virtual memory that starts at

address 0. Thus, the same virtual address in two different applications refers to two different physical
addresses. The cache memory must therefore be completely flushed with each application context
switch, or extra bits must be added to each line of the cache to identify which virtual address space
this address refers to.

The subject of logical versus physical cache is a complex one, and beyond the scope of this text. For
a more in-​depth discussion, see [CEKL97] and [JACO08].

Cache Size

The second item in Table 5.1, cache size, has already been discussed. We would like the size of the
cache to be small enough so that the overall average cost per bit is close to that of main memory
alone and large enough so that the overall average access time is close to that of the cache alone.
There are several other motivations for minimizing cache size. The larger the cache, the larger the
number of gates involved in addressing the cache. The result is that large caches tend to be slightly
slower than small ones— ​even when built with the same integrated circuit technology and put in the
same place on a chip and circuit board. The available chip and board area also limits cache size.
Because the performance of the cache is very sensitive to the nature of the workload, it is impossible
to arrive at a single “optimum” cache size. Table 5.2 lists the cache sizes of some current and past
processors.

Table 5.2 Cache Sizes of Some Processors

Processor Type Year of
Introduction

L1 Cachea L2 cache L3
Cache

IBM 360/85 Mainframe 1968 16 to 32 kB — —

PDP-11/70 Minicomputer 1975 1 kB — —

IBM 3033 Mainframe 1978 64 kB — —

IBM 3090 Mainframe 1985 128 to 256 kB — —

Intel 80486 PC 1989 8 kB — —

Pentium PC 1993 8 kB/8 kB 256 to 512 kB —

PowerPC 620 PC 1996 32 kB/32 kB — —

IBM S/390 G6 Mainframe 1999 256 kB 8 MB —

Pentium 4 PC/server 2000 8 kB/8 kB 256 kB —

Itanium PC/server 2001 16 kB/16 kB 96 kB 4 MB

Itanium 2 PC/server 2002 32 kB 256 kB 6 MB

IBM POWER5 High-end server 2003 64 kB 1.9 MB 36 MB

CRAY XD-1 Supercomputer 2004 64 kB/64 kB 1MB —

IBM POWER6 PC/server 2007 64 kB/64 kB 4 MB 32 MB

IBM z10 Mainframe 2008 64 kB/128 kB 3 MB 24-48
MB

Intel Core i7
EE 990

Workstaton/Server 2011 12 MB

IBM
zEnterprise
196

Mainframe/Server 2011 24 MB
L3

192
MB L4

IBM z13 Mainframe/server 2015 64 MB
L3

480
MB L4

Intel Core i0-
7900X

Workstation/server 2017 14 MB

 Two values separated by a slash refer to instruction and data caches.

Logical Cache Organization

Because there are fewer cache lines than main memory blocks, an algorithm is needed for mapping
main memory blocks into cache lines. Further, a means is needed for determining which main memory
block currently occupies a cache line . The choice of the mapping function dictates how the cache
is logically organized. Three techniques can be used: direct, associative, and set-associative. We
examine each of these in turn. In each case, we look at the general structure and then a specific
example. Table 5.3 provides a summary of key characteristics of the three approaches.

Table 5.3 Cache Access Methods

Method Organization Mapping of Main
Memory Blocks to

Cache

Access using Main Memory Address

Direct
Mapped

Sequence of m lines Each block of main
memory maps to

Line portion of address used to access
cache line; Tag portion used to check

6 × 32kB / 32kB 6 × 1.5MB

24 × 64kB / 128kB 24 × 1.5MB

24 × 96kB / 128kB 24 × 2MB / 2MB

8 × 32kB / 32kB 8 × 1MB

a

one unique line of
cache.

for hit on that line.

Fully
Associative

Sequence of m lines Each block of main
memory can map to
any line of cache.

Tag portion of address used to check
every line for hit on that line.

Set
Associative

Sequence of m lines
organized as v sets
of k lines each

Each block of main
memory maps to
one unique cache
set.

Line portion of address used to access
cache set; Tag portion used to check
every line in that set for hit on that line.

Example 5.1

For all three cases, the example includes the following elements:

The cache can hold 64 kB.
Data are transferred between main memory and the cache in blocks of 4 bytes each. This
means that the cache is organized as lines of 4 bytes each.
The main memory consists of 16 MB, with each byte directly addressable by a 24-bit address

. Thus, for mapping purposes, we can consider main memory to consist of 4M

blocks of 4 bytes each.

Direct Mapping

The simplest technique, known as direct mapping, maps each block of main memory into only one
possible cache line. The mapping is expressed as

where

Figure 5.6a shows the mapping for the first m blocks of main memory. Each block of main memory
maps into one unique line of the cache. The next m blocks of main memory map into the cache in the
same fashion; that is, block of main memory maps into line of cache, block maps into
line , and so on.

(m = v × k)

16K = 214

(224 = 16M)

i = j modulo m

i = cache line number
j = main memory block number
m = number of lines in the cache

Bm L0 Bm + 1

L1

Figure 5.6 Mapping from Main Memory to Cache: Direct and Associative

The mapping function is easily implemented using the main memory address. Figure 5.7 illustrates
the general mechanism. For purposes of cache access, each main memory address can be viewed as
consisting of three fields. The least significant w bits identify a unique word or byte within a block of
main memory; in most contemporary machines, the address is at the byte level. The remaining s bits
specify one of the blocks of main memory. The cache logic interprets these s bits as a tag of
bits (most significant portion) and a line field of r bits. This latter field identifies one of the lines
of the cache. To summarize,

2s s − r
m = 2r

Figure 5.7 Direct-​Mapping Cache Organization

The effect of this mapping is that blocks of main memory are assigned to lines of the cache as follows:

Cache line Main memory blocks assigned

0

1

Address length = (s + w) bits
Number of addressable units = 2

s + w
words or bytes

Block size = line size = 2
w

words or bytes

Number of blocks in main memory =
2

s + w

2
w = 2s

Number of lines in cache = m = 2r

Size of cache = 2
r + w

words or bytes
Size of tag = (s − r) bits

0 , m , 2m , … , 2s − m

1 , m + 1 , 2m + 1 , … , 2s − m + 1

⋮ ⋮

((m − 1)) m − 1 , 2m − 1 , 3m − 1 , … , 2s − 1

Thus, the use of a portion of the address as a line number provides a unique mapping of each block of
main memory into the cache. When a block is actually read into its assigned line, it is necessary to tag
the data to distinguish it from other blocks that can fit into that line. The most significant bits
serve this purpose.

Figure 5.7 indicates the logical structure of the cache hardware access mechanism. When the cache
hardware is presented with an address from the processor, the Line Number portion of the address is
used to index into the cache. A compare function compares the tag of that line with the Tag field of the
address. If there is a match (hit), an enable signal is sent to a select function, which uses the Offset
field of the address and the Line Number field of the address to read the desired word or byte from the
cache. If there is no match (miss) then the select function is not enabled and data is accessed from
main memory, or the next level of cache. Figure 5.7 illustrates the case in which the line number
refers to the third line in the cache and there is a match, as indicated by the heavier arrowed lines.

Example 5.1a

Figure 5.8 shows our example system using direct mapping. In the example, and
. The mapping becomes

 In this and subsequent figures, memory values are represented in hexadecimal notation. See Chapter 9 for a

basic refresher on number systems (decimal, binary, hexadecimal).

Cache Line Starting Memory Address of Block

0 000000, 010000, …, FF0000

1 000004, 010004, …, FF0004

00FFFC, 01FFFC, …, FFFFFC

Note that no two blocks that map into the same line number have the same tag number. Thus,
blocks with starting addresses 000000, 010000, …, FF0000 have tag numbers 00, 01, …, FF,
respectively.

Referring back to Figure 5.3, a read operation works as follows. The cache system is presented
with a 24-bit address. The 14-bit line number is used as an index into the cache to access a
particular line. If the 8-bit tag number matches the tag number currently stored in that line, then the
2-bit word number is used to select one of the 4 bytes in that line. Otherwise, the 22-bit
tag-​plus-​line field is used to fetch a block from main memory. The actual address that is used for
the fetch is the 22-bit tag-​plus-​line concatenated with two 0 bits, so that 4 bytes are fetched
starting on a block boundary.

s − r

5 m = 16K = 214

i = jmodulo 214

5

⋮ ⋮

214 − 1

Figure 5.8 Direct Mapping Example

The direct mapping technique is simple and inexpensive to implement. Its main disadvantage is that
there is a fixed cache location for any given block. Thus, if a program happens to reference words
repeatedly from two different blocks that map into the same line, then the blocks will be continually
swapped in the cache, and the hit ratio will be low (a phenomenon known as thrashing).

Aleksandr Lukin/123RF

Selective Victim Cache Simulator

One approach to lower the miss penalty is to remember what was discarded in case it is needed
again. Since the discarded data has already been fetched, it can be used again at a small cost. Such
recycling is possible using a victim cache. Victim cache was originally proposed as an approach to
reduce the conflict misses of direct mapped caches without affecting its fast access time. Victim cache
is a fully associative cache, whose size is typically 4 to 16 cache lines, residing between a direct
mapped L1 cache and the next level of memory. This concept is explored in Appendix B.

CONTENT-ADDRESSABLE MEMORY

Before discussing associative cache organization, we need to introduce the concept of content-
addressable memory (CAM), also known as associative storage [PAGI06]. Content-addressable
memory (CAM) is constructed of static RAM (SRAM) cells (see static RAM) but is considerably more
expensive and holds much less data than regular SRAM chips. Put another way, a CAM with the
same data capacity as a regular SRAM is about 60% larger [SHAR03].

A CAM is designed such that when a bit string is supplied, the CAM searches its entire memory in
parallel for a match. If the content is found, the CAM returns the address where the match is found
and, in some architectures, also returns the associated data word. This process takes only one clock
cycle.

Figure 5.9a is a simplified illustration of the search function of a small CAM with four horizontal words,
each word containing five bits, or cells. CAM cells contain both storage and comparison circuitry. The
is a match line corresponding to each word, feeding into match line sense amplifiers, and there is a
differential search line pair corresponding to each bit of the search word. The encoder maps the match
line of the matching location to its encoded address.

Figure 5.9 Content-Addressable Memory

Figure 5.9b shows a logical block diagram of a CAM cell array, consisting of m words of n bits each.
Search, read, and write enable pins are used to enable one of the three operating modes of the CAM.
For a search operation, the data to be searched is loaded in an n-bit search register that sets/resets
the logic states of the search lines. The logic within and between cells of a row is such that a match
lines is asserted if and only if all the cells in a row match the search line values. A simple read
operation, as opposed to a search, is performed to read the data stored in the storage nodes of CAM
cells using Read Enable control signal. The data words to be stored in CAM cell array are provided
during a write operation through data input port.

ASSOCIATIVE MAPPING

Associative mapping overcomes the disadvantage of direct mapping by permitting each main memory
block to be loaded into any line of the cache (Figure 5.6b). In this case, the cache control logic
interprets a memory address simply as a Tag and a Word field. The Tag field uniquely identifies a
block of main memory. To determine whether a block is in the cache, the cache control logic must
simultaneously examine every line’s tag for a match. Figure 5.10 illustrates the logic.

Figure 5.10 Fully Associative Cache Organization

Note that no field in the address corresponds to the line number, so that the number of lines in the
cache is not determined by the address format. Instead, if there is a hit, the line number of the hit is
sent to the select function by the cache hardware, as shown in Figure 5.9. To summarize,

Example 5.1b

Figure 5.11 shows our example using associative mapping. A main memory address consists of a
22-bit tag and a 2-bit byte number. The 22-bit tag must be stored with the 32-bit block of data for

Address length = (s + w) bits
Number of addressable units = 2

s + w
words or bytes

Block size = line size = 2
w

words or bytes

Number of blocks in main memory =
2

s + w

2
w = 2s

Number of lines in cache = undetermined

Size of tag = sbits

each line in the cache. Note that it is the leftmost (most significant) 22 bits of the address that form
the tag. Thus, the 24-bit hexadecimal address 16339C has the 22-bit tag 058CE7. This is easily
seen in binary notation:

Memory address 0001 0110 0011 0011 1001 1100 (binary)

1 6 3 3 9 C (hex)

Tag (leftmost 22 bits) 00 0101 1000 1100 1110 0111 (binary)

0 5 8 C E 7 (hex)

Figure 5.11 Associative Mapping Example

With associative mapping, there is flexibility as to which block to replace when a new block is read into
the cache. Replacement algorithms, discussed later in this section, are designed to maximize the hit
ratio. The principal disadvantage of associative mapping is the complex circuitry required to examine
the tags of all cache lines in parallel.

Aleksandr Lukin/123RF

Cache Time Analysis Simulator

SET-ASSOCIATIVE MAPPING

Set-​associative mapping is a compromise that exhibits the strengths of both the direct and associative
approaches while reducing their disadvantages.

In this case, the cache consists of number sets, each of which consists of a number of lines. The
relationships are

where

This is referred to as k-way set-associative mapping. With set- ​associative mapping, block can be
mapped into any of the lines of set j. Figure 5.12a illustrates this mapping for the first v blocks of main
memory. As with associative mapping, each word maps into multiple cache lines. For set- ​associative
mapping, each word maps into all the cache lines in a specific set, so that main memory block
maps into set 0, and so on. Thus, the set-​associative cache can be physically implemented as v
associative caches, typically implemented as v CAM memories. It is also possible to implement the
set-​associative cache as k direct mapping caches, as shown in Figure 5.12b. Each direct-​mapped
cache is referred to as a way, consisting of v lines. The first v lines of main memory are direct mapped
into the v lines of each way; the next group of v lines of main memory are similarly mapped, and so
on. The direct-​mapped implementation is typically used for small degrees of associativity (small values
of k) while the associative- ​mapped implementation is typically used for higher degrees of associativity
[JACO08].

m = v × k
i = j modulo v

i = cache set number
j = main memory block number
m = number of lines in the cache
v = number of sets
k = number of lines in each set

Bj

B0

Figure 5.12 Mapping from Main Memory to Cache: k﻿-​Way Set Associative

For set-​associative mapping, the cache control logic interprets a memory address as three fields: Tag,
Set, and Word. The d set bits specify one of sets. The s bits of the Tag and Set fields specify
one of the blocks of main memory. Figure 5.13 illustrates the cache control logic. With fully
associative mapping, the tag in a memory address is quite large and must be compared to the tag of
every line in the cache. With k﻿-​way set-​associative mapping, the tag in a memory address is much
smaller and is only compared to the k tags within a single set. As shown in Figure 5.12, if there is
match of tags on any of the lines in the set, the corresponding select function is enabled and retrieves
the desired work. If all comparisons report a miss, then the desired word is retrieved from main
memory.

v = 2d

2s

To summarize,

Address length = (s + w) bits
Number of addressable units = 2

s + w
words or bytes

Block size = line size = 2
w

words or bytes

Number of blocks in main memory =
2

s + w

2
w = 2s

Number of lines in set = k

Number of sets = v = 2d

Number of lines in cache = m = kv = k × 2d

Size of cache = k × 2
d + w

words or bytes
Size of tag = (s − d) bits

Figure 5.13 k﻿-​Way Set Associative Cache Organization

Example 5.1c

Figure 5.14 shows our example using two-way set- ​associative mapping with two lines in each set.
The 13-bit set number identifies a unique set of two lines within the cache. It also gives the number
of the block in main memory, modulo . This determines the mapping of blocks into lines. Thus,
blocks 000000, 008000, …, FF8000 of main memory map into cache set 0. Any of those blocks
can be loaded into either of the two lines in the set. Note that no two blocks that map into the same
cache set have the same tag number. For a read operation, the 13-bit set number is used to
determine which set of two lines is to be examined. Both lines in the set are examined for a match
with the tag number of the address to be accessed.

213

Figure 5.14 Two-​Way Set-​Associative Mapping Example

In the extreme case of , the set-​associative technique reduces to direct mapping, and for
, it reduces to associative mapping. The use of two lines per set is the

most common set-​associative organization. It significantly improves the hit ratio over direct mapping.
Four-​way set associative makes a modest additional improvement for a relatively
small additional cost [MAYB84, HILL89]. Further increases in the number of lines per set have little
effect.

Figure 5.15 shows the results of one simulation study of set- ​associative cache performance as a
function of cache size [GENU04]. The difference in performance between direct and two- ​way set
associative is significant up to at least a cache size of 64 kB. Note also that the difference between
two-​way and four- ​way at 4 kB is much less than the difference in going from for 4 kB to 8 kB in cache
size. The complexity of the cache increases in proportion to the associativity, and in this case would
not be justifiable against increasing cache size to 8 or even 16 kB. A final point to note is that beyond
about 32 kB, increase in cache size brings no significant increase in performance.

v = m , k = 1
v = 1 , k = m (v = m /2 , k = 2)

(v = m /4 , k = 4)

Figure 5.15 Varying Associativity over Cache Size

The results of Figure 5.15 are based on simulating the execution of a GCC compiler. Different
applications may yield different results. For example, [CANT01] reports on the results for cache
performance using many of the CPU2000 SPEC benchmarks. The results of [CANT01] in comparing
hit ratio to cache size follow the same pattern as Figure 5.15, but the specific values are somewhat
different.

For both associative and set-associative caches, there is an additional time element for comparing tag
fields. One way to reduce this time penalty in a set-associative cache is with way prediction. Way
prediction allows the data array and tag array to be accessed in parallel. If the predicted way was
correct (determined by a tag match), no penalty occurs. If the prediction was incorrect, additional
cycles are needed to find the data. The way predictor is a table that guesses which “way” a given
address should access, based on recent history. An implementation reported in [POWE01], using a
number of SPEC CPU benchmark programs, found prediction rates that ranged from 50% to over
90% for a 4-way set associative cache. Another study [TSEN09] on a 4-way set associative cache
using SPEC CPU programs resulted in prediction rates ranging from 85% to 95%.

Aleksandr Lukin/123RF

Cache Simulator

Multitask Cache Simulator

Replacement Algorithms

Once the cache has been filled, when a new block is brought into the cache, one of the existing blocks
must be replaced. For direct mapping, there is only one possible line for any particular block, and no
choice is possible. For the associative and set- ​associative techniques, a replacement algorithm is
needed. To achieve high speed, such an algorithm must be implemented in hardware. A number of
algorithms have been tried. We mention four of the most common. Probably the most effective is least
recently used (LRU): Replace that block in the set that has been in the cache longest with no
reference to it. For two-​way set associative, this is easily implemented. Each line includes a USE bit.
When a line is referenced, its USE bit is set to 1 and the USE bit of the other line in that set is set to 0.
When a block is to be read into the set, the line whose USE bit is 0 is used. Because we are assuming
that more recently used memory locations are more likely to be referenced, LRU should give the best
hit ratio. LRU is also relatively easy to implement for a fully associative cache. The cache mechanism
maintains a separate list of indexes to all the lines in the cache. When a line is referenced, it moves to
the front of the list. For replacement, the line at the back of the list is used. Because of its simplicity of
implementation, LRU is the most popular replacement algorithm.

Another possibility is first- ​in-​first-​out (FIFO): Replace that block in the set that has been in the cache
longest. FIFO is easily implemented as a round- ​robin or circular buffer technique. Still another
possibility is least frequently used (LFU): Replace that block in the set that has experienced the fewest
references. LFU could be implemented by associating a counter with each line. A technique not based
on usage (i.e., not LRU, LFU, FIFO, or some variant) is to pick a line at random from among the
candidate lines. Simulation studies have shown that random replacement provides only slightly inferior
performance to an algorithm based on usage [SMIT82].

Write Policy

When a block that is resident in the cache is to be replaced, there are two cases to consider. If the old
block in the cache has not been altered, then it may be overwritten with a new block without first
writing out the old block. If at least one write operation has been performed on a word in that line of
the cache, then main memory must be updated by writing the line of cache out to the block of memory
before bringing in the new block. A variety of write policies, with performance and economic trade- ​offs,
is possible. There are two problems to contend with. First, more than one device may have access to
main memory. For example, an I/O module may be able to read- ​write directly to memory. If a word
has been altered only in the cache, then the corresponding memory word is invalid. Further, if the I/O
device has altered main memory, then the cache word is invalid. A more complex problem occurs
when multiple processors are attached to the same bus and each processor has its own local cache.
Then, if a word is altered in one cache, it could conceivably invalidate a word in other caches.

The simplest technique is called write through. Using this technique, all write operations are made to
main memory as well as to the cache, ensuring that main memory is always valid. Any other
processor– ​cache module can monitor traffic to main memory to maintain consistency within its own
cache. The main disadvantage of this technique is that it generates substantial memory traffic and
may create a bottleneck. An alternative technique, known as write back, minimizes memory writes.
With write back, updates are made only in the cache. When an update occurs, a dirty bit, or use bit,
associated with the line is set. Then, when a block is replaced, it is written back to main memory if and
only if the dirty bit is set. The problem with write back is that portions of main memory are invalid, and
hence accesses by I/O modules can be allowed only through the cache. This makes for complex
circuitry and a potential bottleneck. Experience has shown that the percentage of memory references
that are writes is on the order of 15% [SMIT82]. However, for HPC applications, this number may
approach 33% (vector- ​vector multiplication) and can go as high as 50% (matrix transposition).

Example 5.2

Consider a cache with a line size of 32 bytes and a main memory that requires 30 ns to transfer a
4-byte word. For any line that is written at least once before being swapped out of the cache, what
is the average number of times that the line must be written before being swapped out for a
write-​back cache to be more efficient than a write- ​through cache?

For the write-​back case, each dirty line is written back once, at swap- ​out time, taking
. For the write-​through case, each update of the line requires that one word be

written out to main memory, taking 30 ns. Therefore, if the average line that gets written at least
once gets written more than 8 times before swap out, then write back is more efficient.

There is another dimension to the write policy when a miss occurs at a cache level. There are two
alternatives in the event of a write miss:

Write Allocate: The block containing the word to be written is fetched from main memory (or next
level cache) into the cache and the processor proceeds with the write cycle.
No Write Allocate: The block containing the word to be written is modified in the main memory
and not loaded into the cache.

Either of these policies can be used with either write through or write back. Most commonly, no write
allocate is used with write through. The reasoning is that even if locality holds and a write will be made
to the same block in the near future, the write-through policy will generate a write to main memory
anyway, so bringing the block into the cache does not seem efficient. For example, the ARM Cortex
processors can be configured to use write allocate or no write allocate with write back, but only no
write allocate with write through.

With write back, write allocate is most commonly used, although some systems, such as the ARM
Cortex, also allow no write allocate. The reasoning for using write allocate is that subsequent writes to
the same block, if the block originally caused a miss, will hit in the cache next time, setting the dirty bit
for the block. That will eliminate extra memory accesses and result in efficient execution. The write
back, no write allocate option eliminates the time spent in bringing a block into the cache. Depending
on locality patterns for reads and writes, there may be some advantage to this technique.

In a bus organization in which more than one device (typically a processor) has a cache and main
memory is shared, a new problem is introduced. If data in one cache are altered, this invalidates not
only the corresponding word in main memory, but also that same word in other caches (if any other
cache happens to have that same word). Even if a write- ​through policy is used, the other caches may
contain invalid data. A system that prevents this problem is said to maintain cache coherency.
Possible approaches to cache coherency include the following:

Bus watching with write through: Each cache controller monitors the address lines to detect
write operations to memory by other bus masters. If another master writes to a location in shared
memory that also resides in the cache memory, the cache controller invalidates that cache entry.
This strategy depends on the use of a write- ​through policy by all cache controllers.
Hardware transparency: Additional hardware is used to ensure that all updates to main memory
via cache are reflected in all caches. Thus, if one processor modifies a word in its cache, this
update is written to main memory. In addition, any matching words in other caches are similarly
updated.
Noncacheable memory: Only a portion of main memory is shared by more than one processor,
and this is designated as noncacheable. In such a system, all accesses to shared memory are
cache misses, because the shared memory is never copied into the cache. The noncacheable
memory can be identified using chip- ​select logic or high- ​address bits.

Cache coherency is an active field of research. This topic is explored further in Part Five.

8 × 30 = 240ns

Line Size

Another design element is the line size. When a block of data is retrieved and placed in the cache, not
only the desired word but also some number of adjacent words are retrieved. As the block size
increases from very small to larger sizes, the hit ratio will at first increase because of the principle of
locality , which states that data in the vicinity of a referenced word are likely to be referenced in the
near future. As the block size increases, more useful data are brought into the cache. The hit ratio will
begin to decrease, however, as the block becomes even bigger and the probability of using the newly
fetched information becomes less than the probability of reusing the information that has to be
replaced. Two specific effects come into play:

Larger blocks reduce the number of blocks that fit into a cache. Because each block fetch
overwrites older cache contents, a small number of blocks results in data being overwritten shortly
after they are fetched.
As a block becomes larger, each additional word is farther from the requested word and therefore
less likely to be needed in the near future.

The relationship between block size and hit ratio is complex, depending on the locality characteristics
of a particular program, and no definitive optimum value has been found. A size of from 8 to 64 bytes
seems reasonably close to optimum [SMIT87, PRZY88, PRZY90, HAND98]. For HPC systems, 64-
and 128-byte cache line sizes are most frequently used.

Number of Caches

When caches were originally introduced, the typical system had a single cache. More recently, the use
of multiple caches has become the norm. Two aspects of this design issue concern the number of
levels of caches and the use of unified versus split caches.

MULTILEVEL CACHES

As logic density has increased, it has become possible to have a cache on the same chip as the
processor: the on- ​chip cache. Compared with a cache reachable via an external bus, the on- ​chip
cache reduces the processor’s external bus activity and therefore speeds up execution times and
increases overall system performance. When the requested instruction or data is found in the on- ​chip
cache, the bus access is eliminated. Because of the short data paths internal to the processor,
compared with bus lengths, on- ​chip cache accesses will complete appreciably faster than would even
zero-​wait state bus cycles. Furthermore, during this period the bus is free to support other transfers.

The inclusion of an on- ​chip cache leaves open the question of whether an off- ​chip, or external, cache
is still desirable. Typically, the answer is yes, and most contemporary designs include both on- ​chip
and external caches. The simplest such organization is known as a two- ​level cache, with the internal
level 1 (L1) and the external cache designated as level 2 (L2). The reason for including an L2 cache is
the following: If there is no L2 cache and the processor makes an access request for a memory
location not in the L1 cache, then the processor must access DRAM or ROM memory across the bus.
Due to the typically slow bus speed and slow memory access time, this results in poor performance.
On the other hand, if an L2 SRAM (static RAM) cache is used, then frequently the missing information
can be quickly retrieved. If the SRAM is fast enough to match the bus speed, then the data can be
accessed using a zero- ​wait state transaction, the fastest type of bus transfer.

Two features of contemporary cache design for multilevel caches are noteworthy. First, for an off- ​chip
L2 cache, many designs do not use the system bus as the path for transfer between the L2 cache and
the processor, but use a separate data path, so as to reduce the burden on the system bus. Second,

with the continued shrinkage of processor components, a number of processors now incorporate the
L2 cache on the processor chip, improving performance.

The potential savings due to the use of an L2 cache depends on the hit rates in both the L1 and L2
caches. Several studies have shown that, in general, the use of a second- ​level cache does improve
performance (e.g., see [AZIM92], [NOVI93], [HAND98]). However, the use of multilevel caches does
complicate all of the design issues related to caches, including size, replacement algorithm, and write
policy; see [HAND98] and [PEIR99] for discussions.

Figure 5.16 shows the results of one simulation study of two- ​level cache performance as a function of
cache size [GENU04]. The figure assumes that both caches have the same line size and shows the
total hit ratio. That is, a hit is counted if the desired data appears in either the L1 or the L2 cache. The
figure shows the impact of L2 on total hits with respect to L1 size. L2 has little effect on the total
number of cache hits until it is at least double the L1 cache size. Note that the steepest part of the
slope for an L1 cache of 8 kB is for an L2 cache of 16 kB. Again for an L1 cache of 16 kB, the
steepest part of the curve is for an L2 cache size of 32 kB. Prior to that point, the L2 cache has little, if
any, impact on total cache performance. The need for the L2 cache to be larger than the L1 cache to
affect performance makes sense. If the L2 cache has the same line size and capacity as the L1
cache, its contents will more or less mirror those of the L1 cache.

Figure 5.16 Total Hit Ratio (L1 and L2) for 8-kB and 16-kB L1

With the increasing availability of on- ​chip area available for cache, most contemporary
microprocessors have moved the L2 cache onto the processor chip and added an L3 cache.
Originally, the L3 cache was accessible over the external bus. More recently, most microprocessors
have incorporated an on- ​chip L3 cache. In either case, there appears to be a performance advantage
to adding the third level (e.g., see [GHAI98]). Further, large systems, such as the IBM mainframe
zEnterprise systems, incorporate 3 on- ​chip cache levels and a fourth level of cache shared across
multiple chips [BART15].

UNIFIED VERSUS SPLIT CACHES

When the on-​chip cache first made an appearance, many of the designs consisted of a single cache
used to store references to both data and instructions. More recently, it has become common to split
the cache into two: one dedicated to instructions and one dedicated to data. These two caches both
exist at the same level, typically as two L1 caches. When the processor attempts to fetch an
instruction from main memory, it first consults the instruction L1 cache, and when the processor
attempts to fetch data from main memory, it first consults the data L1 cache.

There are two potential advantages of a unified cache:

For a given cache size, a unified cache has a higher hit rate than split caches because it balances
the load between instruction and data fetches automatically. That is, if an execution pattern
involves many more instruction fetches than data fetches, then the cache will tend to fill up with
instructions, and if an execution pattern involves relatively more data fetches, the opposite will
occur.
Only one cache needs to be designed and implemented.

The trend is toward split caches at the L1 and unified caches for higher levels, particularly for
superscalar machines, which emphasize parallel instruction execution and the prefetching of predicted
future instructions. The key advantage of the split cache design is that it eliminates contention for the
cache between the instruction fetch/decode unit and the execution unit. This is important in any design
that relies on the pipelining of instructions. Typically, the processor will fetch instructions ahead of time
and fill a buffer, or pipeline, with instructions to be executed. Suppose now that we have a unified
instruction/data cache. When the execution unit performs a memory access to load and store data,
the request is submitted to the unified cache. If, at the same time, the instruction prefetcher issues a
read request to the cache for an instruction, that request will be temporarily blocked so that the cache
can service the execution unit first, enabling it to complete the currently executing instruction. This
cache contention can degrade performance by interfering with efficient use of the instruction pipeline.
The split cache structure overcomes this difficulty.

Inclusion Policy

Recall from Chapter 4 that we defined the inclusion principle for memory hierarchies as follows: All
information items are originally stored in level Mn, where n is the level most remote from the processor
(lowest level). During the processing, subsets of Mn are copied into . Similarity, subsets of

 are copied into , and so on. This is expressed concisely as Mi . Thus, if a word is

found in Mi, then copies of the same word also exist in all lower layers . In a

multilevel cache environment, in which there may be multiple caches at one level that share the same
cache at the next lower level, inclusion between these two levels may not always be desirable. Three
inclusion policies are found in contemporary cache systems:

The inclusive policy dictates that a piece of data in one cache is guaranteed to be also found in all
lower levels of caches. The advantage of the inclusive policy is that it simplifies searching for data
when there are multiple processors in the computing system. For example, if one processor wants to
know whether another processor has the data it needs, it does not need to search all levels of caches
of that other processor but only the lowest-level cache. This property is useful in enforcing cache
coherence, which is discussed in Chapter 20.

The exclusive policy dictates that a piece of data in one cache is guaranteed not to be found in all
lower levels of caches. The advantage of the exclusive policy is that it does not waste cache capacity
since it does not store multiple copies of the same data in all of the caches. The disadvantage is the

Mn − 1

Mn − 1 Mn − 2 Mi + 1

Mi + 1 , Mi + 2 , … , Mn

need to search multiple cache levels when invalidating or updating a block. To minimize the search
time, the higher-level tag sets are typically duplicated at the lowest cache level to centralize searching.

With the noninclusive policy, a piece of data in one cache may or may not be found in lower levels
of caches. This can be contrasted with the other two policies with the following examples. Suppose
that the L2 line size is a multiple of the L1 line size. For the inclusive policy, if a block is evicted from
the L2 cache, the corresponding multiple blocks will be evicted from the L1 cache. In contrast, with a
noninclusive policy, the L1 cache my retain portions of a block recently evicted from the L2 cache. For
the same difference in block size, if a portion of a block is promoted from the L2 cache to the L1
cache, the exclusive policy requires the entire L2 block be evicted. In contrast, the noninclusive policy
does not require this eviction. As with the exclusive policy, a noninclusive policy will generally maintain
all higher-level cache sets at the lowest cache level.

5.3 Intel x86 Cache Organization
The evolution of cache organization is seen clearly in the evolution of Intel microprocessors (Table
5.4). The 80386 does not include an on- ​chip cache. The 80486 includes a single on- ​chip cache of 8
kB, using a line size of 16 bytes and a four- ​way set-​associative organization. All of the Pentium
processors include two on- ​chip L1 caches, one for data and one for instructions. For the Pentium 4,
the L1 data cache is 16 kB, using a line size of 64 bytes and a four- ​way set-​associative organization.
The Pentium 4 instruction cache is described subsequently. The Pentium II also includes an L2
cache that feeds both of the L1 caches. The L2 cache is eight- ​way set associative with a size of 512
kB and a line size of 128 bytes. An L3 cache was added for the Pentium III and became on- ​chip with
high- ​end versions of the Pentium 4.

Table 5.4 Intel Cache Evolution

Problem Solution Processor
on Which
Feature

First
Appears

External memory slower than the system bus. Add external cache using faster
memory technology.

386

Increased processor speed results in external bus
becoming a bottleneck for cache access.

Move external cache on- ​chip,
operating at the same speed as
the processor.

486

Internal cache is rather small, due to limited space
on chip.

Add external L2 cache using
faster technology than main
memory.

486

Contention occurs when both the Instruction
Prefetcher and the Execution Unit simultaneously
require access to the cache. In that case, the
Prefetcher is stalled while the Execution Unit’s data
access takes place.

Create separate data and
instruction caches.

Pentium

Increased processor speed results in external bus
becoming a bottleneck for L2 cache access.

Create separate back- ​side bus
that runs at higher speed than
the main (front-​side) external
bus. The BSB is dedicated to
the L2 cache.

Pentium
Pro

Move L2 cache on to the
processor chip.

Pentium II

Some applications deal with massive databases
and must have rapid access to large amounts of
data. The on-​chip caches are too small.

Add external L3 cache. Pentium
III

Move L3 cache on- ​chip. Pentium 4

Figure 5.17 provides a simplified view of the Pentium 4 organization, highlighting the placement of the
three caches. This cache architecture is similar to those of more modern x86 systems. The processor
core consists of four major components:

Fetch/decode unit: Fetches program instructions in order from the L2 cache, decodes these into a
series of micro-​operations, and stores the results in the L1 instruction cache.
Out-​of-​order execution logic: Schedules execution of the micro- ​operations subject to data
dependencies and resource availability; thus, micro- ​operations may be scheduled for execution in
a different order than they were fetched from the instruction stream. As time permits, this unit
schedules speculative execution of micro- ​operations that may be required in the future.
Execution units: These units execute micro- ​operations, fetching the required data from the L1
data cache and temporarily storing results in registers.
Memory subsystem: This unit includes the L2 and L3 caches and the system bus, which is used
to access main memory when the L1 and L2 caches have a cache miss and to access the system
I/O resources.

Figure 5.17 Pentium 4 Block Diagram

Unlike the organization used in all previous Pentium models, and in most other processors, the
Pentium 4 instruction cache sits between the instruction decode logic and the execution core. The
reasoning behind this design decision is as follows: As discussed more fully in Chapter 18, the
Pentium processor decodes, or translates, Pentium machine instructions into simple RISC- ​like
instructions called micro- ​operations. The use of simple, fixed- ​length micro- ​operations enables the use
of superscalar pipelining and scheduling techniques that enhance performance. However, the Pentium
machine instructions are cumbersome to decode; they have a variable number of bytes and many
different options. It turns out that performance is enhanced if this decoding is done independently of
the scheduling and pipelining logic. We return to this topic in Chapter 18.

The data cache employs a write- ​back policy: Data are written to main memory only when they are

removed from the cache and there has been an update. The Pentium 4 processor can be dynamically
configured to support write- ​through caching.

The L1 data cache is controlled by two bits in one of the control registers, labeled the CD (cache
disable) and NW (not write- ​through) bits (Table 5.5). There are also two Pentium 4 instructions that
can be used to control the data cache: INVD invalidates (flushes) the internal cache memory and
signals the external cache (if any) to invalidate. WBINVD writes back and invalidates internal cache
and then writes back and invalidates external cache.

Table 5.5 Pentium 4 Cache Operating Modes
Note: is an invalid combination.

Control Bits Operating Mode

CD NW Cache Fills Write Throughs Invalidates

0 0 Enabled Enabled Enabled

1 0 Disabled Enabled Enabled

1 1 Disabled Disabled Disabled

Both the L2 and L3 caches are eight- ​way set-​associative with a line size of 128 bytes.

CD = 0 ; NW = 1

5.4 The IBM z13 Cache Organization
The IBM z13 cache organization was introduced in Chapter 5. This section provides more detail.
Figure 5.18 illustrates the logical interconnections of the z13 cache system, showing the structure of a
single processor drawer. A maximum system, called a central processing complex (CPC) consists of
four drawers. Each drawer consists of two processor nodes, with each node containing 3 processor
unit (PU) chips and one storage control (SC) chip. Each PU includes up to 8 cores. The L1, L2, and L3
caches are contained on each PU chip, and a separate SC chip holds the L4 cache for a processor
node. Thus a maximum configuration contains 192 cores. Some key characteristics of each level are
as follows:

Figure 5.18 IBM z13 CPC Drawer Logical Structure

L1 cache: Each core contains a 96-kB L1 I-cache and a 128-kB D-cache, for a maximum total of
18 MB of L1 I-cache and 24 MB of L1 D-cache. The L1 caches are designed as write-through
caches.
L2 cache: Each core contains a 2-MB L2 I-cache and a 2-MB L2 D-cache, for a maximum total of
384 MB of L2 I-cache and 384 MB of L2 D-cache. The L2 caches are designed as write-through
caches.
L3 cache: Each PU chip contains a 64-MB L3 cache, for a maximum total of 1.5 GB of L3 cache.
The L3 cache is 16-way set associative and uses a line size of 256 bytes. The L3 cache uses the
write-back policy.
L4 cache: Each processor node contains a 480-MB L4 cache for a maximum total of 3.75 GB of
L4 cache. The L4 cache is organized as a 30-way set-associative cache. The L4 cache uses the
write-back policy.

The use of an L3 cache that is shared by 8 cores on a chip facilitates low-latency cross-processor
cache line sharing and provides cache efficiency effects by elimination of redundant lines (single copy,
multiple users), which is not possible with private caches. Thus, there are efficiency gains by devoting
a substantial portion of each PU chip to a shared L3 cache as opposed to either increasing the size of

the L2 caches or providing private L3 caches for each core.

There are also efficiency benefits from providing an L4 cache chip on the same processor node, or
motherboard, as the PU chips. The L4 cache enables smooth scaling from a single processor chip to
a maximum system configuration by providing a significant buffer before main memory.

The interconnection design contributes to the overall efficiency of this arrangement. Within each PU
chip, 160-GB/s bus bandwidth is used between L1/L2 and L2/L3 cache boundaries. The 80-GB/s
XBus provides tightly coupled interconnection within a node at the L3/L4 cache boundary. The high-
speed S-Bus connects via L4 between the nodes of a drawer, and A-Bus connections are provide to
other drawers.

The cache write policy is tailored to the configuration. The L1 and L2 caches are write-through, taking
advantage of the high-speed on-chip connection to the next cache level. Further, the L3 cache is most
efficiently used if it always maintains the most recent version of any L2 cache line. Going from L3 to
L4 is a lower speed, off-chip transmission and here a write-back policy is preferred to minimize traffic.
Similarly, write-back is preferred going from L4 to main memory.

5.5 Cache Performance Models
 Used with permission from Professor Roger Kieckhafer of Michigan Technological University.

This section looks first at the cache timing of the different cache access organizations, then at a model
of design options for improving performance.

Cache Timing Model

We can derive some insight into the timing differences between the different cache access models by
developing equations that show the different time delays. The following parameters are needed:

t = time needed to compare the tag field of an address with the tag value in a cache line.

t = time needed to read a line from the cache to retrieve the data block in the cache.

t = time needed to transmit byte or word to the processor; this includes extracting the desired bytes
from the fetched line and gating these bytes onto the bus to the processor.

t = time expended at this cache level in the event of a hit.

t = time expended at this cache level in the event of a miss.

First consider direct-mapped cache access. The first operation is checking the Tag field of an address
against the tag value in the line designated by the Line field. If there is not a match (miss), then the
operation is complete. If there is a match (hit), then the cache hardware reads the data block from the
line in the cache and then fetches the byte or word indicated by the Offset field of the address. The
timing equations therefore are:

One of the advantages of a direct-mapped cache is that it allows simple and fast speculation. Once
the address has been computed, the one cache line that might have a copy of that location in memory
is known. That cache entry can be read, and the processor can continue to work with that data before
it finishes checking that the tag actually matches the requested address. Thus checking and fetching
are performed in parallel. Assuming the fetch time is larger, the timing equations become:

Next, consider a fully associative cache. In this case, the line number is not known until the tag
comparison is completed. So the hit time is the same as for direct-mapped. Because this is a content-
addressable memory, the miss time is simply the tag comparison time. That is, the tag comparison is
made without the need to read a line of data from the cache, but is made in parallel to all of the lines
of the cache internally to the cache. The equations in this case:

With set associative, it is not possible to transmit bytes and compare tags in parallel as can be done
with direct-mapped with speculative access. However, the circuitry can be designed so that the data
block from each line in a set can be loaded and then transmitted once the tag check is made. This
yields the equation pair of Equation 5.1.

6

6

ct

rl

xb

hit

miss

thit = trl + txb + tct tmiss = trl + tct (5.1)

thit = trl + txb tmiss = trl + tct (5.2)

thit = trl + txb + tct tmiss = tct (5.3)

If set associative is augmented with way prediction, then the following equations hold:

where is the fraction of time that the way prediction succeeds. Note that for set associative
with way prediction reduces to the same equations as direct-mapped with speculative access, which is
the best case. For the results are the same as without way prediction, which is the worst case.
The prediction scheme typically used is to predict that the requested data is contained in the last block
used from this set. If there is a high degree of spatial locality, then will be close to 1.

Table 5.6 summarizes the cache timing equations.

Table 5.6 Cache Timing Equations

Time for hit Time for miss

Direct-Mapped

Direct-Mapped with Speculation

Fully Associative

Set-Associative

Set-Associative with Way Prediction

Design Option for Improving Performance

Equation 4.5 expressed the mean time to access data in a memory hierarchy as follows:

where

thit = trl + txb + (1 − Fp) tct tmiss = trl + tct (5.4)

Fp Fp = 1,

Fp = 0,

Fp

thit = trl + txb + tct tmiss = trl + tct

thit = trl + txb tmiss = trl + tct

thit = trl + txb + tct tmiss = tct

thit = trl + txb + tct tmiss = trl + tct

thit = trl + txb + (1 − Fp) tct tmiss = trl + tct

Ts = ∑
all paths

[Probability of taking a path × Duration of that a path]

= ∑
all paths

⎢⎢⎢⎢⎢ ∏ (All probabilities in the path) × ∑ (All times in that path)
⎥⎥⎥⎥⎥

= n∑
i = 1

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

i − 1∏
j = 0

(1 − hj) hI × tI

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥

⎡
⎣

⎤
⎦

⎡

⎣

⎤

⎦

n = Number of levels of memory.
ti = Total time needed to access data in level M

i= The sum of all times in the path to a hit in level M
ihi = Hit ratio of level M

i
= Conditional probability that the data for a memory access is resident in
level M

i
 given that it is not resident in Mi − 1

TS = Mean time needed to access data

This can be rearranged to show the contribution of level explicitly:

where is the mean time to access data if there is a miss at level Note that is the same

quantity as defined at the beginning of this section, because we are referring to level

Equation 5.3 provides insight into the approaches that can be taken to improve performance by
showing three distinct parameters that can be altered. The value of can be reduced by one of the
following methods: reduce the hit time reduce the miss rate and reduce the miss penalty

 The following is a list of widely used techniques that can be used to reduce one of these
parameters (Table 5.7):

Table 5.7 Cache Performance Improvement Techniques

Technique Reduce Reduce Reduce

Way Prediction

Cache Capacity Small Large

Line Size Small Large

Degree of Associativity Decrease Increase

More Flexible Replacement
Policies

Cache Unity Split I-cache and D-
cache

Unified cache

Prefetching

Write Through Write allocate No write
allocate

Critical Word First

Victim Cache

Wider Busses

M
1

Ts =

h1 × t1 + (1 − h1) n∑
i = 2

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢

i − 1∏
j = 2

(1 − hj) h1 × ti

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥
= h1 × t1 + (1 − h1) tpenalty

⎡

⎣

⎤

⎦

(5.3)

tpenalty M1. t1
thit M1.

Ts
t1, (1 − h1) ,

tpenalty .

t1 (1 − h1)
tpenalty

For a set-associative cache, the use of way prediction reduces (Table 5.6).
The access time for a smaller, more compact cache is less than for a larger cache, reducing
On the other hand, in general, the larger the cache, the smaller the miss rate.
Increasing the line size can decrease the miss rate because of spatial locality. However, a larger
line size means that more time is spent bringing in a line on a miss. But the chance that the
additional data brought into the cache by the larger line size will be used goes does down with the
increased distance between addresses in the line. At some point, the amount of time spent fetching
data that is not used into the cache becomes greater than the time saved through increasing the hit
rate.
The direct-mapped cache with speculation has the smallest value of and the fully associative
cache has the largest (Table 5.6). On the other hand, increasing the associativity of a cache can
reduce its miss rate by reducing the number of conflict misses—misses that occur because more
lines compete for a set in the cache than can fit in the set.
If a cache is split between I-cache and D-cache, each cache is smaller, therefore reducing But
for the overall miss rate including instructions and data, a unified cache is likely to provide a
reduced miss rate.
The prefetching of blocks whose access is predicted for the near future can reduce
If write through is used with write allocate, the miss rate should be lower than write through, no
write allocate. This is because the block that caused the cache miss is now in the cache and it is
likely that future writes or perhaps reads will be to the same block. But, if no write allocate is used,
then the time to complete the operation is less, reducing
The use of the critical word first policy reduces the miss penalty by getting the request word to the
processor as quickly as possible, not waiting for a cache line to be filled.
As discussed in Section 5.2, a victim cache can be used to reduce the miss penalty.

A wider memory bus enables the transmission of more words in parallel between main memory and
the cache, reducing the number of transfers required to load an entire cache block. This reduces the
miss penalty time.

thit

thit .

thit ,

thit .

thit .

tpenalty .

5.6 Key Terms, Review Questions, and Problems

Key Terms

associative mapping

cache block

cache hit

cache line

cache memory

cache miss

cache set

content-addressable memory

critical word first

data cache

direct mapping

dirty bit

frame

instruction cache

line

line size

logical cache

multilevel cache

no write allocate

physical cache

replacement algorithm

set-​associative mapping

split cache

tag

unified cache

use bit

victim cache

virtual cache

write allocate

write back

write through

Review Questions

Problems

5.1 What are the differences among direct mapping, associative mapping, and set- ​associative
mapping?
5.2 What is the difference between associative cache memory and content-addressable
memory?
5.3 For a direct-​mapped cache, a main memory address is viewed as consisting of three fields.
List and define the three fields.
5.4 For an associative cache, a main memory address is viewed as consisting of two fields. List
and define the two fields.
5.5 For a set-​associative cache, a main memory address is viewed as consisting of three fields.
List and define the three fields.
5.6 What is the distinction between spatial locality and temporal locality?
5.7 In general, what are the strategies for exploiting spatial locality and temporal locality?

5.1 A cache has a line size of 64 bytes. To determine which byte within a cache line an address
points to, how many bits are in the Offset field?
5.2 A set-​associative cache consists of 64 lines, or slots, divided into four- ​line sets. Main
memory contains 4K blocks of 128 words each. Show the format of main memory addresses.
5.3 A two-​way set-​associative cache has lines of 16 bytes and a total size of 8 kB. The 64-MB
main memory is byte addressable. Show the format of main memory addresses.
5.4 For the hexadecimal main memory addresses 111111, 666666, BBBBBB, show the
following information, in hexadecimal format:

a. Tag, Line, and Word values for a direct- ​mapped cache, using the format of Figure 5.7
b. Tag and Word values for an associative cache, using the format of Figure 5.10
c. Tag, Set, and Word values for a two-​way set-​associative cache, using the format of

Figure 5.13

5.5 List the following values:
a. For the direct cache example of Figure 5.7 : address length, number of addressable

units, block size, number of blocks in main memory, number of lines in cache, size of tag
b. For the associative cache example of Figure 5.10 : address length, number of

addressable units, block size, number of blocks in main memory, number of lines in
cache, size of tag

c. For the two-​way set-​associative cache example of Figure 5.13 : address length, number
of addressable units, block size, number of blocks in main memory, number of lines in
set, number of sets, number of lines in cache, size of tag

5.6 Consider a 32-bit microprocessor that has an on- ​chip 16-kB four- ​way set-​associative cache.
Assume that the cache has a line size of four 32-bit words. Draw a block diagram of this cache
showing its organization and how the different address fields are used to determine a cache
hit/miss. Where in the cache is the word from memory location ABCDE8F8 mapped?
5.7 Given the following specifications for an external cache memory: four- ​way set associative;
line size of two 16-bit words; able to accommodate a total of 4K 32-bit words from main
memory; used with a 16-bit processor that issues 24-bit addresses. Design the cache structure

with all pertinent information and show how it interprets the processor’s addresses.
5.8 The Intel 80486 has an on- ​chip, unified cache. It contains 8 kB and has a four- ​way
set-​associative organization and a block length of four 32-bit words. The cache is organized into
128 sets. There is a single “line valid bit” and three bits, B0, B1, and B2 (the “LRU” bits), per
line. On a cache miss, the 80486 reads a 16-byte line from main memory in a bus memory read
burst. Draw a simplified diagram of the cache and show how the different fields of the address
are interpreted.
5.9 Consider a machine with a byte addressable main memory of bytes and block size of 8
bytes. Assume that a direct mapped cache consisting of 32 lines is used with this machine.

a. How is a 16-bit memory address divided into tag, line number, and byte number?
b. Into what line would bytes with each of the following addresses be stored?

0001 0001 0001 1011

1100 0011 0011 0100

1101 0000 0001 1101

1010 1010 1010 1010

c. Suppose the byte with address 0001 1010 0001 1010 is stored in the cache. What are
the addresses of the other bytes stored along with it?

d. How many total bytes of memory can be stored in the cache?
e. Why is the tag also stored in the cache?

5.10 For its on-​chip cache, the Intel 80486 uses a replacement algorithm referred to as pseudo
least recently used. Associated with each of the 128 sets of four lines (labeled L0, L1, L2, L3)
are three bits B0, B1, and B2. The replacement algorithm works as follows: When a line must
be replaced, the cache will first determine whether the most recent use was from L0 and L1 or
L2 and L3. Then the cache will determine which of the pair of blocks was least recently used
and mark it for replacement. Figure 5.19 illustrates the logic.

a. Specify how the bits B0, B1, and B2 are set and then describe in words how they are
used in the replacement algorithm depicted in Figure 5.19 .

b. Show that the 80486 algorithm approximates a true LRU algorithm. Hint: Consider the
case in which the most recent order of usage is L0, L2, L3, L1.

c. Demonstrate that a true LRU algorithm would require 6 bits per set.

216

Figure 5.19 Intel 80486 On-​Chip Cache Replacement Strategy

5.11 A set-​associative cache has a block size of four 16-bit words and a set size of 2. The
cache can accommodate a total of 4096 words. The main memory size that is cacheable is

 bits. Design the cache structure and show how the processor’s addresses are
interpreted.
5.12 Consider a memory system that uses a 32-bit address to address at the byte level, plus a
cache that uses a 64-byte line size.

a. Assume a direct mapped cache with a tag field in the address of 20 bits. Show the
address format and determine the following parameters: number of addressable units,
number of blocks in main memory, number of lines in cache, size of tag.

b. Assume an associative cache. Show the address format and determine the following
parameters: number of addressable units, number of blocks in main memory, number of
lines in cache, size of tag.

c. Assume a four-​way set-​associative cache with a tag field in the address of 9 bits. Show
the address format and determine the following parameters: number of addressable units,
number of blocks in main memory, number of lines in set, number of sets in cache,
number of lines in cache, size of tag.

5.13 Consider a computer with the following characteristics: total of 1 MB of main memory; word
size of 1 byte; block size of 16 bytes; and cache size of 64 kB.

a. For the main memory addresses of F0010, 01234, and CABBE, give the corresponding
tag, cache line address, and word offsets for a direct- ​mapped cache.

b. Give any two main memory addresses with different tags that map to the same cache slot
for a direct-​mapped cache.

c. For the main memory addresses of F0010 and CABBE, give the corresponding tag and
offset values for a fully-​associative cache.

d. For the main memory addresses of F0010 and CABBE, give the corresponding tag,
cache set, and offset values for a two-​way set-​associative cache.

5.14 Describe a simple technique for implementing an LRU replacement algorithm in a four- ​way
set-​associative cache.

64K × 32

5.15 Consider again Example 5.2 . How does the answer change if the main memory uses a
block transfer capability that has a first- ​word access time of 30 ns and an access time of 5 ns
for each word thereafter?
A computer system contains a main memory of 32K 16-bit words. It also has a 4K word cache
divided into four- ​line sets with 64 words per line. Assume that the cache is initially empty. The
processor fetches words from locations 0, 1, 2, . . . , 4351 in that order. It then repeats this fetch
sequence nine more times. The cache is 10 times faster than main memory. Estimate the
improvement resulting from the use of the cache. Assume an LRU policy for block replacement.
5.16 Consider a cache of 4 lines of 16 bytes each. Main memory is divided into blocks of 16
bytes each. That is, block 0 has bytes with addresses 0 through 15, and so on. Now consider a
program that accesses memory in the following sequence of addresses:
Once: 63 through 70.
Loop ten times: 15 through 32; 80 through 95.

a. Suppose the cache is organized as direct mapped. Memory blocks 0, 4, and so on are
assigned to line 1; blocks 1, 5, and so on to line 2; and so on. Compute the hit ratio.

b. Suppose the cache is organized as two- ​way set associative, with two sets of two lines
each. Even-​numbered blocks are assigned to set 0 and odd- ​numbered blocks are
assigned to set 1. Compute the hit ratio for the two- ​way set-​associative cache using the
least recently used replacement scheme.

5.17 Consider a cache with a line size of 64 bytes. Assume that on average 30% of the lines in
the cache are dirty. A word consists of 8 bytes.

a. Assume there is a 3% miss rate (0.97 hit ratio). Compute the amount of main memory
traffic, in terms of bytes per instruction for both write-​through and write- ​back policies.
Memory is read into cache one line at a time. However, for write back, a single word can
be written from cache to main memory.

b. Repeat part a for a 5% rate.
c. Repeat part a for a 7% rate.
d. What conclusion can you draw from these results?

5.18 The level below a cache in the memory hierarchy requires 60 ns to read or write a word of
data. If the cache line size is 8 words, how many times does the average line have to be written
(counting only lines that are written at least once) before a write-back cache is more efficient
than a write-through cache?

Chapter 6 Internal Memory

6.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Present an overview of the principle types of semiconductor main memory.
Understand the operation of a basic code that can detect and correct single-bit errors in 8-bit
words.
Summarize the properties of contemporary DDR DRAM organizations.
Understand the difference between NOR and NAND flash memory.
Present an overview of the newer nonvolatile solid-state memory technologies.

We begin this chapter with a survey of semiconductor main memory subsystems,

6.1 Semiconductor Main Memory
Organization
DRAM and SRAM
Types of ROM
Chip Logic
Chip Packaging
Module Organization
Interleaved Memory

6.2 Error Correction
6.3 DDR DRAM

Synchronous DRAM
DDR SDRAM

6.4 eDRAM
IBM z13 eDRAM Cache Structure
Intel Core System Cache Structure

6.5 Flash Memory
Operation
NOR and NAND Flash Memory

6.6 Newer Nonvolatile Solid-State Memory Technologies
STT-RAM
PCRAM
ReRAM

including ROM, DRAM, and SRAM memories. Then we look at error control
techniques used to enhance memory reliability. Following this, we look at more
advanced DRAM architectures.

6.1 Semiconductor Main Memory
In earlier computers, the most common form of random-access storage for computer main memory
employed an array of doughnut-shaped ferromagnetic loops referred to as cores. Hence, main
memory was often referred to as core, a term that persists to this day. The advent of, and advantages
of, microelectronics has long since vanquished the magnetic core memory. Today, the use of
semiconductor chips for main memory is almost universal. Key aspects of this technology are
explored in this section.

Organization

The basic element of a semiconductor memory is the memory cell. Although a variety of
electronic technologies are used, all semiconductor memory cells share certain properties:

They exhibit two stable (or semistable) states, which can be used to represent binary 1 and 0.
They are capable of being written into (at least once), to set the state.
They are capable of being read to sense the state.

Figure 6.1 depicts the operation of a memory cell. Most commonly, the cell has three functional
terminals capable of carrying an electrical signal. The select terminal, as the name suggests, selects a
memory cell for a read or write operation. The control terminal indicates read or write. For writing, the
other terminal provides an electrical signal that sets the state of the cell to 1 or 0. For reading, that
terminal is used for output of the cell’s state. The details of the internal organization, functioning, and
timing of the memory cell depend on the specific integrated circuit technology used and are beyond
the scope of this book, except for a brief summary. For our purposes, we will take it as given that
individual cells can be selected for reading and writing operations.

Figure 6.1 Memory Cell Operation

DRAM and SRAM

All of the memory types that we will explore in this chapter are random access. That is, individual
words of memory are directly accessed through wired-in addressing logic.

Table 6.1 lists the major types of semiconductor memory. The most common is referred to as
random-access memory (RAM) . This is, in fact, a misuse of the term, because all of the types
listed in the table are random access. One distinguishing characteristic of memory that is designated
as RAM is that it is possible both to read data from the memory and to write new data into the memory
easily and rapidly. Both the reading and writing are accomplished through the use of electrical signals.

Table 6.1 Semiconductor Memory Types

Memory Type Category Erasure Write
Mechanism

Volatility

Random-access memory
(RAM)

Read-write
memory

Electrically, byte-
level

Electrically Volatile

Read-only memory (ROM) Read-only
memory

Not possible Masks Nonvolatile

Programmable ROM (PROM) Electrically

Erasable PROM (EPROM) UV light, chip-
level

Electrically Erasable PROM
(EEPROM)

Read-mostly
memory

Electrically, byte-
level

Flash memory Electrically,
block-level

The other distinguishing characteristic of traditional RAM is that it is volatile. A RAM must be provided
with a constant power supply. If the power is interrupted, then the data are lost. Thus, RAM can be
used only as temporary storage. The two traditional forms of RAM used in computers are DRAM and
SRAM. Newer forms of RAM, discussed in Section 6.5, are nonvolatile.

DYNAMIC RAM

RAM technology is divided into two technologies: dynamic and static. A dynamic RAM (DRAM) is
made with cells that store data as charge on capacitors. The presence or absence of charge in a
capacitor is interpreted as a binary 1 or 0. Because capacitors have a natural tendency to discharge,
dynamic

RAMs require periodic charge refreshing to maintain data storage. The term dynamic refers to this
tendency of the stored charge to leak away, even with power continuously applied.

Figure 6.2a is a typical DRAM structure for an individual cell that stores one bit. The address line is
activated when the bit value from this cell is to be read or written. The transistor acts as a switch that
is closed (allowing current to flow) if a voltage is applied to the address line and open (no current
flows) if no voltage is present on the address line.

Figure 6.2 Typical Memory Cell Structures

For the write operation, a voltage signal is applied to the bit line; a high voltage represents 1, and a
low voltage represents 0. A signal is then applied to the address line, allowing a charge to be
transferred to the capacitor.

For the read operation, when the address line is selected, the transistor turns on and the charge
stored on the capacitor is fed out onto a bit line and to a sense amplifier. The sense amplifier
compares the capacitor voltage to a reference value and determines if the cell contains a logic 1 or a
logic 0. The readout from the cell discharges the capacitor, which must be restored to complete the
operation.

Although the DRAM cell is used to store a single bit (0 or 1), it is essentially an analog device. The
capacitor can store any charge value within a range; a threshold value determines whether the charge
is interpreted as 1 or 0.

STATIC RAM

In contrast, a static RAM (SRAM) is a digital device that uses the same logic elements used in the
processor. In a SRAM, binary values are stored using traditional flip-flop logic-gate configurations (see
Chapter 12 for a description of flip-flops). A static RAM will hold its data as long as power is supplied
to it.

Figure 6.2b is a typical SRAM structure for an individual cell. Four transistors are
cross connected in an arrangement that produces a stable logic state. In logic state 1, point is high
and point is low; in this state, and are off and and are on. In logic state 0, point is
low and point is high; in this state, and are on and and are off. Both states are stable

(T1 , T2 , T3 , T4)
C1

C2 T1 T4 T2 T3
1 C1

C2 T1 T4 T2 T3

as long as the direct current (dc) voltage is applied. Unlike the DRAM, no refresh is needed to retain
data.

 The circles associated with and in Figure 6.2b indicate signal negation.

As in the DRAM, the SRAM address line is used to open or close a switch. The address line controls
two transistors (and). When a signal is applied to this line, the two transistors are switched on,
allowing a read or write operation. For a write operation, the desired bit value is applied to line B, while
its complement is applied to line . This forces the four transistors into the proper
state. For a read operation, the bit value is read from line B.

SRAM VERSUS DRAM

Both static and dynamic RAMs are volatile; that is, power must be continuously supplied to the
memory to preserve the bit values. A dynamic memory cell is simpler and smaller than a static
memory cell. Thus, a DRAM is more dense and less expensive
than a corresponding SRAM. On the other hand, a DRAM requires the supporting refresh circuitry. For
larger memories, the fixed cost of the refresh circuitry is more than compensated for by the smaller
variable cost of DRAM cells. Thus, DRAMs tend to be favored for large memory requirements. A final
point is that SRAMs are somewhat faster than DRAMs. Because of these relative characteristics,
SRAM is used for cache memory (both on and off chip), and DRAM is used for main memory.

Types of ROM

As the name suggests, a read-only memory (ROM) contains a permanent pattern of data that
cannot be changed. A ROM is nonvolatile; that is, no power source is required to maintain the bit
values in memory. While it is possible to read a ROM, it is not possible to write new data into it. An
important application of ROMs is microprogramming, discussed in Part Four. Other potential
applications include

Library subroutines for frequently wanted functions
System programs
Function tables

For a modest-sized requirement, the advantage of ROM is that the data or program is permanently in
main memory and need never be loaded from a secondary storage device.

A ROM is created like any other integrated circuit chip, with the data actually wired into the chip as
part of the fabrication process. This presents two problems:

The data insertion step includes a relatively large fixed cost, whether one or thousands of copies of
a particular ROM are fabricated.
There is no room for error. If one bit is wrong, the whole batch of ROMs must be thrown out.

When only a small number of ROMs with a particular memory content is needed, a less expensive
alternative is the programmable ROM (PROM) . Like the ROM, the PROM is nonvolatile and may
be written into only once. For the PROM, the writing process is performed electrically and may be
performed by a supplier or customer at a time later than the original chip fabrication. Special
equipment is required for the writing or “programming” process. PROMs provide flexibility and
convenience. The ROM remains attractive for high-volume production runs.

Another variation on read-only memory is the read-mostly memory, which is useful for applications in

1 T3 T4

T5 T6

B̄ (T1 , T2 , T3 , T4)

(smaller cells = more cells per unit area)

which read operations are far more frequent than write operations but for which nonvolatile storage is
required. There are three common forms of read-mostly memory: EPROM, EEPROM, and flash
memory.

The optically erasable programmable read-only memory (EPROM) is read and written electrically,
as with PROM. However, before a write operation, all the storage cells must be erased to the same
initial state by exposure of the packaged chip to ultraviolet radiation. Erasure is performed by shining
an intense ultraviolet light through a window that is designed into the memory chip. This erasure
process can be performed repeatedly; each erasure can take as much as 20 minutes to perform.
Thus, the EPROM can be altered multiple times and, like the ROM and PROM, holds its data virtually
indefinitely. For comparable amounts of storage, the EPROM is more expensive than PROM, but it
has the advantage of the multiple update capability.

A more attractive form of read-mostly memory is electrically erasable programmable read-only
memory (EEPROM). This is a read-mostly memory that can be written into at any time without
erasing prior contents; only the byte or bytes addressed are updated. The write operation takes
considerably longer than the read operation, on the order of several hundred microseconds per byte.
The EEPROM combines the advantage of nonvolatility with the flexibility of being updatable in place,
using ordinary bus control, address, and data lines. EEPROM is more expensive than EPROM and
also is less dense, supporting fewer bits per chip.

Another form of semiconductor memory is flash memory (so named because of the speed with which
it can be reprogrammed). First introduced in the mid-1980s, flash memory is intermediate between
EPROM and EEPROM in both cost and functionality. Like EEPROM, flash memory uses an electrical
erasing technology. An entire flash memory can be erased in one or a few seconds, which is much
faster than EPROM. In addition, it is possible to erase just blocks of memory rather than an entire
chip. Flash memory gets its name because the microchip is organized so that a section of memory
cells are erased in a single action or “flash.” However, flash memory does not provide byte-level
erasure. Like EPROM, flash memory uses only one transistor per bit, and so achieves the high density
(compared with EEPROM) of EPROM.

Chip Logic

As with other integrated circuit products, semiconductor memory comes in packaged chips (Figure
1.10). Each chip contains an array of memory cells.

In the memory hierarchy as a whole, we saw that there are trade-offs among speed, density, and cost.
These trade-offs also exist when we consider the organization of memory cells and functional logic on
a chip. For semiconductor memories, one of the key design issues is the number of bits of data that
may be read/written at a time. At one extreme is an organization in which the physical arrangement of
cells in the array is the same as the logical arrangement (as perceived by the processor) of words in
memory. The array is organized into W words of B bits each. For example, a 16-Mbit chip could be
organized as 1M 16-bit words. At the other extreme is the so-called 1-bit-per-chip organization, in
which data are read/written one bit at a time. We will illustrate memory chip organization with a DRAM;
ROM organization is similar, though simpler.

Figure 6.3 shows a typical organization of a 16-Mbit DRAM. In this case, 4 bits are read or written at a
time. Logically, the memory array is organized as four square arrays of 2048 by 2048 elements.
Various physical arrangements are possible. In any case, the elements of the array are connected by
both horizontal (row) and vertical (column) lines. Each horizontal line connects to the Select terminal
of each cell in its row; each vertical line connects to the Data-In/Sense terminal of each cell in its
column.

Figure 6.3 Typical 16-Mbit DRAM

Address lines supply the address of the word to be selected. A total of W lines are needed. In our
example, 11 address lines are needed to select one of 2048 rows. These 11 lines are fed into a row
decoder, which has 11 lines of input and 2048 lines for output. The logic of the decoder activates a
single one of the 2048 outputs depending on the bit pattern on the 11 input lines .

An additional 11 address lines select one of 2048 columns of 4 bits per column. Four data lines are
used for the input and output of 4 bits to and from a data buffer. On input (write), the bit driver of each
bit line is activated for a 1 or 0 according to the value of the corresponding data line. On output (read),
the value of each bit line is passed through a sense amplifier and presented to the data lines. The row
line selects which row of cells is used for reading or writing.

Because only 4 bits are read/written to this DRAM, there must be multiple DRAMs connected to the
memory controller to read/write a word of data to the bus.

Note that there are only 11 address lines (A0–A10), half the number you would expect for a
 array. This is done to save on the number of pins. The 22 required address lines are

passed through select logic external to the chip and multiplexed onto the 11 address lines. First, 11
address signals are passed to the chip to define the row address of the array, and then the other 11
address signals are presented for the column address. These signals are accompanied by row
address select and column address select signals to provide timing to the chip.

(4M × 4)

log2

(211 = 2048)

2048 × 2048

(¯RAS) (¯CAS)

The write enable and output enable pins determine whether a write or read operation is

performed. Two other pins, not shown in Figure 6.3, are ground (Vss) and a voltage source (Vcc).

As an aside, multiplexed addressing plus the use of square arrays result in a quadrupling of memory
size with each new generation of memory chips. One more pin devoted to addressing doubles the
number of rows and columns, and so the size of the chip memory grows by a factor of 4.

Figure 6.3 also indicates the inclusion of refresh circuitry. All DRAMs require a refresh operation. A
simple technique for refreshing is, in effect, to disable the DRAM chip while all data cells are
refreshed. The refresh counter steps through all of the row values. For each row, the output lines from
the refresh counter are supplied to the row decoder and the RAS line is activated. The data are read
out and written back into the same location. This causes each cell in the row to be refreshed.

Chip Packaging

As was mentioned in Chapter 2 , an An integrated circuit is mounted on a package that contains pins
for connection to the outside world.

Figure 6.4a shows an example EPROM package, which is an 8-Mbit chip organized as In this

case, the organization is treated as a one-word-per-chip package. The package includes 32 pins,
which is one of the standard chip package sizes. The pins support the following signal lines:

The address of the word being accessed. For 1M words, a total of pins are needed

(A0–A19).
The data to be read out, consisting of 8 lines (D0–D7).
The power supply to the chip .
A ground pin .
A chip enable (CE) pin. Because there may be more than one memory chip, each of which is
connected to the same address bus, the CE pin is used to indicate whether or not the address is
valid for this chip. The CE pin is activated by logic connected to the higher-order bits of the address
bus (i.e., address bits above A19). The use of this signal is illustrated presently.
A program voltage that is supplied during programming (write operations).

A typical DRAM pin configuration is shown in Figure 6.4b , for a 16-Mbit chip organized as

There are several differences from a ROM chip. Because a RAM can be updated, the data pins are
input/output. The write enable (WE) and output enable (OE) pins indicate whether this is a write or
read operation. Because the DRAM is accessed by row and column, and the address is multiplexed,
only 11 address pins are needed to specify the 4M row/column combinations

The functions of the row address select (RAS) and column address select (CAS) pins were discussed
previously. Finally, the no connect (NC) pin is provided so that there are an even number of pins.

(W̄E) (ŌE)

1M × 8.

20 (220 = 1M)

(Vcc)

(Vss)

(Vpp)

4M × 4.

(211 × 211 = 222 = 4M) .

Figure 6.4 Typical Memory Package Pins and Signals

Module Organization

If a RAM chip contains only one bit per word, then clearly we will need at least a number of chips
equal to the number of bits per word. As an example, Figure 6.5 shows how a memory module
consisting of 256K 8-bit words could be organized. For 256K words, an 18-bit address is needed and
is supplied to the module from some external source (e.g., the address lines of a bus to which the
module is attached). The address is presented to chips, each of which provides the
input/output of one bit.

8256K × 1-bit

Figure 6.5 256-KByte Memory Organization

This organization works as long as the size of memory in words equals the number of bits per chip. In
the case in which larger memory is required, an array of chips is needed. Figure 6.6 shows the
possible organization of a memory consisting of 1M word by 8 bits per word. In this case, we have four
columns of chips, each column containing 256K words arranged as in Figure 6.5 . For 1M word, 20
address lines are needed. The 18 least significant bits are routed to all 32 modules. The high-order 2
bits are input to a group select logic module that sends a chip enable signal to one of the four columns
of modules.

Figure 6.6 1-MB Memory Organization

Interleaved Memory

Main memory is composed of a collection of DRAM memory chips. A number of chips can be grouped
together to form a memory bank. It is possible to organize the memory banks in a way known as
interleaved memory. Each bank is independently able to service a memory read or write request, so
that a system with K banks can service K requests simultaneously, increasing memory read or write
rates by a factor of K. If consecutive words of memory are stored in different banks, then the transfer
of a block of memory is speeded up. Appendix C explores the topic of interleaved memory.

Aleksandr Lukin/123RF

Interleaved Memory Simulator

6.2 Error Correction
A semiconductor memory system is subject to errors. These can be categorized as hard failures and
soft errors. A hard failure is a permanent physical defect so that the memory cell or cells affected
cannot reliably store data but become stuck at 0 or 1 or switch erratically between 0 and 1. Hard
errors can be caused by harsh environmental abuse, manufacturing defects, and wear. A soft error is
a random, nondestructive event that alters the contents of one or more memory cells without
damaging the memory. Soft errors can be caused by power supply problems or alpha particles. These
particles result from radioactive decay and are distressingly common because radioactive nuclei are
found in small quantities in nearly all materials. Both hard and soft errors are clearly undesirable, and
most modern main memory systems include logic for both detecting and correcting errors.

Figure 6.7 illustrates in general terms how the process is carried out. When data are to be written into
memory, a calculation, depicted as a function f, is performed on the data to produce a code. Both the
code and the data are stored. Thus, if an M-bit word of data is to be stored and the code is of length K
bits, then the actual size of the stored word is bits.

Figure 6.7 Error-Correcting Code Function

When the previously stored word is read out, the code is used to detect and possibly correct errors. A
new set of K code bits is generated from the M data bits and compared with the fetched code bits. The
comparison yields one of three results:

No errors are detected. The fetched data bits are sent out.
An error is detected, and it is possible to correct the error. The data bits plus error correction bits
are fed into a corrector, which produces a corrected set of M bits to be sent out.
An error is detected, but it is not possible to correct it. This condition is reported.

Codes that operate in this fashion are referred to as error-correcting codes . A code is
characterized by the number of bit errors in a word that it can correct and detect.

The simplest of the error-correcting codes is the Hamming code devised by Richard Hamming at Bell
Laboratories. Figure 6.8 uses Venn diagrams to illustrate the use of this code on 4-bit words

M + K

(M = 4).

With three intersecting circles, there are seven compartments. We assign the 4 data bits to the inner
compartments (Figure 6.8a). The remaining compartments are filled with what are called parity bits.
Each parity bit is chosen so that the total number of 1s in its circle is even (Figure 6.8b). Thus,
because circle A includes three data 1s, the parity bit in that circle is set to 1. Now, if an error changes
one of the data bits (Figure 6.8c), it is easily found. By checking the parity bits, discrepancies are
found in circle A and circle C but not in circle B. Only one of the seven compartments is in A and C but
not B (Figure 6.8d). The error can therefore be corrected by changing that bit.

Figure 6.8 Hamming Error-Correcting Code

To clarify the concepts involved, we will develop a code that can detect and correct single-bit errors in
8-bit words.

To start, let us determine how long the code must be. Referring to Figure 6.7, the comparison logic
receives as input two K-bit values. A bit-by-bit comparison is done by taking the exclusive-OR of the
two inputs. The result is called the syndrome word. Thus, each bit of the syndrome is 0 or 1
according to if there is or is not a match in that bit position for the two inputs.

The syndrome word is therefore K bits wide and has a range between 0 and The value 0
indicates that no error was detected, leaving values to indicate, if there is an error, which bit
was in error. Now, because an error could occur on any of the M data bits or K check bits, we must
have

This inequality gives the number of bits needed to correct a single bit error in a word containing M

2
K

− 1.
2

K
− 1

2
K

− 1 ≥ M + K

data bits. For example, for a word of 8 data bits , we have

Thus, eight data bits require four check bits. The first three columns of Table 6.2 lists the number of
check bits required for various data word lengths.

Table 6.2 Increase in Word Length with Error Correction

Single-Error Correction Single-Error Correction/ Double-Error Detection

Data Bits Check Bits % Increase Check Bits % Increase

8 4 50.0 5 62.5

16 5 31.25 6 37.5

32 6 18.75 7 21.875

64 7 10.94 8 12.5

128 8 6.25 9 7.03

256 9 3.52 10 3.91

For convenience, we would like to generate a 4-bit syndrome for an 8-bit data word with the following
characteristics:

If the syndrome contains all 0s, no error has been detected.
If the syndrome contains one and only one bit set to 1, then an error has occurred in one of the 4
check bits. No correction is needed.
If the syndrome contains more than one bit set to 1, then the numerical value of the syndrome
indicates the position of the data bit in error. This data bit is inverted for correction.

To achieve these characteristics, the data and check bits are arranged into a 12-bit word as depicted
in Figure 6.9. The bit positions are numbered from 1 to 12. Those bit positions whose position
numbers are powers of 2 are designated as check bits. The check bits are calculated as follows,
where the symbol designates the exclusive-OR operation:

Each check bit operates on every data bit whose position number contains a 1 in the same bit position
as the position number of that check bit. Thus, data bit positions 3, 5, 7, 9, and 11 (D1, D2, D4, D5,
D7) all contain a 1 in the least significant bit of their position number as does C1; bit positions 3, 6, 7,
10, and 11 all contain a 1 in the second bit position, as does C2; and so on. Looked at another way,
bit position n is checked by those bits such that For example, position 7 is checked by bits

(M = 8)

K = 3 : 23 − 1 < 8 + 3
K = 4:24 − 1 > 8 + 4

⊕

C1 = D1 ⊕ D2 ⊕ D4 ⊕ D5 ⊕ D7
C2 = D1 ⊕ D3 ⊕ D4 ⊕ D6 ⊕ D7
C4 = D2 ⊕ D3 ⊕ D4 ⊕ D8
C8 = ⊕ D5 ⊕ D6 ⊕ D7 ⊕ D8

C ∑ = n .

in position 4, 2, and 1; and

Figure 6.9 Layout of Data Bits and Check Bits

Let us verify that this scheme works with an example. Assume that the 8-bit input word is 00111001,
with data bit D1 in the rightmost position. The calculations are as follows:

Suppose now that data bit 3 sustains an error and is changed from 0 to 1. When the check bits are
recalculated, we have

When the new check bits are compared with the old check bits, the syndrome word is formed:

The result is 0110, indicating that bit position 6, which contains data bit 3, is in error.

Figure 6.10 illustrates the preceding calculation. The data and check bits are positioned properly in
the 12-bit word. Four of the data bits have a value 1 (shaded in the table), and their bit position values
are XORed to produce the Hamming code 0111, which forms the four check digits. The entire block
that is stored is 001101001111. Suppose now that data bit 3, in bit position 6, sustains an error and is
changed from 0 to 1. The resulting block is 001101101111, with a Hamming code of 0001. An XOR of
the Hamming code and all of the bit position values for nonzero data bits results in 0110. The nonzero
result detects an error and indicates that the error is in bit position 6.

i i
7 = 4 + 2 + 1.

C1 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
C2 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
C4 = 0 ⊕ 0 ⊕ 1 ⊕ 0 = 1
C8 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

C1 = 1 ⊕ 0 ⊕ 1 ⊕ 1 ⊕ 0 = 1
C2 = 1 ⊕ 1 ⊕ 1 ⊕ 1 ⊕ 0 = 0
C4 = 0 ⊕ 1 ⊕ 1 ⊕ 0 = 0
C8 = 1 ⊕ 1 ⊕ 0 ⊕ 0 = 0

C8 C4 C2 C1
0 1 1 1

⊕ 0 0 0 1
0 1 1 0

Figure 6.10 Check Bit Calculation

The code just described is known as a single-error-correcting (SEC) code. More commonly,
semiconductor memory is equipped with a single-error-correcting, double-error-detecting (SEC-
DED) code. As Table 6.2 shows, such codes require one additional bit compared with SEC codes.

Figure 6.11 illustrates how such a code works, again with a 4-bit data word. The sequence shows that
if two errors occur (Figure 6.11c), the checking procedure goes astray (d) and worsens the problem
by creating a third error (e). To overcome the problem, an eighth bit is added that is set so that the
total number of 1s in the diagram is even. The extra parity bit catches the error (f).

Figure 6.11 Hamming SEC-DEC Code

An error-correcting code enhances the reliability of the memory at the cost of added complexity. With
a 1-bit-per-chip organization, an SEC-DED code is generally considered adequate. For example, the
IBM 30xx implementations used an 8-bit SEC-DED code for each 64 bits of data in main memory.
Thus, the size of main memory is actually about 12% larger than is apparent to the user. The VAX
computers used a 7-bit SEC-DED for each 32 bits of memory, for a 22% overhead. Contemporary

DRAM systems may have anywhere from 7% to 20% overhead [SHAR03].

6.3 DDR DRAM
As discussed in Chapter 1, One of the most critical system bottlenecks when using high-performance
processors is the interface to internal main memory. This interface is the most important pathway in
the entire computer system. The basic building block of main memory remains the DRAM chip, as it
has for decades; until recently, there had been no significant changes in DRAM architecture since the
early 1970s. The traditional DRAM chip is constrained both by its internal architecture and by its
interface to the processor’s memory bus.

We have seen that one attack on the performance problem of DRAM main memory has been to insert
one or more levels of high-speed SRAM cache between the DRAM main memory and the processor.
But SRAM is much costlier than DRAM, and expanding cache size beyond a certain point yields
diminishing returns.

In recent years, a number of enhancements to the basic DRAM architecture have been explored. The
schemes that currently dominate the market are SDRAM and DDR-DRAM. We examine each of these
in turn.

Synchronous DRAM

One of the most widely used forms of DRAM is the synchronous DRAM (SDRAM). Unlike the
traditional DRAM, which is asynchronous, the SDRAM exchanges data with the processor
synchronized to an external clock signal and running at the full speed of the processor/memory bus
without imposing wait states.

In a typical DRAM, the processor presents addresses and control levels to the memory, indicating that
a set of data at a particular location in memory should be either read from or written into the DRAM.
After a delay, the access time, the DRAM either writes or reads the data. During the access-time
delay, the DRAM performs various internal functions, such as activating the high capacitance of the
row and column lines, sensing the data, and routing the data out through the output buffers. The
processor must simply wait through this delay, slowing system performance.

With synchronous access, the DRAM moves data in and out under control of the system clock. The
processor or other master issues the instruction and address information, which is latched by the
DRAM. The DRAM then responds after a set number of clock cycles. Meanwhile, the master can
safely do other tasks while the SDRAM is processing the request.

Figure 6.12 shows the internal logic of a typical 256-Mb SDRAM typical of SDRAM organization, and
Table 6.3 defines the various pin assignments. The SDRAM employs a burst mode to eliminate the
address setup time and row and column line precharge time after the first access. In burst mode, a
series of data bits can be clocked out rapidly after the first bit has been accessed. This mode is useful
when all the bits to be accessed are in sequence and in the same row of the array as the initial
access. In addition, the SDRAM has a multiple-bank internal architecture that improves opportunities
for on-chip parallelism.

Table 6.3 SDRAM Pin Assignments

A0 to A13 Address inputs

BA0, BA1 Bank address lines

CLK Clock input

CKE Clock enable

Chip select

Row address strobe

Column address strobe

Write enable

DQ0 to DQ7 Data input/output

DQM Data mask

Figure 6.12 256-Mb Synchronous Dynamic RAM (SDRAM)

The mode register and associated control logic is another key feature differentiating SDRAMs from
conventional DRAMs. It provides a mechanism to customize the SDRAM to suit specific system

C̄S

¯RAS

¯CAS

W̄E

needs. The mode register specifies the burst length, which is the number of separate units of data
synchronously fed onto the bus. The register also allows the programmer to adjust the latency
between receipt of a read request and the beginning of data transfer.

The SDRAM performs best when it is transferring large blocks of data sequentially, such as for
applications like word processing, spreadsheets, and multimedia.

Figure 6.13 shows an example of SDRAM operation, using a timing diagram. A timing diagram
shows the signal level on a line as a function of time. By convention, the binary 1 signal level is
depicted as a higher level than that of binary 0. Usually, binary 0 is the default value. That is, if no data
or other signal is being transmitted, then the level on a line is that which represents binary 0. A signal
transition from 0 to 1 is frequently referred to as the signal’s leading edge; a transition from 1 to 0 is
referred to as a trailing edge. Such transitions are not instantaneous, but this transition time is usually
small compared with the duration of a signal level. For clarity, the transition is usually depicted as an
angled line that exaggerates the relative amount of time that the transition takes. Signals are
sometimes represented in groups, shown as shaded areas in Figure 6.13. For example, if data are
transferred a byte at a time, then eight lines are required. Generally, it is not important to know the
exact value being transferred on such a group, but rather whether signals are present or not.

Figure 6.13 SDRAM Read Timing

For the SDRAM operation in Figure 6.13, the burst length is 4 and the latency is 2. The burst read
command is initiated by having and low while holding and high at the rising edge of

the clock. The address inputs determine the starting column address for the burst, and the mode
register sets the type of burst (sequential or interleave) and the burst length (1, 2, 4, 8, full page). The
delay from the start of the command to when the data from the first cell appears on the outputs is
equal to the value of the latency that is set in the mode register.

DDR SDRAM

Although SDRAM is a significant improvement on asynchronous RAM, it still has shortcomings that
unnecessarily limit the I/O data rate that can be achieved. To address these shortcomings a newer
version of SDRAM, referred to as double-data-rate DRAM (DDR DRAM) provides several features
that dramatically increase the data rate. DDR DRAM was developed by the JEDEC Solid State
Technology Association, the Electronic Industries Alliance’s semiconductor-engineering-
standardization body. Numerous companies make DDR chips, which are widely used in desktop
computers and servers.

DDR achieves higher data rates in three ways. First, the data transfer is synchronized to both the
rising and falling edge of the clock, rather than just the rising edge. This doubles the data rate; hence

(burstlength = 4 , ¯CASlatency = 2)

C̄S ¯CAS ¯RAS W̄E

¯CAS

the term double data rate. Second, DDR uses higher clock rate on the bus to increase the transfer
rate. Third, a buffering scheme is used, as explained subsequently.

JEDEC has thus far defined four generations of the DDR technology (Table 6.4). The initial DDR
version makes use of a 2-bit prefetch buffer. The prefetch buffer is a memory cache located on the
SDRAM chip. It enables the SDRAM chip to preposition bits to be placed on the data bus as rapidly as
possible. The DDR I/O bus uses the same clock rate as the memory chip, but because it can handle
two bits per cycle, it achieves a data rate that is double the clock rate. The 2-bit prefetch buffer
enables the SDRAM chip to keep up with the I/O bus.

Table 6.4 DDR Characteristics

DDR1 DDR2 DDR3 DDR4

Prefetch buffer (bits) 2 4 8 8

Voltage level (V) 2.5 1.8 1.5 1.2

Front side bus data rates (Mbps) 200—400 ﻿ 400—1066 800—2133 2133—4266

To understand the operation of the prefetch buffer, we need to look at it from the point of view of a
word transfer. The prefetch buffer size determines how many words of data are fetched (across
multiple SDRAM chips) every time a column command is performed with DDR memories. Because the
core of the DRAM is much slower than the interface, the difference is bridged by accessing
information in parallel and then serializing it out the interface through a multiplexor (MUX). Thus, DDR
prefetches two words, which means that every time a read or a write operation is performed, it is
performed on two words of data, and bursts out of, or into, the SDRAM over one clock cycle on both
clock edges for a total of two consecutive operations. As a result, the DDR I/O interface is twice as
fast as the SDRAM core.

Although each new generation of SDRAM results is much greater capacity, the core speed of the
SDRAM has not changed significantly from generation to generation. To achieve greater data rates
than those afforded by the rather modest increases in SDRAM clock rate, JEDEC increased the buffer
size. For DDR2, a 4-bit buffer is used, allowing for words to be transferred in parallel, increasing the
effective data rate by a factor of 4. For DDR3, an 8-bit buffer is used and a factor of 8 speedup is
achieved (Figure 6.14).

Figure 6.14 DDR Generations

The downside to the prefetch is that it effectively determines the minimum burst length for the
SDRAMs. For example, it is very difficult to have an efficient burst length of four words with DDR3’s
prefetch of eight. Accordingly, the JEDEC designers chose not to increase the buffer size to 16 bits for
DDR4, but rather to introduce the concept of a bank group [ALLA13]. Bank groups are separate
entities such that they allow a column cycle to complete within a bank group, but that column cycle
does not impact what is happening in another bank group. Thus, two prefetches of eight can be
operating in parallel in the two bank groups. This arrangement keeps the prefetch buffer size the same
as for DDR3, while increasing performance as if the prefetch is larger.

Figure 6.14 shows a configuration with two bank groups. With DDR4, up to 4 bank groups can be
used.

6.4 Edram
An increasingly widespread technology used in the memory hierarchy is the embedded DRAM
(eDRAM). eDRAM is a DRAM integrated on the same chip or MCM of an application-specific
integrated circuit (ASIC) or microprocessor. For a number of metrics, eDRAM is intermediate between
on-chip SRAM and off-chip DRAM:

For the same surface area, eDRAM provides a larger size memory than SRAM but smaller than
off-chip DRAM.
eDRAM’s cost-per-bit is higher when compared to equivalent stand-alone DRAM chips used as
external memory, but it has a lower cost-per-bit than SRAM.
Access time to eDRAM is greater than SRAM but, because of its proximity and the ability to use
wider busses, eDRAM provides faster access than DRAM.

A variety of technologies are used in fabricating eDRAMs, but fundamentally they use the same
designs and architectures as DRAM.

[JACO08] lists the following as trends that have led to increasing use of eDRAM:

For larger systems and high-end applications, the spatial locality curves have become flatter and
wider, meaning that the likely area of memory for upcoming references is larger. This makes
DRAM-based caches attractive due to their bit density.
On-chip or on-MCM eDRAM matches the performance of off-chip SRAM, so that greater cache
size can be achieved by replacing some on-chip area that would otherwise be dedicated to SRAM
with DRAM, avoiding or reducing the need for off-chip SRAM or DRAM.
eDRAM generally dissipates less power than SRAM.

IBM z13 eDRAM Cache Structure

The IBM z13 system uses eDRAM at two levels of the cache hierarchy (see Figure 4.10). Each
processor unit (PU) chip, with up to eight cores, has a shared 64-MB eDRAM L3 cache. This is an
example of an eDRAM integrated on the same chip as the microprocessors. Three PU chips share a
480-MB eDRAM L4 cache (see Figure 5.18). The L4 cache is on a separate storage control (SC)
chip. This is an example of an eDRAM integrated on the same chip with other memory-related logic.
The L4 cache on each SC chip has 480 MB of noninclusive cache and a 224-MB Non-data Inclusive
Coherent (NIC) directory. The NIC directory consists of tags that point to L3-owned lines that have not
been included in L4 cache.

Figure 6.15 shows the physical layout of an SC chip. About 60% if the surface area of the SC chip is
devoted to the L4 cache and the NIC directory. The remainder of the chip includes L4 cache controller
logic and I/O logic.

Figure 6.15 IBM z13 Storage Control (SC) Chip Layout

Intel Core System Cache Structure

Intel has shipped a number of products with an eDRAM positioned as an L4 cache. Figure 6.16a
shows this arrangement. The eDRAM is accessed by a store of L4 tags contained within the L3 cache
of each core, and as a result acts more as a victim cache to the L3 rather than as a DRAM
implementation. Any instructions or hardware that requires data from the eDRAM has to go through
the L3 and do the L4 tag conversion, limiting its potential.

In more recent products, Intel removed the eDRAM from its position as an L4 cache, as shown in
Figure 6.16b. This removed an undesired dependency between the capacity of the eDRAM and the
number of cores. In this new arrangement, the eDRAM is effectively no longer a true L4 cache but
rather a memory side cache. This has a number of benefits such that each and every memory access
that goes through the memory controller gets looked up in the eDRAM. On a satisfied hit, the value is
obtained from there. On a miss, a value gets allocated and stored in the eDRAM. Thus, rather than
acting as a pseudo-L4 cache, the eDRAM becomes a DRAM buffer and automatically transparent to
any software (CPU or IGP) that requires DRAM access. As a result, other hardware that
communicates through the system agent (such as PCIe devices or data from the chipset) and requires
information in DRAM does not need to navigate through the L3 cache on the processor.

Figure 6.16 Use of eDRAM in Intel Core Systems

6.5 Flash Memory
Another form of semiconductor memory is flash memory. Flash memory is used both for internal
memory and external memory applications. Here, we provide a technical overview and look at its use
for internal memory.

First introduced in the mid-1980s, flash memory is intermediate between EPROM and EEPROM in
both cost and functionality. Like EEPROM, flash memory uses an electrical erasing technology. An
entire flash memory can be erased in one or a few seconds, which is much faster than EPROM. In
addition, it is possible to erase just blocks of memory, rather than an entire chip. Flash memory gets
its name because the microchip is organized so that a section of memory cells are erased in a single
action or “flash.” However, flash memory does not provide byte-level erasure. Like EPROM, flash
memory uses only one transistor per bit, and so achieves the high density (compared with EEPROM)
of EPROM.

Operation

Figure 6.17 illustrates the basic operation of a flash memory. For comparison, Figure 6.17a depicts
the operation of a transistor. Transistors exploit the properties of semiconductors so that a small
voltage applied to the gate can be used to control the flow of a large current between the source and
the drain.

Figure 6.17 Flash Memory Operation

In a flash memory cell, a second gate—called a floating gate, because it is insulated by a thin oxide
layer—is added to the transistor. Initially, the floating gate does not interfere with the operation of the
transistor (Figure 6.17b). In this state, the cell is deemed to represent binary 1. Applying a large
voltage across the oxide layer causes electrons to tunnel through it and become trapped on the
floating gate, where they remain even if the power is disconnected (Figure 6.17c). In this state, the
cell is deemed to represent binary 0. The state of the cell can be read by using external circuitry to test
whether the transistor is working or not. Applying a large voltage in the opposite direction removes the
electrons from the floating gate, returning to a state of binary 1.

An important characteristic of flash memory is that it is persistent memory, which means that it retains
data when there is no power applied to the memory. Thus, it is useful for secondary (external) storage,
and as an alternative to random access memory in computers.

NOR and NAND Flash Memory

There are two distinctive types of flash memory, designated as NOR and NAND (Figure 6.18). In
NOR flash memory, the basic unit of access is a bit, referred to as a memory cell. Cells in NOR flash
are connected in parallel to the bit lines so that each cell can be read/write/erased individually. If any
memory cell of the device is turned on by the corresponding word line, the bit line goes low. This is
similar in function to a NOR logic gate.

 See Chapter 12 for a discussion of NOR and NAND gates.

Figure 6.18 Flash Memory Structures

NAND flash memory is organized in transistor arrays with 16 or 32 transistors in series. The bit line
goes low only if all the transistors in the corresponding word lines are turned on. This is similar in
function to a NAND logic gate.

Although the specific quantitative values of various characteristics of NOR and NAND are changing
year by year, the relative differences between the two types has remained stable. These differences
are usefully illustrated by the Kiviat graphs shown in Figure 6.19.

2

2

3

 A Kiviat graph provides a pictorial means of comparing systems along multiple variables [MORR74]. The variables

are laid out at as lines of equal angular intervals within a circle, each line going from the center of the circle to the
circumference. A given system is defined by one point on each line; the closer to the circumference, the better the
value. The points are connected to yield a shape that is characteristic of that system. The more area enclosed in the
shape, the “better” is the system.

Figure 6.19 Kiviat Graphs for Flash Memory

NOR flash memory provides high-speed random access. It can read and write data to specific
locations, and can reference and retrieve a single byte. NAND reads and writes in small blocks. NAND
provides higher bit density than NOR and greater write speed. NAND flash does not provide a
random-access external address bus, so the data must be read on a blockwise basis (also known as
page access), where each block holds hundreds to thousands of bits.

For internal memory in embedded systems, NOR flash memory has traditionally been preferred.
NAND memory has made some inroads, but NOR remains the dominant technology for internal
memory. It is ideally suited for microcontrollers where the amount of program code is relatively small
and a certain amount of application data does not vary. For example, the flash memory in Figure 1.16
is NOR memory.

NAND memory is better suited for external memory, such as USB flash drives, memory cards (in
digital cameras, MP3 players, etc.), and in what are known as solid-state disks (SSDs). We discuss
SSDs in Chapter 7.

3

6.6 Newer Nonvolatile Solid-State Memory Technologies
The traditional memory hierarchy has consisted of three levels (Figure 5.20):

Static RAM (SRAM): SRAM provides rapid access time, but is the most expensive and the least
dense (bit density). SRAM is suitable for cache memory.
Dynamic RAM (DRAM): Cheaper, denser, and slower than SRAM, DRAM has traditionally been
the choice for off-chip main memory.
Hard disk: A magnetic disk provides very high bit density and very low cost per bit, with relatively
slow access times. It is the traditional choice for external storage as part of the memory hierarchy.

Into this mix, as we have seen, has been added flash memory. Flash memory has the advantage over
traditional memory that it is nonvolatile. NOR flash is best suited to storing programs and static
application data in embedded systems, while NAND flash has characteristics intermediate between
DRAM and hard disks.

Over time, each of these technologies has seen improvements in scaling: higher bit density, higher
speed, lower power consumption, and lower cost. However, for semiconductor memory, it is becoming
increasingly difficult to continue the pace of improvement [ITRS14].

Recently, there have been breakthroughs in developing new forms of nonvolatile semiconductor
memory that continue scaling beyond flash memory. The most promising technologies are spin-
transfer torque RAM (STT-RAM), phase-change RAM (PCRAM), and resistive RAM (ReRAM)
([ITRS14], [GOER12]). All of these are in volume production. However, because NAND Flash and to
some extent NOR Flash are still dominating the applications, these emerging memories have been
used in specialty applications and have not yet fulfilled their original promise to become dominating
mainstream high-density nonvolatile memory. This is likely to change in the next few years.

Figure 6.20 shows how these three technologies are likely to fit into the memory hierarchy.

Figure 6.20 Nonvolatile RAM within the Memory Hierarchy

STT-RAM

STT-RAM is a new type of magnetic RAM (MRAM), which features non-volatility, fast writing/reading
speed , high programming endurance and zero standby power [KULT13]. The
storage capability or programmability of MRAM arises from magnetic tunneling junction (MTJ), in
which a thin tunneling dielectric is sandwiched between two ferromagnetic layers. One ferromagnetic
layer (pinned or reference layer) is designed to have its magnetization pinned, while the magnetization
of the other layer (free layer) can be flipped by a write event. An MTJ has a low (high) resistance if the
magnetizations of the free layer and the pinned layer are parallel (anti-parallel). In first-generation
MRAM design, the magnetization of the free layer is changed by the current-induced magnetic field. In
STT-RAM, a new write mechanism, called polarization-current-induced magnetization switching, is
introduced. For STT-RAM, the magnetization of the free layer is flipped by the electrical current
directly. Because the current required to switch an MTJ resistance state is proportional to the MTJ cell
area, STT-RAM is believed to have a better scaling property than the first-generation MRAM. Figure
6.21a illustrates the general configuration.

(< 10ns) (> 1015 cycles)

Figure 6.21 Nonvolatile RAM Technologies

STT-RAM is a good candidate for either cache or main memory.

PCRAM

Phase-change RAM (pcram) is the most mature of the new technologies, with an extensive technical
literature ([RAOU09], [ZHOU09], [LEE10]).

PCRAM technology is based on a chalcogenide alloy material, which is similar to those commonly

used in optical storage media (compact discs and digital versatile discs). The data storage capability is
achieved from the resistance differences between an amorphous (high-resistance) and a crystalline
(low-resistance) phase of the chalcogenide-based material. In SET operation, the phase change
material is crystallized by applying an electrical pulse that heats a significant portion of the cell above
its crystallization temperature. In RESET operation, a larger electrical current is applied and then
abruptly cut off in order to melt and then quench the material, leaving it in the amorphous state.
Figure 6.21b illustrates the general configuration.

PCRAM is a good candidate to replace or supplement DRAM for main memory.

ReRAM

ReRAM (also known as RRAM) works by creating resistance rather than directly storing charge. An
electric current is applied to a material, changing the resistance of that material. The resistance state
can then be measured and a 1 or 0 is read as the result. Much of the work done on ReRAM to date
has focused on finding appropriate materials and measuring the resistance state of the cells. ReRAM
designs are low voltage, endurance is far superior to flash memory, and the cells are much smaller—
at least in theory. Figure 6.21c shows one ReRam configuration.

ReRAM is a good candidate to replace or supplement both secondary storage and main memory.

6.7 Key Terms, Review Questions, and Problems

Key Terms

bank group

double data rate DRAM (DDR DRAM)

dynamic RAM (DRAM)

electrically erasable programmable ROM (EEPROM)

erasable programmable ROM (EPROM)

error correcting code (ECC)

error correction

flash memory

Hamming code

hard failure

magnetic RAM (MRAM)

NAND flash memory

nonvolatile memory

NOR flash memory

phase-change RAM (PCRAM)

programmable ROM (PROM)

random access memory (RAM)

read-mostly memory

read-only memory (ROM)

resistive RAM (ReRAM)

semiconductor memory

single-error-correcting (SEC) code

single-error-correcting, double-error-detecting (SEC-DED) code

soft error

spin-transfer torque RAM (STT-RAM)

static RAM (SRAM)

synchronous DRAM (SDRAM)

syndrome

timing diagram

volatile memory

Review Questions

Problems

6.1 What are the key properties of semiconductor memory?
6.2 What are two interpretations of the term random-access memory?
6.3 What is the difference between DRAM and SRAM in terms of application?
6.4 What is the difference between DRAM and SRAM in terms of characteristics such as speed,
size, and cost?
6.5 Explain why one type of RAM is considered to be analog and the other digital.
6.6 What are some applications for ROM?
6.7 What are the differences among EPROM, EEPROM, and flash memory?
6.8 Explain the function of each pin in Figure 5.4b .
6.9 What is a parity bit?
6.10 How is the syndrome for the Hamming code interpreted?
6.11 How does SDRAM differ from ordinary DRAM?
6.12 What is DDR RAM?
6.13 What is the difference between NAND and NOR flash memory?
6.14 List and briefly define three newer nonvolatile solid-state memory technologies.

6.1 Suggest reasons why RAMs traditionally have been organized as only one bit per chip
whereas ROMs are usually organized with multiple bits per chip.
6.2 Consider a dynamic RAM that must be given a refresh cycle 64 times per ms. Each refresh
operation requires 150 ns; a memory cycle requires 250 ns. What percentage of the memory’s
total operating time must be given to refreshes?
6.3 Figure 6.22 shows a simplified timing diagram for a DRAM read operation over a bus. The
access time is considered to last from to . Then there is a recharge time, lasting from to

, during which the DRAM chips will have to recharge before the processor can access them
again.

Figure 6.22 Simplified DRAM Read Timing

t1 t2 t2
t3

a. Assume that the access time is 60 ns and the recharge time is 40 ns. What is the
memory cycle time? What is the maximum data rate this DRAM can sustain, assuming a
1-bit output?

b. Constructing a 32-bit wide memory system using these chips yields what data transfer
rate?

6.4 Figure 6.6 indicates how to construct a module of chips that can store 1 MB based on a
group of four 256-Kbyte chips. Let’s say this module of chips is packaged as a single 1-MB chip,
where the word size is 1 byte. Give a high-level chip diagram of how to construct an 8-MB
computer memory using eight 1-MB chips. Be sure to show the address lines in your diagram
and what the address lines are used for.
6.5 On a typical Intel 8086-based system, connected via system bus to DRAM memory, for a
read operation, is activated by the trailing edge of the Address Enable signal (Figure A.1
in Appendix A). However, due to propagation and other delays, does not go active until
50 ns after Address Enable returns to a low. Assume the latter occurs in the middle of the
second half of state (somewhat earlier than in Figure A.1). Data are read by the processor
at the end of . For timely presentation to the processor, however, data must be provided 60
ns earlier by memory. This interval accounts for propagation delays along the data paths (from
memory to processor) and processor data hold time requirements. Assume a clocking rate of 10
MHz.

a. How fast (access time) should the DRAMs be if no wait states are to be inserted?
b. How many wait states do we have to insert per memory read operation if the access time

of the DRAMs is 150 ns?

6.6 The memory of a particular microcomputer is built from According to the

data sheet, the cell array of the DRAM is organized into 256 rows. Each row must be refreshed
at least once every 4 ms. Suppose we refresh the memory on a strictly periodic basis.

a. What is the time period between successive refresh requests?
b. How long a refresh address counter do we need?

6.7 Figure 6.23 shows one of the early SRAMs, the Signetics 7489 chip, which stores 16
4-bit words.

¯RAS
¯RAS

T1

T3

64K × 1DRAMs.

16 × 4

Figure 6.23 The Signetics 7489 SRAM

a. List the mode of operation of the chip for each input pulse shown in Figure 6.23c .
b. List the memory contents of word locations 0 through 6 after pulse n.
c. What is the state of the output data leads for the input pulses h through m?

6.8 Design a 16-bit memory of total capacity 8192 bits using SRAM chips of size bit. Give
the array configuration of the chips on the memory board showing all required input and output
signals for assigning this memory to the lowest address space. The design should allow for both
byte and 16-bit word accesses.

C̄S

64 × 1

6.9 A common unit of measure for failure rates of electronic components is the Failure unIT
(FIT), expressed as a rate of failures per billion device hours. Another well known but less used
measure is mean time between failures (MTBF), which is the average time of operation of a
particular component until it fails. Consider a 1 MB memory of a 16-bit microprocessor with

 DRAMs. Calculate its MTBF assuming 2000 FITS for each DRAM.
6.10 For the Hamming code shown in Figure 6.10 , show what happens when a check bit rather
than a data bit is in error?
6.11 Suppose an 8-bit data word stored in memory is 11000010. Using the Hamming algorithm,
determine what check bits would be stored in memory with the data word. Show how you got
your answer.
6.12 For the 8-bit word 00111001, the check bits stored with it would be 0111. Suppose when
the word is read from memory, the check bits are calculated to be 1101. What is the data word
that was read from memory?
6.13 How many check bits are needed if the Hamming error correction code is used to detect
single bit errors in a 1024-bit data word?
6.14 Develop an SEC code for a 16-bit data word. Generate the code for the data word
0101000000111001. Show that the code will correctly identify an error in data bit 5.

256K × 1

Chapter 7 External Memory

7.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the key properties of magnetic disks.
Understand the performance issues involved in magnetic disk access.
Explain the concept of RAID and describe the various levels.
Compare and contrast hard disk drives and solid disk drives.
Describe in general terms the operation of flash memory.
Understand the differences among the different optical disk storage media.
Present an overview of magnetic tape storage technology.

7.1 Magnetic Disk
Magnetic Read and Write Mechanisms
Data Organization and Formatting
Physical Characteristics
Disk Performance Parameters

7.2 RAID
RAID Level 0
RAID Level 1
RAID Level 2
RAID Level 3
RAID Level 4
RAID Level 5
RAID Level 6

7.3 Solid State Drives
SSD Compared to HDD
SSD Organization
Practical Issues

7.4 Optical Memory
Compact Disk
Digital Versatile Disk
High-​Definition Optical Disks

7.5 Magnetic Tape

This chapter examines a range of external memory devices and systems. We
begin with the most important device, the magnetic disk. Magnetic disks are the
foundation of external memory on virtually all computer systems. The next section
examines the use of disk arrays to achieve greater performance, looking
specifically at the family of systems known as RAID (Redundant Array of
Independent Disks). An increasingly important component of many computer
systems is the solid state disk, which is discussed next. Then, external optical
memory is examined. Finally, magnetic tape is described.

7.1 Magnetic Disk
A disk is a circular platter constructed of nonmagnetic material, called the substrate, coated with a
magnetizable material. Traditionally, the substrate has been an aluminum or aluminum alloy material.
More recently, glass substrates have been introduced. The glass substrate has a number of benefits,
including the following:

Improvement in the uniformity of the magnetic film surface to increase disk reliability.
A significant reduction in overall surface defects to help reduce read- ​write errors.
Ability to support lower fly heights (described subsequently).
Better stiffness to reduce disk dynamics.
Greater ability to withstand shock and damage.

Magnetic Read and Write Mechanisms

Data are recorded on and later retrieved from the disk via a conducting coil named the head; in many
systems, there are two heads, a read head and a write head. During a read or write operation, the
head is stationary while the platter rotates beneath it.

The write mechanism exploits the fact that electricity flowing through a coil produces a magnetic field.
Electric pulses are sent to the write head, and the resulting magnetic patterns are recorded on the
surface below, with different patterns for positive and negative currents. The write head itself is made
of easily magnetizable material and is in the shape of a rectangular doughnut with a gap along one
side and a few turns of conducting wire along the opposite side (Figure 7.1). An electric current in the
wire induces a magnetic field across the gap, which in turn magnetizes a small area of the recording
medium. Reversing the direction of the current reverses the direction of the magnetization on the
recording medium.

Figure 7.1 Inductive Write/Magnetoresistive Read Head

The traditional read mechanism exploits the fact that a magnetic field moving relative to a coil
produces an electrical current in the coil. When the surface of the disk rotates under the head, it
generates a current of the same polarity as the one already recorded. The structure of the head for
reading is in this case essentially the same as for writing, and therefore the same head can be used
for both. Such single heads are used in floppy disk systems and in older rigid disk systems.

Contemporary rigid disk systems use a different read mechanism, requiring a separate read head,
positioned for convenience close to the write head. The read head consists of a partially shielded
magnetoresistive (MR) sensor. The MR material has an electrical resistance that depends on the
direction of the magnetization of the medium moving under it. By passing a current through the MR
sensor, resistance changes are detected as voltage signals. The MR design allows higher- ​frequency
operation, which equates to greater storage densities and operating speeds.

Data Organization and Formatting

The head is a relatively small device capable of reading from or writing to a portion of the platter
rotating beneath it. This gives rise to the organization of data on the platter in a concentric set of rings,
called tracks. Each track is the same width as the head. There are thousands of tracks per surface.

Figure 7.2 depicts this data layout. Adjacent tracks are separated by intertrack gaps. This prevents,
or at least minimizes, errors due to misalignment of the head or simply interference of magnetic fields.
Data are transferred to and from the disk in sectors. There are typically hundreds of sectors per track,
and these may be of either fixed or variable length. In most contemporary systems, fixed- ​length
sectors are used. To avoid imposing unreasonable precision requirements on the system, adjacent
sectors are separated by intersector gaps.

Figure 7.2 Disk Data Layout

A bit near the center of a rotating disk travels past a fixed point (such as a read– ​write head) slower
than a bit on the outside. Therefore, some way must be found to compensate for the variation in
speed so that the head can read all the bits at the same rate. This can be done by defining a variable
spacing between bits of information recorded in locations on the disk, in a way that the outermost
tracks have sectors with bigger spacing. The information can then be scanned at the same rate by
rotating the disk at a fixed speed, known as the constant angular velocity (CAV). Figure 7.3a shows
the layout of a disk using CAV. The disk is divided into a number of pie- ​shaped sectors and into a
series of concentric tracks. The advantage of using CAV is that individual blocks of data can be
directly addressed by track and sector. To move the head from its current location to a specific

address, it only takes a short movement of the head to a specific track and a short wait for the proper
sector to spin under the head. The disadvantage of CAV is that the amount of data that can be stored
on the long outer tracks is the same as what can be stored on the short inner tracks.

Figure 7.3 Comparison of Disk Layout Methods

Because the density, in bits per linear inch, increases in moving from the outermost track to the
innermost track, disk storage capacity in a straightforward CAV system is limited by the maximum
recording density that can be achieved on the innermost track. To maximize storage capacity, it would
be preferable to have the same linear bit density on each track. This would require unacceptably
complex circuitry. Modern hard disk systems use a simpler technique, which approximates equal bit
density per track, known as multiple zone recording (MZR), in which the surface is divided into a
number of concentric zones (16 is typical). Each zone contains a number of contiguous tracks,
typically in the thousands. Within a zone, the number of bits per track is constant. Zones farther from
the center contain more bits (more sectors) than zones closer to the center. Zones are defined in such
a way that the linear bit density is approximately the same on all tracks of the disk. MZR allows for
greater overall storage capacity at the expense of somewhat more complex circuitry. As the disk head
moves from one zone to another, the length (along the track) of individual bits changes, causing a
change in the timing for reads and writes.

Figure 7.3b is a simplified MZR layout, with 15 tracks organized into 5 zones. The innermost two
zones have two tracks each, with each track having nine sectors; the next zone has 3 tracks, each
with 12 sectors; and the outermost 2 zones have 4 tracks each, with each track having 16 sectors.

Some means is needed to locate sector positions within a track. Clearly, there must be some starting
point on the track and a way of identifying the start and end of each sector. These requirements are
handled by means of control data recorded on the disk. Thus, the disk is formatted with some extra
data used only by the disk drive and not accessible to the user.

Figure 7.4. shows two common sector formats used in contemporary hard disk drives. The standard
format used for many years divided the track into sectors, each containing 512 bytes of data. Each
sector also includes control information useful to the disk controller. The structure of the sector layout
for this format consists of the following:

Figure 7.4 Legacy and Advanced Sector Formats

Gap: Separates sectors.
Sync: Indicates the beginning of the sector and provides timing alignment.
Address mark: Contains data to identify the sector’s number and location. It also provides status
about the sector itself.
Data: The 512 bytes of user data.
Error correction code (ECC): Used to correct data that might be damaged in the reading and
writing process.

Although this format has served the industry well for many years, it has become increasingly
inadequate for two reasons:

1. Applications common in modern computing systems use much greater amounts of data and
manage the data in large blocks. Compared to these requirements, the small blocks of
traditional sector formatting devote a considerable fraction of each sector to control information.
The overhead consists of 65 bytes, yielding a format efficiency of .

2. Bit density on disks has increased substantially, so that each sector consumes less physical
space. Accordingly, a media defect or other error source can damage a higher percentage of
the total payload, requiring more error correction strength.

Accordingly, the industry has responded by standardizing a new Advanced Format for a 4096-byte
block, illustrated in Figure 7.4b. The leading overhead remains at 15 bytes and the ECC is expanded
to 100 bytes, yielding a format efficiency of , almost a 10% improvement in
efficiency. More significantly, doubling the ECC to 100 bytes enables the correction of longer
sequences of error bits.

Physical Characteristics

Table 7.1 lists the major characteristics that differentiate the various types of magnetic disks. First, the

(512 / 512 + 65) ≈ 0.88

(4096 / 4096 + 115) ≈ 0.97

head may either be fixed or movable with respect to the radial direction of the platter. In a fixed-​head
disk, there is one read-​write head per track. All of the heads are mounted on a rigid arm that extends
across all tracks; such systems are rare today. In a movable-​head disk, there is only one read- ​write
head. Again, the head is mounted on an arm. Because the head must be able to be positioned above
any track, the arm can be extended or retracted for this purpose.

Table 7.1 Physical Characteristics of Disk Systems

Head Motion

  Fixed head (one per track)

  Movable head (one per surface)

Platters

  Single platter

  Multiple platter

Disk Portability

  Nonremovable disk

  Removable disk

Head Mechanism

  Contact (floppy)

  Fixed gap

Sides

  Single sided

  Double sided

  Aerodynamic gap (Winchester)

The disk itself is mounted in a disk drive, which consists of the arm, a spindle that rotates the disk, and
the electronics needed for input and output of binary data. A nonremovable disk is permanently
mounted in the disk drive; the hard disk in a personal computer is a nonremovable disk. A removable
disk can be removed and replaced with another disk. The advantage of the latter type is that unlimited
amounts of data are available with a limited number of disk systems. Furthermore, such a disk may be
moved from one computer system to another. Floppy disks and ZIP cartridge disks are examples of
removable disks.

For most disks, the magnetizable coating is applied to both sides of the platter, which is then referred
to as double sided. Some less expensive disk systems use single-​sided disks.

Some disk drives accommodate multiple platters stacked vertically a fraction of an inch apart.
Multiple arms are provided (Figure 7.2). Multiple– ​platter disks employ a movable head, with one
read-​write head per platter surface. All of the heads are mechanically fixed so that all are at the same
distance from the center of the disk and move together. Thus, at any time, all of the heads are
positioned over tracks that are of equal distance from the center of the disk. The set of all the tracks in
the same relative position on the platter is referred to as a cylinder. This is illustrated in Figure 7.2.

Finally, the head mechanism provides a classification of disks into three types. Traditionally, the
read-​write head has been positioned a fixed distance above the platter, allowing an air gap. At the
other extreme is a head mechanism that actually comes into physical contact with the medium during
a read or write operation. This mechanism is used with the floppy disk, which is a small, flexible
platter and the least expensive type of disk.

To understand the third type of disk, we need to comment on the relationship between data density
and the size of the air gap. The head must generate or sense an electromagnetic field of sufficient
magnitude to write and read properly. The narrower the head is, the closer it must be to the platter
surface to function. A narrower head means narrower tracks and therefore greater data density, which
is desirable. However, the closer the head is to the disk, the greater the risk of error from impurities or
imperfections. To push the technology further, the Winchester disk was developed. Winchester heads
are used in sealed drive assemblies that are almost free of contaminants. They are designed to
operate closer to the disk’s surface than conventional rigid disk heads, thus allowing greater data
density. The head is actually an aerodynamic foil that rests lightly on the platter’s surface when the
disk is motionless. The air pressure generated by a spinning disk is enough to make the foil rise above
the surface. The resulting noncontact system can be engineered to use narrower heads that operate
closer to the platter’s surface than conventional rigid disk heads.

Disk Performance Parameters

The actual details of disk I/O operation depend on the computer system, the operating system, and
the nature of the I/O channel and disk controller hardware. A general timing diagram of disk I/O
transfer is shown in Figure 7.5.

Figure 7.5 Timing of a Disk I/O Transfer

When the disk drive is operating, the disk is rotating at constant speed. To read or write, the head
must be positioned at the desired track and at the beginning of the desired sector on that track. Track
selection involves moving the head in a movable-head system or electronically selecting one head on
a fixed-head system. On a movable-head system, the time it takes to position the head at the track is
known as seek time . In either case, once the track is selected, the disk controller waits until the
appropriate sector rotates to line up with the head. The time it takes for the beginning of the sector to
reach the head is known as rotational latency, or latency time . Once the head is in position, the
read or write operation is then performed as the sector moves under the head; this is the data transfer
portion of the operation; the time required for the transfer is the transfer time . The sum of the seek
time, if any, the latency time, and the transfer time equals the bloc access time , or simply access
time:

In addition to the access time, there are several queuing delays normally associated with a disk I/O
operation. When a process issues an I/O request, it must first wait in a queue for the device to be
available. At that time, the device is assigned to the process. If the device shares a single I/O channel
or a set of I/O channels with other disk drives, then there may be an additional wait for the channel to
be available. At that point, the seek is performed to begin disk access.

In some high- ​end systems for servers, a technique known as rotational positional sensing (RPS) is
used. This works as follows: When the seek command has been issued, the channel is released to
handle other I/O operations. When the seek is completed, the device determines when the data will
rotate under the head. As that sector approaches the head, the device tries to reestablish the
communication path back to the host. If either the control unit or the channel is busy with another I/O,
then the reconnection attempt fails and the device must rotate one whole revolution before it can
attempt to reconnect, which is called an RPS miss. This is an extra delay element that must be added
to the access time.

SEEK TIME

Seek time is the time required to move the disk arm to the required track. It turns out that this is a
difficult quantity to pin down. The seek time consists of two key components: the initial startup time,
and the time taken to traverse the tracks that have to be crossed once the access arm is up to speed.
Unfortunately, the traversal time is not a linear function of the number of tracks, but includes a settling
time (time after positioning the head over the target track until track identification is confirmed). A
mean value of is typically provided by the manufacturer.

Much improvement comes from smaller and lighter disk components. Some years ago, a typical disk
was 14 inches (36 cm) in diameter, whereas the most common size today is 3.5 inches (8.9 cm),
reducing the distance that the arm has to travel. A typical average seek time on contemporary hard
disks is under 10 ms.

LATENCY TIME

Disks, other than floppy disks, rotate at speeds ranging from 3600 rpm (for handheld devices such as
digital cameras) up to, as of this writing, 20,000 rpm; at this latter speed, there is one revolution per 3
ms. Thus, on the average, the latency time will be 1.5 ms.

TRANSFER TIME

tS

tL

tT
tB

tB = tS + tL + tT

tS

tL

The transfer time to or from the disk depends on the rotation speed of the disk in the following fashion:

where

Thus the total average block read or write time can be expressed as

where is the average seek time. Note that on a zoned drive, the number of bytes per track is
variable, complicating the calculation.

 Compare the two preceding equations to Equation (4.1).

A TIMING COMPARISON

With the foregoing parameters defined, let us look at two different I/O operations that illustrate the
danger of relying on average values. Consider a disk with an advertised average seek time of 4 ms,
rotation speed of 15,000 rpm, and 512-byte sectors with 500 sectors per track. Suppose that we wish
to read a file consisting of 2500 sectors for a total of 1.28 Mbytes. We would like to estimate the total
time for the transfer.

First, let us assume that the file is stored as compactly as possible on the disk. That is, the file
occupies all of the sectors on 5 adjacent tracks . This is
known as sequential organization. Now, the time to read the first track is as follows:

Average seek   4 ms

Average rotational delay   2 ms

Read 500 sectors

Suppose that the remaining tracks can now be read with essentially no seek time. That is, the I/O
operation can keep up with the flow from the disk. Then, at most, we need to deal with rotational delay
for the four remaining tracks. Thus each successive track is read in . To read the entire file,

Now let us calculate the time required to read the same data using random access rather than

tT =
b

rN

b = number of bytes to be transferred
N = number of bytes on a track
r = rotation speed, in revolutions per second

Ttotal

tB = tS +
1
2r +

b
rN (7.1)

ts
1

1

(5tracks × 500sectors / track = 2500sectors)

4ms
10ms

2 + 4 = 6ms

Total time = 10 + (4 × 6) = 34ms = 0.034seconds

sequential access; that is, accesses to the sectors are distributed randomly over the disk. For each
sector, we have

Average seek 4      ms

Rotational delay 2      ms

Read 1 sectors

It is clear that the order in which sectors are read from the disk has a tremendous effect on I/O
performance. In the case of file access in which multiple sectors are read or written, we have some
control over the way in which sectors of data are deployed. However, even in the case of a file access,
in a multiprogramming environment, there will be I/O requests competing for the same disk. Thus, it is
worthwhile to examine ways in which the performance of disk I/O can be improved over that achieved
with purely random access to the disk. This leads to a consideration of disk scheduling algorithms,
which is the province of the operating system and beyond the scope of this book text (see [STAL18]
for a discussion).

Table 7.2 gives disk parameters for typical contemporary internal high-performance disks. The HGST
Ultrastar HE is intended for enterprise applications, such as use in servers and workstations. The
HGST Ultrastar C15K600 is designed for use in high-performance computing and mission critical data
center installations. The Toshiba L200 is an internal laptop hard disk drive.

Table 7.2 Typical Hard Disk Drive Parameters

Characteristics HGST Ultrastar
HE

HGST Ultrastar
C15K600

Toshiba
L200

Application Enterprise Data Center Laptop

Capacity 12 TB 600 GB 500 GB

Average seek time 8.0 ms read

8.6 ms write

2.9 ms read

3.1 ms write

11 ms

Spindle speed 7200 rpm 15,030 rpm 5400 rpm

Average latency 4.16 < 2 ms 5.6 ms

Maximum sustained transfer rate 255 MB/s 1.2 GB/s 3 GB/s

Bytes per sector 512/4096 512/4096 4096

0.008ms
6.008ms

Total time = 2500 × 6.008 = 15,020ms = 15.02seconds

Tracks per cylinder (number of platter
surfaces)

8 6 4

Cache 256 MB 128 MB 16 MB

Diameter 3.5 in (8.89
cm)s

2.5 in (6.35 cm) 2.5 in (6.35
cm)

Maximum areal density (Gb/) 134 82 66

We can make some useful observations on this table. The seek time depends in part on the power
and quality of the arm actuator. On the other end of the spectrum, a laptop disk needs to be small,
inexpensive, and low power, so that the attainable seek time is much greater. Seek time also depends
on physical characteristics. The Ultrastar C15K600 has a smaller diameter than the Ultrastar HE. With
less average distance to travel, the C15K600 achieves lower seek time. In addition, the C15K600 has
a lower bit density on the disk surface, so that less precision is needed in positioning the read/write
head, again contributing to lower seek time. Of course the penalty of achieving these lower seek times
is a much lower disk capacity. But the Ultrastar C15K600 is likely to be used in applications that call
for a high rate of accesses to the disk, so it is reasonable to invest in minimizing the seek time.

Note that for the two HGST disks, the average seek time is less for reads than for writes. For writes,
more precision is required to place the write head dead center on the track. Less precision is needed
simply to sense the data that is already there.

For the block size, or bytes per physical sector, the two HGST disks can be configured for 512 or 4096
bytes, and the laptop disk is offered only at 4096 bytes. As discussed previously, the larger block size
is more efficient in space and more effective in error correction.

Aleksandr Lukin/123RF

RAID Simulator

cm2

7.2 RAID
As discussed earlier, the rate in improvement in secondary storage performance has been
considerably less than the rate for processors and main memory. This mismatch has made the disk
storage system perhaps the main focus of concern in improving overall computer system
performance.

As in other areas of computer performance, disk storage designers recognize that if one component
can only be pushed so far, additional gains in performance are to be had by using multiple parallel
components. In the case of disk storage, this leads to the development of arrays of disks that operate
independently and in parallel. With multiple disks, separate I/O requests can be handled in parallel, as
long as the data required reside on separate disks. Further, a single I/O request can be executed in
parallel if the block of data to be accessed is distributed across multiple disks.

With the use of multiple disks, there is a wide variety of ways in which the data can be organized and
in which redundancy can be added to improve reliability. This could make it difficult to develop
database schemes that are usable on a number of platforms and operating systems. Fortunately,
industry has agreed on a standardized scheme for multiple- ​disk database design, known as RAID
(Redundant Array of Independent Disks). The RAID scheme consists of seven levels, zero through
six. These levels do not imply a hierarchical relationship, but designate different design architectures
that share three common characteristics:

 Additional levels have been defined by some researchers and some companies, but the seven levels described in

this section are the ones universally agreed on.

1. RAID is a set of physical disk drives viewed by the operating system as a single logical drive.
2. Data are distributed across the physical drives of an array in a scheme known as striping,

described subsequently.
3. Redundant disk capacity is used to store parity information, which guarantees data

recoverability in case of a disk failure.

The details of the second and third characteristics differ for the different RAID levels. RAID 0 and
RAID 1 do not support the third characteristic.

The term RAID was originally coined in a paper by a group of researchers at the University of
California at Berkeley [PATT88]. The paper outlined various RAID configurations and applications
and introduced the definitions of the RAID levels that are still used. The RAID strategy employs
multiple disk drives and distributes data in such a way as to enable simultaneous access to data from
multiple drives, thereby improving I/O performance and allowing easier incremental increases in
capacity.

 In that paper, the acronym RAID stood for Redundant Array of Inexpensive Disks. The term inexpensive was used

to contrast the small relatively inexpensive disks in the RAID array to the alternative, a single large expensive disk
(SLED). The SLED is essentially a thing of the past, with similar disk technology being used for both RAID and
non-​RAID configurations. Accordingly, the industry has adopted the term independent to emphasize that the RAID
array creates significant performance and reliability gains.

2

2

3

3

The unique contribution of the RAID proposal is to address effectively the need for redundancy.
Although allowing multiple heads and actuators to operate simultaneously achieves higher I/O and
transfer rates, the use of multiple devices increases the probability of failure. To compensate for this
decreased reliability, RAID makes use of stored parity information that enables the recovery of data
lost due to a disk failure.

We now examine each of the RAID levels. Table 7.3 provides a rough guide to the seven levels. In
the table, I/O performance is shown both in terms of data transfer capacity, or ability to move data,
and I/O request rate, or ability to satisfy I/O requests, since these RAID levels inherently perform
differently relative to these two metrics. Each RAID level’s strong point is highlighted by darker
shading. Table 7.6 illustrates the use of the seven RAID schemes to support a data capacity requiring
four disks with no redundancy. The figures highlight the layout of user data and redundant data and
indicate the relative storage requirements of the various levels. We refer to these figures throughout
the following discussion. Of the seven RAID levels described, only four are commonly used: RAID
levels 0, 1, 5, and 6.

Table 7.3 RAID Levels
Note: ; m proportional to log N

Category Level Description Disks
Required

Data
Availability

Large I/O
Data

Transfer
Capacity

Small I/O
Request Rate

Striping 0 Nonredundant N Lower than
single disk

Very high Very high for
both read and
write

Mirroring 1 Mirrored 2N Higher than
RAID 2, 3,
4, or 5;
lower than
RAID 6

Higher than
single disk
for read;
similar to
single disk
for write

Up to twice
that of a
single disk for
read; similar
to single disk
for write

Parallel
access

2 Redundant via
Hamming code

Much
higher than
single disk;
comparable
to RAID 3,
4, or 5

Highest of all
listed
alternatives

Approximately
twice that of a
single disk

3 Bit-​interleaved
parity

Much
higher than
single disk;
comparable

Highest of all
listed
alternatives

Approximately
twice that of a
single disk

N = number of data disks

N + m

N + 1

to RAID 2,
4, or 5

Independent
access

4 Block-​interleaved
parity

Much
higher than
single disk;
comparable
to RAID 2,
3, or 5

Similar to
RAID 0 for
read;
significantly
lower than
single disk
for write

Similar to
RAID 0 for
read;
significantly
lower than
single disk for
write

5 Block-​interleaved
distributed parity

Much
higher than
single disk;
comparable
to RAID 2,
3, or 4

Similar to
RAID 0 for
read; lower
than single
disk for write

Similar to
RAID 0 for
read;
generally
lower than
single disk for
write

6 Block-​interleaved
dual distributed
parity

Highest of
all listed
alternatives

Similar to
RAID 0 for
read; lower
than RAID 5
for write

Similar to
RAID 0 for
read;
significantly
lower than
RAID 5 for
write

RAID Level 0

RAID level 0 is not a true member of the RAID family because it does not include redundancy to
improve performance. However, there are a few applications, such as some on supercomputers in
which performance and capacity are primary concerns and low cost is more important than improved
reliability.

For RAID 0, the user and system data are distributed across all of the disks in the array. This has a
notable advantage over the use of a single large disk: If two- ​different I/O requests are pending for two
different blocks of data, then there is a good chance that the requested blocks are on different disks.
Thus, the two requests can be issued in parallel, reducing the I/O queuing time.

But RAID 0, as with all of the RAID levels, goes further than simply distributing the data across a disk
array: The data are striped across the available disks. This is best understood by considering Figure
7.7. All of the user and system data are viewed as being stored on a logical disk. The logical disk is
divided into strips; these strips may be physical blocks, sectors, or some other unit. The strips are
mapped round robin to consecutive physical disks in the RAID array. A set of logically consecutive

N + 1

N + 1

N + 2

strips that maps exactly one strip to each array member is referred to as a stripe. In an n﻿-​disk array,
the first n logical strips are physically stored as the first strip on each of the n disks, forming the first
stripe; the second n strips are distributed as the second strips on each disk; and so on. The advantage
of this layout is that if a single I/O request consists of multiple logically contiguous strips, then up to n
strips for that request can be handled in parallel, greatly reducing the I/O transfer time.

Figure 7.7 Data Mapping for a RAID Level 0 Array

Figure 7.7 indicates the use of array management software to map between logical and physical disk
space. This software may execute either in the disk subsystem or in a host computer.

RAID 0 FOR HIGH DATA TRANSFER CAPACITY

 The performance of any of the RAID levels depends critically on the request patterns of the host
system and on the layout of the data. These issues can be most clearly addressed in RAID 0, where
the impact of redundancy does not interfere with the analysis. First, let us consider the use of RAID 0
to achieve a high data transfer rate. For applications to experience a high transfer rate, two
requirements must be met. First, a high transfer capacity must exist along the entire path between
host memory and the individual disk drives. This includes internal controller buses, host system I/O
buses, I/O adapters, and host memory buses.

The second requirement is that the application must make I/O requests that drive the disk array
efficiently. This requirement is met if the typical request is for large amounts of logically contiguous
data, compared to the size of a strip. In this case, a single I/O request involves the parallel transfer of

data from multiple disks, increasing the effective transfer rate compared to a single- ​disk transfer.

RAID 0 FOR HIGH I/O REQUEST RATE

In a transaction-​oriented environment, the user is typically more concerned with response time than
with transfer rate. For an individual I/O request for a small amount of data, the I/O time is dominated
by the motion of the disk heads (seek time) and the movement of the disk (rotational latency).

In a transaction environment, there may be hundreds of I/O requests per second. A disk array can
provide high I/O execution rates by balancing the I/O load across multiple disks. Effective load
balancing is achieved only if there are typically multiple I/O requests outstanding. This, in turn, implies
that there are multiple independent applications or a single transaction- ​oriented application that is
capable of multiple asynchronous I/O requests. The performance will also be influenced by the strip
size. If the strip size is relatively large, so that a single I/O request only involves a single disk access,
then multiple waiting I/O requests can be handled in parallel, reducing the queuing time for each
request.

RAID Level 1

RAID 1 differs from RAID levels 2 through 6 in the way in which redundancy is achieved. In these
other RAID schemes, some form of parity calculation is used to introduce redundancy, whereas in
RAID 1, redundancy is achieved by the simple expedient of duplicating all the data. As Figure 7.6b
shows, data striping is used, as in RAID 0. But in this case, each logical strip is mapped to two
separate physical disks so that every disk in the array has a mirror disk that contains the same data.
RAID 1 can also be implemented without data striping, though this is less common.

Figure 7.6 RAID Levels

There are a number of positive aspects to the RAID 1 organization:

1. A read request can be serviced by either of the two disks that contains the requested data,

whichever one involves the minimum seek time plus rotational latency.
2. A write request requires that both corresponding strips be updated, but this can be done in

parallel. Thus, the write performance is dictated by the slower of the two writes (i.e., the one that
involves the larger seek time plus rotational latency). However, there is no “write penalty” with
RAID 1. RAID levels 2 through 6 involve the use of parity bits. Therefore, when a single strip is
updated, the array management software must first compute and update the parity bits as well
as updating the actual strip in question.

3. Recovery from a failure is simple. When a drive fails, the data may still be accessed from the
second drive.

The principal disadvantage of RAID 1 is the cost; it requires twice the disk space of the logical disk
that it supports. Because of that, a RAID 1 configuration is likely to be limited to drives that store
system software and data, and other highly critical files. In these cases, RAID 1 provides a real- ​time
copy of all data so that in the event of a disk failure, all of the critical data are still immediately
available.

In a transaction-​oriented environment, RAID 1 can achieve high I/O request rates if the bulk of the
requests are reads. In this situation, the performance of RAID 1 can approach double of that of RAID
0. However, if a substantial fraction of the I/O requests are write requests, then there may be no
significant performance gain over RAID 0. RAID 1 may also provide improved performance over RAID
0 for data transfer intensive applications with a high percentage of reads. Improvement occurs if the
application can split each read request so that both disk members participate.

RAID Level 2

RAID levels 2 and 3 make use of a parallel access technique. In a parallel access array, all member
disks participate in the execution of every I/O request. Typically, the spindles of the individual drives
are synchronized so that each disk head is in the same position on each disk at any given time.

As in the other RAID schemes, data striping is used. In the case of RAID 2 and 3, the strips are very
small, often as small as a single byte or word. With RAID 2, an error- ​correcting code is calculated
across corresponding bits on each data disk, and the bits of the code are stored in the corresponding
bit positions on multiple parity disks. Typically, a Hamming code is used, which is able to correct
single- ​bit errors and detect double- ​bit errors.

Although RAID 2 requires fewer disks than RAID 1, it is still rather costly. The number of redundant
disks is proportional to the log of the number of data disks. On a single read, all disks are
simultaneously accessed. The requested data and the associated error- ​correcting code are delivered
to the array controller. If there is a single- ​bit error, the controller can recognize and correct the error
instantly, so that the read access time is not slowed. On a single write, all data disks and parity disks
must be accessed for the write operation.

RAID 2 would only be an effective choice in an environment in which many disk errors occur. Given
the high reliability of individual disks and disk drives, RAID 2 is overkill and is not implemented.

RAID Level 3

RAID 3 is organized in a similar fashion to RAID 2. The difference is that RAID 3 requires only a single
redundant disk, no matter how large the disk array. RAID 3 employs parallel access, with data
distributed in small strips. Instead of an error- ​correcting code, a simple parity bit is computed for the
set of individual bits in the same position on all of the data disks.

REDUNDANCY

In the event of a drive failure, the parity drive is accessed and data is reconstructed from the
remaining devices. Once the failed drive is replaced, the missing data can be restored on the new
drive and operation resumed.

Data reconstruction is simple. Consider an array of five drives in which X0 through X3 contain data
and X4 is the parity disk. The parity for the ith bit is calculated as follows:

where is exclusive- ​OR function.

Suppose that drive X1 has failed. If we add to both sides of the preceding equation, we
get

Thus, the contents of each strip of data on X1 can be regenerated from the contents of the
corresponding strips on the remaining disks in the array. This principle is true for RAID levels 3
through 6.

In the event of a disk failure, all of the data are still available in what is referred to as reduced mode. In
this mode, for reads, the missing data are regenerated on the fly using the exclusive- ​OR calculation.
When data are written to a reduced RAID 3 array, consistency of the parity must be maintained for
later regeneration. Return to full operation requires that the failed disk be replaced and the entire
contents of the failed disk be regenerated on the new disk.

PERFORMANCE

Because data are striped in very small strips, RAID 3 can achieve very high data transfer rates. Any
I/O request will involve the parallel transfer of data from all of the data disks. For large transfers, the
performance improvement is especially noticeable. On the other hand, only one I/O request can be
executed at a time. Thus, in a transaction- ​oriented environment, performance suffers.

RAID Level 4

RAID levels 4 through 6 make use of an independent access technique. In an independent access
array, each member disk operates independently, so that separate I/O requests can be satisfied in
parallel. Because of this, independent access arrays are more suitable for applications that require
high I/O request rates and are relatively less suited for applications that require high data transfer
rates.

As in the other RAID schemes, data striping is used. In the case of RAID 4 through 6, the strips are
relatively large. With RAID 4, a bit- ​by-​bit parity strip is calculated across corresponding strips on each
data disk, and the parity bits are stored in the corresponding strip on the parity disk.

RAID 4 involves a write penalty when an I/O write request of small size is performed. Each time that a
write occurs, the array management software must update not only the user data but also the
corresponding parity bits. Consider an array of five drives in which X0 through X3 contain data and X4
is the parity disk. Suppose that a write is performed that only involves a strip on disk X1. Initially, for
each bit i, we have the following relationship:

X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)

⊕

X4(i) ⊕ X1(i)

X1(i) = X4(i) ⊕ X3(i) ⊕ X2(i) ⊕ X0(i)

After the update, with potentially altered bits indicated by a prime symbol:

The preceding set of equations is derived as follows. The first line shows that a change in X1 will also
affect the parity disk X4. In the second line, we add the terms . Because the
exclusive- ​OR of any quantity with itself is 0, this does not affect the equation. However, it is a
convenience that is used to create the third line, by reordering. Finally, Equation (7.2) is used to
replace the first four terms by X4(i).

To calculate the new parity, the array management software must read the old user strip and the old
parity strip. Then it can update these two strips with the new data and the newly calculated parity.
Thus, each strip write involves two reads and two writes.

In the case of a larger size I/O write that involves strips on all disk drives, parity is easily computed by
calculation using only the new data bits. Thus, the parity drive can be updated in parallel with the data
drives and there are no extra reads or writes.

In any case, every write operation must involve the parity disk, which therefore can become a
bottleneck.

RAID Level 5

RAID 5 is organized in a similar fashion to RAID 4. The difference is that RAID 5 distributes the parity
strips across all disks. A typical allocation is a round- ​robin scheme, as illustrated in Figure 7.6f. For
an n ﻿-​disk array, the parity strip is on a different disk for the first n stripes, and the pattern then repeats.

The distribution of parity strips across all drives avoids the potential I/O bottle- ​neck found in RAID 4.

RAID Level 6

RAID 6 was introduced in a subsequent paper by the Berkeley researchers [KATZ89]. In the RAID 6
scheme, two different parity calculations are carried out and stored in separate blocks on different
disks. Thus, a RAID 6 array whose user data require N disks consists of disks.

Figure 7.6g illustrates the scheme. P and Q are two different data check algorithms. One of the two is
the exclusive- ​OR calculation used in RAID 4 and 5. But the other is an independent data check
algorithm. This makes it possible to regenerate data even if two disks containing user data fail.

The advantage of RAID 6 is that it provides extremely high data availability. Three disks would have to
fail within the MTTR (mean time to repair) interval to cause data to be lost. On the other hand, RAID 6
incurs a substantial write penalty, because each write affects two parity blocks. Performance
benchmarks [EISC07] show a RAID 6 controller can suffer more than a 30% drop in overall write
performance compared with a RAID 5 implementation. RAID 5 and RAID 6 read performance is
comparable.

X4(i) = X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0(i)
(7.2)

X4 ′ (i) = X3(i) ⊕ X2(i) ⊕ X1 ′ (i)X0(i)
= X3(i) ⊕ X2(i) ⊕ X1 ′ (i) ⊕ X0 (i) ⊕ X1(i) ⊕ X1(i)
= X3(i) ⊕ X2(i) ⊕ X1(i) ⊕ X0 (i) ⊕ X1(i) ⊕ X1 ′ (i)
= X4(i) ⊕ X1(i) ⊕ X1 ′ (i)

⊕X1(i) ⊕ X1(i)]

N + 2

Table 7.4 is a comparative summary of the seven levels.

Table 7.4 RAID Comparison

Level Advantages Disadvantages Applications

0 I/O performance is greatly improved
by spreading the I/O load across
many channels and drives

No parity calculation overhead is
involved

Very simple design

Easy to implement

The failure of just one drive
will result in all data in an
array being lost

Video production
and editing

Image Editing

Pre-​press
applications

Any application
requiring high
bandwidth

1 100% redundancy of data means no
rebuild is necessary in case of a disk
failure, just a copy to the replacement
disk

Under certain circumstances, RAID 1
can sustain multiple simultaneous
drive failures

Simplest RAID storage subsystem
design

Highest disk overhead of all
RAID types (100%)—
inefficient

Accounting

Payroll

Financial

Any application
requiring very high
availability

2 Extremely high data transfer rates
possible

The higher the data transfer rate
required, the better the ratio of data
disks to ECC disks

Relatively simple controller design
compared to RAID levels 3, 4, & 5

Very high ratio of ECC disks
to data disks with smaller
word sizes— ​inefficient

Entry level cost very high
—​requires very high transfer
rate requirement to justify

No commercial
implementations
exist/not
commercially
viable

3 Very high read data transfer rate

Very high write data transfer rate

Disk failure has an insignificant impact

Transaction rate equal to
that of a single disk drive at
best (if spindles are
synchronized)

Video production
and live streaming

Image editing

on throughput

Low ratio of ECC (parity) disks to data
disks means high efficiency

Controller design is fairly
complex

Video editing

Prepress
applications

Any application
requiring high
throughput

4 Very high Read data transaction rate

Low ratio of ECC (parity) disks to data
disks means high efficiency

Quite complex controller
design

Worst write transaction rate
and Write aggregate
transfer rate

Difficult and inefficient data
rebuild in the event of disk
failure

No commercial
implementations
exist/not
commercially
viable

5 Highest Read data transaction rate

Low ratio of ECC (parity) disks to data
disks means high efficiency

Good aggregate transfer rate

Most complex controller
design

Difficult to rebuild in the
event of a disk failure (as
compared to RAID level 1)

File and application
servers

Database servers

Web, e-​mail, and
news servers

Intranet servers

Most versatile
RAID level

6 Provides for an extremely high data
fault tolerance and can sustain
multiple simultaneous drive failures

More complex controller
design

Controller overhead to
compute parity addresses is
extremely high

Perfect solution for
mission critical
applications

7.3 Solid State Drives
One of the most significant developments in computer architecture in recent years is the increasing
use of solid state drives (SSDs) to complement or even replace hard disk drives (HDDs), both
as internal and external secondary memory. The term solid state refers to electronic circuitry built with
semiconductors. An SSD is a memory device made with solid state components that can be used as a
replacement to a hard disk drive. The SSDs now on the market and coming on line use NAND flash
memory, which is described in Chapter 5.

SSD Compared to HDD

As the cost of flash-​based SSDs has dropped and the performance and bit density increased, SSDs
have become increasingly competitive with HDDs. Table 7.5 shows typical measures of comparison
at the time of this writing.

Table 7.5 Comparison of Solid State Drives and Disk Drives

NAND Flash Drives Seagate Laptop Internal HDD

File
copy/write
speed

200–550 Mbps 50–120 Mbps

Power
draw/battery
life

Less power draw, averages 2–3
watts, resulting in battery

boost

More power draw, averages 6–7 watts and
therefore uses more battery

Storage
capacity

Typically not larger than 1 TB for
notebook size drives; 4 max for
desktops

Typically around 500 GB and 2 TB max for
notebook size drives; 10 TB max for
desktops

Cost Approx. $0.20 per GB for a 1-TB
drive

Approx. $0.03 per GB for a 4-TB drive

SSDs have the following advantages over HDDs:

High-​performance input/output operations per second (IOPS): Significantly increases
performance I/O subsystems.
Durability: Less susceptible to physical shock and vibration.
Longer lifespan: SSDs are not susceptible to mechanical wear.
Lower power consumption: SSDs use considerably less power than comparable- ​size HDDs.
Quieter and cooler running capabilities: Less space required, lower energy costs, and a greener
enterprise.
Lower access times and latency rates: Over 10 times faster than the spinning disks in an HDD.

Currently, HDDs enjoy a cost per bit advantage and a capacity advantage, but these differences are
shrinking.

30 + minute

SSD Organization

Figure 7.8 illustrates a general view of the common architectural system component associated with
any SSD system. On the host system, the operating system invokes file system software to access
data on the disk. The file system, in turn, invokes I/O driver software. The I/O driver software provides
host access to the particular SSD product. The interface component in Figure 7.8 refers to the
physical and electrical interface between the host processor and the SSD peripheral device. If the
device is an internal hard drive, a common interface is PCIe. For external devices, one common
interface is USB.

Figure 7.8 Solid State Drive Architecture

In addition to the interface to the host system, the SSD contains the following components:

Controller: Provides SSD device level interfacing and firmware execution.
Addressing: Logic that performs the selection function across the flash memory components.
Data buffer/cache: High speed RAM memory components used for speed matching and to

increased data throughput.
Error correction: Logic for error detection and correction.
Flash memory components: Individual NAND flash chips.

Practical Issues

There are two practical issues peculiar to SSDs that are not faced by HDDs. First, SSD performance
has a tendency to slow down as the device is used. To understand the reason for this, you need to
know that files are stored on disk as a set of pages, typically 4 KB in length. These pages are not
necessarily, and indeed not typically, stored as a contiguous set of pages on the disk. The reason for
this arrangement is explained in our discussion of virtual memory in Chapter 9. However, flash
memory is accessed in blocks, with a typical block size of 512 KB, so that there are typically 128
pages per block. Now consider what must be done to write a page onto a flash memory.

1. The entire block must be read from the flash memory and placed in a RAM buffer. Then the
appropriate page in the RAM buffer is updated.

2. Before the block can be written back to flash memory, the entire block of flash memory must be
erased— ​it is not possible to erase just one page of the flash memory.

3. The entire block from the buffer is now written back to the flash memory.

Now, when a flash drive is relatively empty and a new file is created, the pages of that file are written
on to the drive contiguously, so that one or only a few blocks are affected. However, over time,
because of the way virtual memory works, files become fragmented, with pages scattered over
multiple blocks. As the drive becomes more occupied, there is more fragmentation, so the writing of a
new file can affect multiple blocks. Thus, the writing of multiple pages from one block becomes slower,
the more fully occupied the disk is. Manufacturers have developed a variety of techniques to
compensate for this property of flash memory, such as setting aside a substantial portion of the SSD
as extra space for write operations (called overprovisioning), then to erase inactive pages during idle
time used to defragment the disk. Another technique is the TRIM command, which allows an operating
system to inform an SSD which blocks of data are no longer considered in use and can be wiped
internally.

 While TRIM is frequently spelled in capital letters, it is not an acronym; it is merely a command name.

A second practical issue with flash memory drives is that a flash memory becomes unusable after a
certain number of writes. As flash cells are stressed, they lose their ability to record and retain values.
A typical limit is 100,000 writes [GSOE08]. Techniques for prolonging the life of an SSD drive include
front-​ending the flash with a cache to delay and group write operations, using wear- ​leveling algorithms
that evenly distribute writes across block of cells, and sophisticated bad- ​block management
techniques. In addition, vendors are deploying SSDs in RAID configurations to further reduce the
probability of data loss. Most flash devices are also capable of estimating their own remaining
lifetimes, so systems can anticipate failure and take preemptive action.

4

4

7.4 Optical Memory
In 1983, one of the most successful consumer products of all time was introduced: the compact disk
(CD) digital audio system. The CD is a nonerasable disk that can store more than 60 minutes of
audio information on one side. The huge commercial success of the CD enabled the development of
low-​cost optical-​disk storage technology that has revolutionized computer data storage. A variety of
optical- ​disk systems have been introduced (Table 7.6). We briefly review each of these.

Table 7.6 Optical Disk Products

CD

Compact Disk. A nonerasable disk that stores digitized audio information. The standard system
uses 12-cm disks and can record more than 60 minutes of uninterrupted playing time.

CD-​ROM

Compact Disk Read- ​Only Memory. A nonerasable disk used for storing computer data. The
standard system uses 12-cm disks and can hold more than 650 Mbytes.

CD-​R

CD Recordable. Similar to a CD- ​ROM. The user can write to the disk only once.

CD-​RW

CD Rewritable. Similar to a CD- ​ROM. The user can erase and rewrite to the disk multiple times.

DVD

Digital Versatile Disk. A technology for producing digitized, compressed representation of video
information, as well as large volumes of other digital data. Both 8 and 12 cm diameters are used,
with a double- ​sided capacity of up to 17 Gbytes. The basic DVD is read- ​only (DVD- ​ROM).

DVD-​R

DVD Recordable. Similar to a DVD- ​ROM. The user can write to the disk only once. Only one- ​sided
disks can be used.

DVD-​RW

DVD Rewritable. Similar to a DVD- ​ROM. The user can erase and rewrite to the disk multiple times.
Only one-​sided disks can be used.

Blu-​ray DVD

High- ​definition video disk. Provides considerably greater data storage density than DVD, using a
405-nm (blue- ​violet) laser. A single layer on a single side can store 25 Gbytes.

Compact Disk

CD-ROM

Both the audio CD and the CD-​ROM (compact disk read- ​only memory) share a similar technology.
The main difference is that CD- ​ROM players are more rugged and have error correction devices to
ensure that data are properly transferred from disk to computer. Both types of disk are made the same
way. The disk is formed from a resin, such as polycarbonate. Digitally recorded information (either
music or computer data) is imprinted as a series of microscopic pits on the surface of the
polycarbonate. This is done, first of all, with a finely focused, high- ​intensity laser to create a master
disk. The master is used, in turn, to make a die to stamp out copies onto polycarbonate. The pitted
surface is then coated with a highly reflective surface, usually aluminum or gold. This shiny surface is
protected against dust and scratches by a top coat of clear acrylic. Finally, a label can be silkscreened
onto the acrylic.

Information is retrieved from a CD or CD- ​ROM by a low-​powered laser housed in an optical- ​disk
player, or drive unit. The laser shines through the clear polycarbonate while a motor spins the disk
past it (Figure 7.9). The intensity of the reflected light of the laser changes as it encounters a pit.
Specifically, if the laser beam falls on a pit, which has a somewhat rough surface, the light scatters
and a low intensity is reflected back to the source. The areas between pits are called lands. A land is
a smooth surface, which reflects back at higher intensity. The change between pits and lands is
detected by a photosensor and converted into a digital signal. The sensor tests the surface at regular
intervals. The beginning or end of a pit represents a 1; when no change in elevation occurs between
intervals, a 0 is recorded.

Figure 7.9 CD Operation

Recall that on a magnetic disk, information is recorded in concentric tracks. With the simplest constant
angular velocity (CAV) system, the number of bits per track is constant. An increase in density is
achieved with multiple zone recording, in which the surface is divided into a number of zones, with

zones farther from the center containing more bits than zones closer to the center. Although this
technique increases capacity, it is still not optimal.

To achieve greater capacity, CDs and CD- ​ROMs do not organize information on concentric tracks.
Instead, the disk contains a single spiral track, beginning near the center and spiraling out to the outer
edge of the disk. Sectors near the outside of the disk are the same length as those near the inside.
Thus, information is packed evenly across the disk in segments of the same size and these are
scanned at the same rate by rotating the disk at a variable speed. The pits are then read by the laser
at a constant linear velocity (CLV). The disk rotates more slowly for accesses near the outer edge
than for those near the center. Thus, the capacity of a track and the rotational delay both increase for
positions nearer the outer edge of the disk. The data capacity for a CD- ​ROM is about 680 MB.

Data on the CD- ​ROM are organized as a sequence of blocks. A typical block format is shown in
Figure 7.10. It consists of the following fields:

Figure 7.10 CD-​ROM Block Format

Sync: The sync field identifies the beginning of a block. It consists of a byte of all 0s, 10 bytes of all
1s, and a byte of all 0s.
Header: The header contains the block address and the mode byte. Mode 0 specifies a blank data
field; mode 1 specifies the use of an error- ​correcting code and 2048 bytes of data; mode 2
specifies 2336 bytes of user data with no error- ​correcting code.
Data: User data.
Auxiliary: Additional user data in mode 2. In mode 1, this is a 288-byte error- ​correcting code.

With the use of CLV, random access becomes more difficult. Locating a specific address involves
moving the head to the general area, adjusting the rotation speed and reading the address, and then
making minor adjustments to find and access the specific sector.

CD-​ROM is appropriate for the distribution of large amounts of data to a large number of users.
Because of the expense of the initial writing process, it is not appropriate for individualized
applications. Compared with traditional magnetic disks, the CD- ​ROM has two advantages:

The optical disk together with the information stored on it can be mass replicated inexpensively
—​unlike a magnetic disk. The database on a magnetic disk has to be reproduced by copying one
disk at a time using two disk drives.
The optical disk is removable, allowing the disk itself to be used for archival storage. Most
magnetic disks are nonremovable. The information on nonremovable magnetic disks must first be
copied to another storage medium before the disk drive/disk can be used to store new information.

The disadvantages of CD- ​ROM are as follows:

It is read-​only and cannot be updated.
It has an access time much longer than that of a magnetic disk drive, as much as half a second.

CD RECORDABLE

To accommodate applications in which only one or a small number of copies of a set of data is
needed, the write- ​once read- ​many CD, known as the CD recordable (CD-​R), has been developed.
For CD-​R, a disk is prepared in such a way that it can be subsequently written once with a laser beam
of modest intensity. Thus, with a somewhat more expensive disk controller than for CD- ​ROM, the
customer can write once as well as read the disk.

The CD-​R medium is similar but not identical to that of a CD or CD- ​ROM. For CDs and CD- ​ROMs,
information is recorded by the pitting of the surface of the medium, which changes reflectivity. For a
CD-​R, the medium includes a dye layer. The dye is used to change reflectivity and is activated by a
high- ​intensity laser. The resulting disk can be read on a CD- ​R drive or a CD- ​ROM drive.

The CD-​R optical disk is attractive for archival storage of documents and files. It provides a permanent
record of large volumes of user data.

CD REWRITABLE

The CD-​RW optical disk can be repeatedly written and overwritten, as with a magnetic disk. Although
a number of approaches have been tried, the only pure optical approach that has proved attractive is
called phase change. The phase change disk uses a material that has two significantly different
reflectivities in two different phase states. There is an amorphous state, in which the molecules exhibit
a random orientation that reflects light poorly; and a crystalline state, which has a smooth surface that
reflects light well. A beam of laser light can change the material from one phase to the other. The
primary disadvantage of phase change optical disks is that the material eventually and permanently
loses its desirable properties. Current materials can be used for between 500,000 and 1,000,000
erase cycles.

The CD-​RW has the obvious advantage over CD- ​ROM and CD-​R that it can be rewritten and thus
used as a true secondary storage. As such, it competes with magnetic disks. A key advantage of the
optical disk is that the engineering tolerances for optical disks are much less severe than for
high- ​capacity magnetic disks. Thus, they exhibit higher reliability and longer life.

Digital Versatile Disk

With the capacious digital versatile disk (DVD), the electronics industry has at last found an
acceptable replacement for the analog VHS video tape. The DVD has replaced the videotape used in
video cassette recorders (VCRs) and, more important for this discussion, replaced the CD- ​ROM in
personal computers and servers. The DVD takes video into the digital age. It delivers movies with
impressive picture quality, and it can be randomly accessed like audio CDs, which DVD machines can
also play. Vast volumes of data can be crammed onto the disk, currently seven times as much as a
CD-​ROM. With DVD’s huge storage capacity and vivid quality, PC games have become more realistic
and educational software incorporates more video. Following in the wake of these developments has
been a new crest of traffic over the Internet and corporate intranets, as this material is incorporated
into Web sites.

The DVD’s greater capacity is due to three differences from CDs (Figure 7.11):

1. Bits are packed more closely on a DVD. The spacing between loops of a spiral on a CD is
 and the minimum distance between pits along the spiral is .1.6μm 0.834μm

The DVD uses a laser with shorter wavelength and achieves a loop spacing of 0.74 and a
minimum distance between pits of . The result of these two improvements is about a
seven-​fold increase in capacity, to about 4.7 GB.

Figure 7.11 CD-​ROM and DVD-​ROM

2. The DVD employs a second layer of pits and lands on top of the first layer. A dual- ​layer DVD
has a semireflective layer on top of the reflective layer, and by adjusting focus, the lasers in
DVD drives can read each layer separately. This technique almost doubles the capacity of the
disk, to about 8.5 GB. The lower reflectivity of the second layer limits its storage capacity, so
that a full doubling is not achieved.

3. The DVD-​ROM can be two sided, whereas data are recorded on only one side of a CD. This
brings total capacity up to 17 GB.

As with the CD, DVDs come in writeable as well as read- ​only versions (Table 7.6).

High- ​Definition Optical Disks

μm

0.4μm

High- ​definition optical disks are designed to store high- ​definition videos and to provide significantly
greater storage capacity compared to DVDs. The higher bit density is achieved by using a laser with a
shorter wavelength, in the blue- ​violet range. The data pits, which constitute the digital 1s and 0s, are
smaller on the high- ​definition optical disks compared to DVDs because of the shorter laser
wavelength.

Two competing disk formats and technologies initially competed for market acceptance: HD DVD and
Blu-​ray DVD. The Blu-​ray scheme ultimately achieved market dominance. The HD DVD scheme can
store 15 GB on a single layer on a single side. Blu- ​ray positions the data layer on the disk closer to the
laser (shown on the right- ​hand side of each diagram in Figure 7.12). This enables a tighter focus and
less distortion, and thus smaller pits and tracks. Blu- ​ray can store 25 GB on a single layer. Three
versions are available: read only (BD- ​ROM), recordable once (BD- ​R), and rerecordable (BD- ​RE).

Figure 7.12 Optical Memory Characteristics

7.5 Magnetic Tape
Tape systems use the same reading and recording techniques as disk systems. The medium is
flexible polyester (similar to that used in some clothing) tape coated with magnetizable material. The
coating may consist of particles of pure metal in special binders or vapor- ​plated metal films. The tape
and the tape drive are analogous to a home tape recorder system. Tape widths vary from 0.38 cm
(0.15 inch) to 1.27 cm (0.5 inch). Tapes used to be packaged as open reels that have to be threaded
through a second spindle for use. Today, virtually all tapes are housed in cartridges.

Data on the tape are structured as a number of parallel tracks running lengthwise. Earlier tape
systems typically used nine tracks. This made it possible to store data one byte at a time, with an
additional parity bit as the ninth track. This was followed by tape systems using 18 or 36 tracks,
corresponding to a digital word or double word. The recording of data in this form is referred to as
parallel recording. Most modern systems instead use serial recording, in which data are laid out as
a sequence of bits along each track, as is done with magnetic disks. As with the disk, data are read
and written in contiguous blocks, called physical records, on a tape. Blocks on the tape are separated
by gaps referred to as interrecord gaps. As with the disk, the tape is formatted to assist in locating
physical records.

The typical recording technique used in serial tapes is referred to as serpentine recording. In this
technique, when data are being recorded, the first set of bits is recorded along the whole length of the
tape. When the end of the tape is reached, the heads are repositioned to record a new track, and the
tape is again recorded on its whole length, this time in the opposite direction. That process continues,
back and forth, until the tape is full (Figure 7.13a). To increase speed, the read- ​write head is capable
of reading and writing a number of adjacent tracks simultaneously (typically two to eight tracks). Data
are still recorded serially along individual tracks, but blocks in sequence are stored on adjacent tracks,
as suggested by Figure 7.13b.

Figure 7.13 Typical Magnetic Tape Features

A tape drive is a sequential- ​access device. If the tape head is positioned at record 1, then to read
record N, it is necessary to read physical records 1 through , one at a time. If the head is
currently positioned beyond the desired record, it is necessary to rewind the tape a certain distance
and begin reading forward. Unlike the disk, the tape is in motion only during a read or write operation.

In contrast to the tape, the disk drive is referred to as a direct-​access device. A disk drive need not
read all the sectors on a disk sequentially to get to the desired one. It must only wait for the
intervening sectors within one track and can make successive accesses to any track.

Magnetic tape was the first kind of secondary memory. It is still widely used as the lowest- ​cost,
slowest-​speed member of the memory hierarchy.

The dominant tape technology today is a cartridge system known as linear tape- ​open (LTO). LTO was
developed in the late 1990s as an open- ​source alternative to the various proprietary systems on the
market. Table 7.7 shows parameters for the various LTO generations.

N − 1

Table 7.7 LTO Tape Drives

LTO-​1 LTO-​2 LTO-​3 LTO-​4 LTO-​5 LTO-​6 LTO-​7 LTO-​8

Release date 2000 2003 2005 2007 2010 2012 TBA TBA

Compressed
capacity

200
GB

400
GB

800
GB

1600
GB

3.2 TB 8 TB 16 TB 32 TB

Compressed
transfer rate

40
MB/s

80
MB/s

160
MB/s

240
MB/s

280
MB/s

400
MB/s

788
MB/s

1.18
GB/s

Linear density
(bits/mm)

4880 7398 9638 13,250 15,142 15,143 19,094

Tape tracks 384 512 704 896 1280 2176 3,584

Tape length (m) 609 609 680 820 846 846 960

Tape width (cm) 1.27 1.27 1.27 1.27 1.27 1.27 1.27

Write elements 8 8 16 16 16 16 32

WORM? No No Yes Yes Yes Yes Yes Yes

Encryption
Capable?

No No No Yes Yes Yes Yes Yes

Partitioning? No No No No Yes Yes Yes Yes

7.6 Key Terms, Review Questions, and Problems

Key Terms

access time

Blu-​ray

CD

CD-​R

CD-​ROM

CD-​RW

constant angular velocity (CAV)

constant linear velocity (CLV)

cylinder

DVD

DVD-​R

DVD-​ROM

DVD-​RW

fixed-​head disk

flash memory

floppy disk

gap

hard disk drive (HDD)

head

land

magnetic disk

magnetic tape

magnetoresistive

movable-​head disk

multiple zone recording

nonremovable disk

optical memory

pit

platter

RAID

removable disk

rotational delay

sector

seek time

serpentine recording

solid state drive (SSD)

striped data

substrate

track

transfer time

Review Questions

Problems

7.1 What are the advantages of using a glass substrate for a magnetic disk?
7.2 How are data written onto a magnetic disk?
7.3 How are data read from a magnetic disk?
7.4 Explain the difference between a simple CAV system and a multiple zone recording system.
7.5 Define the terms track, cylinder, and sector.
7.6 What is the typical disk sector size?
7.7 Define the terms seek time, rotational delay, access time, and transfer time.
7.8 What common characteristics are shared by all RAID levels?
7.9 Briefly define the seven RAID levels.
7.10 Explain the term striped data.
7.11 How is redundancy achieved in a RAID system?
7.12 In the context of RAID, what is the distinction between parallel access and independent
access?
7.13 What is the difference between CAV and CLV?
7.14 What differences between a CD and a DVD account for the larger capacity of the latter?
7.15 Explain serpentine recording.

7.1 Justify Equation 7.1 . That is, explain how each of the three terms on the right- ​hand side of
the equation contributes to the value on the left- ​hand side.
7.2 Consider a disk with N tracks numbered from 0 to and assume that requested
sectors are distributed randomly and evenly over the disk. We want to calculate the average
number of tracks traversed by a seek.

a. First, calculate the probability of a seek of length j when the head is currently positioned
over track t. Hint: This is a matter of determining the total number of combinations,
recognizing that all track positions for the destination of the seek are equally likely.

b. Next, calculate the probability of a seek of length K. Hint: This involves the summing over
all possible combinations of movements of K tracks.

c. Calculate the average number of tracks traversed by a seek, using the formula for
expected value

(N − 1)

N − 1

Hint: Use the equalities:

d. Show that for large values of N, the average number of tracks traversed by a seek
approaches N/3.

7.3 Define the following for a disk system:

Develop a formula for as a function of the other parameters.
7.4 Consider a magnetic disk drive with 8 surfaces, 512 tracks per surface, and 64 sectors per
track. Sector size is 1 kB. The average seek time is 8 ms, the track-​to-​track access time is 1.5
ms, and the drive rotates at 3600 rpm. Successive tracks in a cylinder can be read without head
movement.

a. What is the disk capacity?
b. What is the average access time? Assume this file is stored in successive sectors and

tracks of successive cylinders, starting at sector 0, track 0, of cylinder i.
c. Estimate the time required to transfer a 5-MB file.
d. What is the burst transfer rate?

7.5 Consider a single- ​platter disk with the following parameters: rotation speed: 7200 rpm;
number of tracks on one side of platter: 30,000; number of sectors per track: 600; seek time:
one ms for every hundred tracks traversed. Let the disk receive a request to access a random
sector on a random track and assume the disk head starts at track 0.

a. What is the average seek time?
b. What is the average rotational latency?
c. What is the transfer time for a sector?
d. What is the total average time to satisfy a request?

7.6 A distinction is made between physical records and logical records. A logical record is a
collection of related data elements treated as a conceptual unit, independent of how or where
the information is stored. A physical record is a contiguous area of storage space that is
defined by the characteristics of the storage device and operating system. Assume a disk
system in which each physical record contains thirty 120-byte logical records. Calculate how
much disk space (in sectors, tracks, and surfaces) will be required to store 300,000 logical
records if the disk is fixed- ​sector with 512 bytes/sector, with 96 sectors/track, 110 tracks per
surface, and 8 usable surfaces. Ignore any file header record(s) and track indexes, and assume
that records cannot span two sectors.
7.7 Consider a disk that rotates at 3600 rpm. The seek time to move the head between adjacent
tracks is 2 ms. There are 32 sectors per track, which are stored in linear order from sector 0
through sector 31. The head sees the sectors in ascending order. Assume the read/write head
is positioned at the start of sector 1 on track 8. There is a main memory buffer large enough to
hold an entire track. Data is transferred between disk locations by reading from the source track
into the main memory buffer and then writing the data from the buffer to the target track.

a. How long will it take to transfer sector 1 on track 8 to sector 1 on track 9?

E[x] = ∑
i = 0

i × Pr [x = i]

n∑
i = 1

i =
n (n + 1)

2 ; n∑
i = 1

i2 =
n (n + 1) (2n + 1)

6 .

ts = seek time ; average time to position head over track
r = rotation speed of the disk, in revolutions per second
n = number of bits per sector
N = capacity of a track, in bits
tsector = time to access a sector

tsector

b. How long will it take to transfer all the sectors of track 8 to the corresponding sectors of
track 9?

7.8 It should be clear that disk striping can improve data transfer rate when the strip size is
small compared to the I/O request size. It should also be clear that RAID 0 provides improved
performance relative to a single large disk, because multiple I/O requests can be handled in
parallel. However, in this latter case, is disk striping necessary? That is, does disk striping
improve I/O request rate performance compared to a comparable disk array without striping?
7.9 Consider a 4-drive, 200 GB- ​per-​drive RAID array. What is the available data storage
capacity for each of the RAID levels 0, 1, 3, 4, 5, and 6?
7.10 For a compact disk, audio is converted to digital with 16-bit samples, and is treated as a
stream of 8-bit bytes for storage. One simple scheme for storing this data, called direct
recording, would be to represent a 1 by a land and a 0 by a pit. Instead, each byte is expanded
into a 14-bit binary number. It turns out that exactly of the total of 14-bit
numbers have at least two 0s between every pair of 1s, and these are the numbers selected for
the expansion from 8 to 14 bits. The optical system detects the presence of 1s by detecting a
transition for pit to land or land to pit. It detects 0s by measuring the distances between intensity
changes. This scheme requires that there are no 1s in succession; hence the use of the 8-to- ​14
code.
The advantage of this scheme is as follows. For a given laser beam diameter, there is a
minimum- ​pit size, regardless of how the bits are represented. With this scheme, this
minimum- ​pit size stores 3 bits, because at least two 0s follow every 1. With direct recording, the
same pit would be able to store only one bit. Considering both the number of bits stored per pit
and the 8-to-​14 bit expansion, which scheme stores the most bits and by what factor?
7.11 Design a backup strategy for a computer system. One option is to use plug- ​in external
disks, which cost $150 for each 500 GB drive. Another option is to buy a tape drive for $2500,
and 400 GB tapes for $50 apiece. (These were realistic prices in 2008.) A typical backup
strategy is to have two sets of backup media onsite, with backups alternately written on them so
in case the system fails while making a backup, the previous version is still intact. There’s also a
third set kept offsite, with the offsite set periodically swapped with an on- ​site set.

a. Assume you have 1 TB (1000 GB) of data to back up. How much would a disk backup
system cost?

b. How much would a tape backup system cost for 1 TB?
c. How large would each backup have to be in order for a tape strategy to be less

expensive?
d. What kind of backup strategy favors tapes?

256 (28) 16,134 (214)

Chapter 8 Input/Output

8.10 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Explain the use of I/O modules as part of computer organization.
Understand the difference between programmed I/O and interrupt-​driven I/O and discuss their
relative merits.
Present an overview of the operation of direct memory access.
Present an overview of direct cache access.
Explain the function and use of I/O channels.

Aleksandr Lukin/123RF

I/O System Design Tool

In addition to the processor and a set of memory modules, the third key element of
a computer system is a set of I/O modules. Each module interfaces to the system
bus or central switch and controls one or more peripheral devices. An I/O module
is not simply a set of mechanical connectors that wire a device into the system
bus. Rather, the I/O module contains logic for performing a communication
function between the peripheral and the bus.

The reader may wonder why one does not connect peripherals directly to the
system bus. The reasons are as follows:

8.1 External Devices
8.2 I/O Modules
8.3 Programmed I/O
8.4 Interrupt-​Driven I/O
8.5 Direct Memory Access
8.6 Direct Cache Access
8.7 I/O Channels and Processors
8.8 External Interconnection Standards
8.9 IBM zEnterprise EC12 I/O Structure

There are a wide variety of peripherals with various methods of operation. It
would be impractical to incorporate the necessary logic within the processor to
control a range of devices.
The data transfer rate of peripherals is often much slower than that of the
memory or processor. Thus, it is impractical to use the high- ​speed system bus
to communicate directly with a peripheral.
On the other hand, the data transfer rate of some peripherals is faster than that
of the memory or processor. Again, the mismatch would lead to inefficiencies if
not managed properly.
Peripherals often use different data formats and word lengths than the
computer to which they are attached.
Thus, an I/O module is required. This module has two major functions (Figure
8.1):

Figure 8.1 Generic Model of an I/O Module

Interface to the processor and memory via the system bus or central switch.
Interface to one or more peripheral devices by tailored data links.

We begin this chapter with a brief discussion of external devices, followed by an
overview of the structure and function of an I/O module. Then we look at the
various ways in which the I/O function can be performed in cooperation with the
processor and memory: the internal I/O interface. Next, we examine in some detail
direct memory access and the more recent innovation of direct cache access.
Finally, we examine the external I/O interface, between the I/O module and the
outside world.

8.1 External Devices
I/O operations are accomplished through a wide assortment of external devices that provide a means
of exchanging data between the external environment and the computer. An external device attaches
to the computer by a link to an I/O module (Figure 8.1). The link is used to exchange control, status,
and data between the I/O module and the external device. An external device connected to an I/O
module is often referred to as a peripheral device or, simply, a peripheral
.

We can broadly classify external devices into three categories:

Human readable: Suitable for communicating with the computer user;
Machine readable: Suitable for communicating with equipment;
Communication: Suitable for communicating with remote devices.

Examples of human- ​readable devices are video display terminals (VDTs) and printers. Examples of
machine- ​readable devices are magnetic disk and tape systems, and sensors and actuators, such as
are used in a robotics application. Note that we are viewing disk and tape systems as I/O devices in
this chapter, whereas in Chapter 7 we viewed them as memory devices. From a functional point of
view, these devices are part of the memory hierarchy, and their use is appropriately discussed in
Chapter 7. From a structural point of view, these devices are controlled by I/O modules and are hence
to be considered in this chapter.

Communication devices allow a computer to exchange data with a remote device, which may be a
human- ​readable device, such as a terminal, a machine- ​readable device, or even another computer.

In very general terms, the nature of an external device is indicated in Figure 8.2. The interface to the
I/O module is in the form of control, data, and status signals. Control signals determine the function
that the device will perform, such as send data to the I/O module (INPUT or READ), accept data from
the I/O module (OUTPUT or WRITE), report status, or perform some control function particular to the
device (e.g., position a disk head). Data are in the form of a set of bits to be sent to or received from
the I/O module. Status signals indicate the state of the device. Examples are READY/NOT- ​READY to
show whether the device is ready for data transfer.

Figure 8.2 Block Diagram of an External Device

Control logic associated with the device controls the device’s operation in response to direction from
the I/O module. The transducer converts data from electrical to other forms of energy during output
and from other forms to electrical during input. Typically, a buffer is associated with the transducer to
temporarily hold data being transferred between the I/O module and the external environment. A
buffer size of 8 to 16 bits is common for serial devices, whereas block- ​oriented devices such as disk
drive controllers may have much larger buffers.

The interface between the I/O module and the external device will be examined in Section 8.7. The
interface between the external device and the environment is beyond the scope of this book, but
several brief examples are given here.

Keyboard/Monitor

The most common means of computer/user interaction is a keyboard/monitor arrangement. The user
provides input through the keyboard, the input is then transmitted to the computer and may also be
displayed on the monitor. In addition, the monitor displays data provided by the computer.

The basic unit of exchange is the character. Associated with each character is a code, typically 7 or 8
bits in length. The most commonly used text code is the International Reference Alphabet (IRA).
Each character in this code is represented by a unique 7-bit binary code; thus, 128 different
characters can be represented. Characters are of two types: printable and control. Printable
characters are the alphabetic, numeric, and special characters that can be printed on paper or
displayed on a screen. Some of the control characters have to do with controlling the printing or
displaying of characters; an example is carriage return. Other control characters are concerned with
communications procedures. See Appendix D for details.

 IRA is defined in ITU-​T Recommendation T.50 and was formerly known as International Alphabet Number 5 (IA5).

The U.S. national version of IRA is referred to as the American Standard Code for Information Interchange (ASCII).

For keyboard input, when the user depresses a key, this generates an electronic signal that is
interpreted by the transducer in the keyboard and translated into the bit pattern of the corresponding
IRA code. This bit pattern is then transmitted to the I/O module in the computer. At the computer, the
text can be stored in the same IRA code. On output, IRA code characters are transmitted to an
external device from the I/O module. The transducer at the device interprets this code and sends the
required electronic signals to the output device either to display the indicated character or perform the
requested control function.

Disk Drive

A disk drive contains electronics for exchanging data, control, and status signals with an I/O module
plus the electronics for controlling the disk read/write mechanism. In a fixed- ​head disk, the transducer
is capable of converting between the magnetic patterns on the moving disk surface and bits in the
device’s buffer (Figure 8.2). A moving-​head disk must also be able to cause the disk arm to move
radially in and out across the disk’s surface.

1

1

8.2 I/O Modules

Module Function

The major functions or requirements for an I/O module fall into the following categories:

Control and timing
Processor communication
Device communication
Data buffering
Error detection

During any period of time, the processor may communicate with one or more external devices in
unpredictable patterns, depending on the program’s need for I/O. The internal resources, such as
main memory and the system bus, must be shared among a number of activities, including data I/O.
Thus, the I/O function includes a control and timing requirement, to coordinate the flow of traffic
between internal resources and external devices. For example, the control of the transfer of data from
an external device to the processor might involve the following sequence of steps:

1. The processor interrogates the I/O module to check the status of the attached device.
2. The I/O module returns the device status.
3. If the device is operational and ready to transmit, the processor requests the transfer of data, by

means of a command to the I/O module.
4. The I/O module obtains a unit of data (e.g., 8 or 16 bits) from the external device.
5. The data are transferred from the I/O module to the processor.

If the system employs a bus, then each of the interactions between the processor and the I/O module
involves one or more bus arbitrations.

The preceding simplified scenario also illustrates that the I/O module must communicate with the
processor and with the external device. Processor communication involves the following:

Command decoding: The I/O module accepts commands from the processor, typically sent as
signals on the control bus. For example, an I/O module for a disk drive might accept the following
commands: READ SECTOR, WRITE SECTOR, SEEK track number, and SCAN record ID. The
latter two commands each include a parameter that is sent on the data bus.
Data: Data are exchanged between the processor and the I/O module over the data bus.
Status reporting: Because peripherals are so slow, it is important to know the status of the I/O
module. For example, if an I/O module is asked to send data to the processor (read), it may not be
ready to do so because it is still working on the previous I/O command. This fact can be reported
with a status signal. Common status signals are BUSY and READY. There may also be signals to
report various error conditions.
Address recognition: Just as each word of memory has an address, so does each I/O device.
Thus, an I/O module must recognize one unique address for each peripheral it controls.

On the other side, the I/O module must be able to perform device communication. This
communication involves commands, status information, and data (Figure 8.2).

An essential task of an I/O module is data buffering. The need for this function is apparent from
Figure 2.1. Whereas the transfer rate into and out of main memory or the processor is quite high, the
rate is orders of magnitude lower for many peripheral devices and covers a wide range. Data coming
from main memory are sent to an I/O module in a rapid burst. The data are buffered in the I/O module
and then sent to the peripheral device at its data rate. In the opposite direction, data are buffered so

as not to tie up the memory in a slow transfer operation. Thus, the I/O module must be able to operate
at both device and memory speeds. Similarly, if the I/O device operates at a rate higher than the
memory access rate, then the I/O module performs the needed buffering operation.

Finally, an I/O module is often responsible for error detection and for subsequently reporting errors to
the processor. One class of errors includes mechanical and electrical malfunctions reported by the
device (e.g., paper jam, bad disk track). Another class consists of unintentional changes to the bit
pattern as it is transmitted from device to I/O module. Some form of error-​detecting code is often used
to detect transmission errors. A simple example is the use of a parity bit on each character of data.
For example, the IRA character code occupies 7 bits of a byte. The eighth bit is set so that the total
number of 1s in the byte is even (even parity) or odd (odd parity). When a byte is received, the I/O
module checks the parity to determine whether an error has occurred.

I/O Module Structure

I/O modules vary considerably in complexity and the number of external devices that they control. We
will attempt only a very general description here. (One specific device, the Intel 8255A, is described in
Section 8.4.) Figure 8.3 provides a general block diagram of an I/O module. The module connects to
the rest of the computer through a set of signal lines (e.g., system bus lines). Data transferred to and
from the module are buffered in one or more data registers. There may also be one or more status
registers that provide current status information. A status register may also function as a control
register, to accept detailed control information from the processor. The logic within the module
interacts with the processor via a set of control lines. The processor uses the control lines to issue
commands to the I/O module. Some of the control lines may be used by the I/O module (e.g., for
arbitration and status signals). The module must also be able to recognize and generate addresses
associated with the devices it controls. Each I/O module has a unique address or, if it controls more
than one external device, a unique set of addresses. Finally, the I/O module contains logic specific to
the interface with each device that it controls.

Figure 8.3 Block Diagram of an I/O Module

An I/O module functions to allow the processor to view a wide range of devices in a simple- ​minded
way. There is a spectrum of capabilities that may be provided. The I/O module may hide the details of
timing, formats, and the electromechanics of an external device so that the processor can function in
terms of simple read and write commands, and possibly open and close file commands. In its simplest
form, the I/O module may still leave much of the work of controlling a device (e.g., rewinding a tape)
visible to the processor.

An I/O module that takes on most of the detailed processing burden, presenting a high- ​level interface
to the processor, is usually referred to as an I/O channel or I/O processor. An I/O module that is
quite primitive and requires detailed control is usually referred to as an I/O controller or device
controller. I/O controllers are commonly seen on microcomputers, whereas I/O channels are used on
mainframes.

In what follows, we will use the generic term I/O module when no confusion results and will use more
specific terms where necessary.

8.3 Programmed I/O
Three techniques are possible for I/O operations. With programmed I/O, data are exchanged between
the processor and the I/O module. The processor executes a program that gives it direct control of the
I/O operation, including sensing device status, sending a read or write command, and transferring the
data. When the processor issues a command to the I/O module, it must wait until the I/O operation is
complete. If the processor is faster than the I/O module, this is a waste of processor time. With
interrupt-​driven I/O , the processor issues an I/O command, continues to execute other
instructions, and is interrupted by the I/O module when the latter has completed its work. With both
programmed and interrupt I/O, the processor is responsible for extracting data from main memory for
output and storing data in main memory for input. The alternative is known as direct memory access
(DMA) . In this mode, the I/O module and main memory exchange data directly, without processor
involvement.

Table 8.1 indicates the relationship among these three techniques. In this section, we explore
programmed I/O. Interrupt I/O and DMA are explored in the following two sections, respectively.

Table 8.1 I/O Techniques

No Interrupts Use of Interrupts

I/O-​to-​memory transfer through processor Programmed I/O Interrupt-​driven I/O

Direct I/O-​to-​memory transfer Direct memory access (DMA)

Overview of Programmed I/O

When the processor is executing a program and encounters an instruction relating to I/O, it executes
that instruction by issuing a command to the appropriate I/O module. With programmed I/O, the I/O
module will perform the requested action and then set the appropriate bits in the I/O status register
(Figure 8.3). The I/O module takes no further action to alert the processor. In particular, it does not
interrupt the processor. Thus, it is the responsibility of the processor to periodically check the status of
the I/O module until it finds that the operation is complete.

To explain the programmed I/O technique, we view it first from the point of view of the I/O commands
issued by the processor to the I/O module, and then from the point of view of the I/O instructions
executed by the processor.

I/O Commands

To execute an I/O-​related instruction, the processor issues an address, specifying the particular I/O
module and external device, and an I/O command. There are four types of I/O commands that an I/O
module may receive when it is addressed by a processor:

Control: Used to activate a peripheral and tell it what to do. For example, a magnetic- ​tape unit
may be instructed to rewind or to move forward one record. These commands are tailored to the
particular type of peripheral device.
Test: Used to test various status conditions associated with an I/O module and its peripherals.
The processor will want to know that the peripheral of interest is powered on and available for use.

It will also want to know if the most recent I/O operation is completed and if any errors occurred.
Read: Causes the I/O module to obtain an item of data from the peripheral and place it in an
internal buffer (depicted as a data register in Figure 8.3). The processor can then obtain the data
item by requesting that the I/O module place it on the data bus.
Write: Causes the I/O module to take an item of data (byte or word) from the data bus and
subsequently transmit that data item to the peripheral.

Figure 8.4a gives an example of the use of programmed I/O to read in a block of data from a
peripheral device (e.g., a record from tape) into memory. Data are read in one word (e.g., 16 bits) at a
time. For each word that is read in, the processor must remain in a status- ​checking cycle until it
determines that the word is available in the I/O module’s data register. This flowchart highlights the
main disadvantage of this technique: it is a time- ​consuming process that keeps the processor busy
needlessly.

Figure 8.4 Three Techniques for Input of a Block of Data

I/O Instructions

With programmed I/O, there is a close correspondence between the I/O- ​related instructions that the
processor fetches from memory and the I/O commands that the processor issues to an I/O module to
execute the instructions. That is, the instructions are easily mapped into I/O commands, and there is
often a simple one- ​to-​one relationship. The form of the instruction depends on the way in which
external devices are addressed.

Typically, there will be many I/O devices connected through I/O modules to the system. Each device is
given a unique identifier or address. When the processor issues an I/O command, the command
contains the address of the desired device. Thus, each I/O module must interpret the address lines to
determine if the command is for itself.

When the processor, main memory, and I/O share a common bus, two modes of addressing are
possible: memory mapped and isolated. With memory-mapped I/O, there is a single address space
for memory locations and I/O devices. The processor treats the status and data registers of I/O
modules as memory locations and uses the same machine instructions to access both memory and
I/O devices. So, for example, with 10 address lines, a combined total of memory locations
and I/O addresses can be supported, in any combination.

With memory-​mapped I/O, a single read line and a single write line are needed on the bus.
Alternatively, the bus may be equipped with memory read and write plus input and output command
lines. The command line specifies whether the address refers to a memory location or an I/O device.
The full range of addresses may be available for both. Again, with 10 address lines, the system may
now support both 1024 memory locations and 1024 I/O addresses. Because the address space for I/O
is isolated from that for memory, this is referred to as isolated I/O.

Figure 8.5 contrasts these two programmed I/O techniques. Figure 8.5a shows how the interface for
a simple input device such as a terminal keyboard might appear to a programmer using
memory-​mapped I/O. Assume a 10-bit address, with a 512-bit memory (locations 0–511) and up to
512 I/O addresses (locations 512–1023). Two addresses are dedicated to keyboard input from a
particular terminal. Address 516 refers to the data register and address 517 refers to the status
register, which also functions as a control register for receiving processor commands. The program
shown will read 1 byte of data from the keyboard into an accumulator register in the processor. Note
that the processor loops until the data byte is available.

210 = 1024

Figure 8.5 Memory-​Mapped and Isolated I/O

With isolated I/O (Figure 8.5b), the I/O ports are accessible only by special I/O commands, which
activate the I/O command lines on the bus.

For most types of processors, there is a relatively large set of different instructions for referencing
memory. If isolated I/O is used, there are only a few I/O instructions. Thus, an advantage of
memory-​mapped I/O is that this large repertoire of instructions can be used, allowing more efficient
programming. A disadvantage is that valuable memory address space is used up. Both
memory-​mapped and isolated I/O are in common use.

	8.4 Interrupt-​Driven I/O
The problem with programmed I/O is that the processor has to wait a long time for the I/O module of
concern to be ready for either reception or transmission of data. The processor, while waiting, must
repeatedly interrogate the status of the I/O module. As a result, the performance of the entire system
is severely degraded.

An alternative is for the processor to issue an I/O command to a module and then go on to do some
other useful work. The I/O module will then interrupt the processor to request service when it is ready
to exchange data with the processor. The processor then executes the data transfer, as before, and
then resumes its former processing.

Let us consider how this works, first from the point of view of the I/O module. For input, the I/O module
receives a READ command from the processor. The I/O module then proceeds to read data in from
an associated peripheral. Once the data are in the module’s data register, the module signals an
interrupt to the processor over a control line. The module then waits until its data are requested by the
processor. When the request is made, the module places its data on the data bus and is then ready
for another I/O operation.

From the processor’s point of view, the action for input is as follows. The processor issues a READ
command. It then goes off and does something else (e.g., the processor may be working on several
different programs at the same time). At the end of each instruction cycle, the processor checks for
interrupts (Figure 3.9). When the interrupt from the I/O module occurs, the processor saves the
context (e.g., program counter and processor registers) of the current program and processes the
interrupt. In this case, the processor reads the word of data from the I/O module and stores it in
memory. It then restores the context of the program it was working on (or some other program) and
resumes execution.

Figure 8.4b shows the use of interrupt I/O for reading in a block of data. Compare this with Figure
8.4a. Interrupt I/O is more efficient than programmed I/O because it eliminates needless waiting.
However, interrupt I/O still consumes a lot of processor time, because every word of data that goes
from memory to I/O module or from I/O module to memory must pass through the processor.

Interrupt Processing

Let us consider the role of the processor in interrupt- ​driven I/O in more detail. The occurrence of an
interrupt triggers a number of events, both in the processor hardware and in software. Figure 8.6
shows a typical sequence. When an I/O device completes an I/O operation, the following sequence of
hardware events occurs:

Figure 8.6 Simple Interrupt Processing

1. The device issues an interrupt signal to the processor.
2. The processor finishes execution of the current instruction before responding to the interrupt, as

indicated in Figure 3.9.
3. The processor tests for an interrupt, determines that there is one, and sends an

acknowledgment signal to the device that issued the interrupt. The acknowledgment allows the
device to remove its interrupt signal.

4. The processor now needs to prepare to transfer control to the interrupt routine. To begin, it
needs to save information needed to resume the current program at the point of interrupt. The
minimum information required is (a) the status of the processor, which is contained in a register
called the program status word (PSW); and (b) the location of the next instruction to be
executed, which is contained in the program counter. These can be pushed onto the system
control stack.
 See Appendix E for a discussion of stack operation.

5. The processor now loads the program counter with the entry location of the interrupt- ​handling
program that will respond to this interrupt. Depending on the computer architecture and
operating system design, there may be a single program; one program for each type of

2
2

interrupt; or one program for each device and each type of interrupt. If there is more than one
interrupt-​handling routine, the processor must determine which one to invoke. This information
may have been included in the original interrupt signal, or the processor may have to issue a
request to the device that issued the interrupt to get a response that contains the needed
information.

Once the program counter has been loaded, the processor proceeds to the next instruction cycle,
which begins with an instruction fetch. Because the instruction fetch is determined by the contents of
the program counter, the result is that control is transferred to the interrupt- ​handler program. The
execution of this program results in the following operations:

6. At this point, the program counter and PSW relating to the interrupted program have been
saved on the system stack. However, there is other information that is considered part of the
“state” of the executing program. In particular, the contents of the processor registers need to
be saved, because these registers may be used by the interrupt handler. So, all of these values,
plus any other state information, need to be saved. Typically, the interrupt handler will begin by
saving the contents of all registers on the stack. Figure 8.7a shows a simple example. In this
case, a user program is interrupted after the instruction at location N. The contents of all of the
registers plus the address of the next instruction are pushed onto the stack. The stack
pointer is updated to point to the new top of stack, and the program counter is updated to point
to the beginning of the interrupt service routine.

(N + 1)

Figure 8.7 Changes in Memory and Registers for an Interrupt

7. The interrupt handler next processes the interrupt. This includes an examination of status
information relating to the I/O operation or other event that caused an interrupt. It may also
involve sending additional commands or acknowledgments to the I/O device.

8. When interrupt processing is complete, the saved register values are retrieved from the stack
and restored to the registers (e.g., see Figure 8.7b).

9. The final act is to restore the PSW and program counter values from the stack. As a result, the
next instruction to be executed will be from the previously interrupted program.

Note that it is important to save all the state information about the interrupted program for later
resumption. This is because the interrupt is not a routine called from the program. Rather, the interrupt
can occur at any time and therefore at any point in the execution of a user program. Its occurrence is

unpredictable. Indeed, as we will see in the next chapter, the two programs may not have anything in
common and may belong to two different users.

Design Issues

Two design issues arise in implementing interrupt I/O. First, because there will almost invariably be
multiple I/O modules, how does the processor determine which device issued the interrupt? And
second, if multiple interrupts have occurred, how does the processor decide which one to process?

Let us consider device identification first. Four general categories of techniques are in common use:

Multiple interrupt lines
Software poll
Daisy chain (hardware poll, vectored)
Bus arbitration (vectored)

The most straightforward approach to the problem is to provide multiple interrupt lines between the
processor and the I/O modules. However, it is impractical to dedicate more than a few bus lines or
processor pins to interrupt lines. Consequently, even if multiple lines are used, it is likely that each line
will have multiple I/O modules attached to it. Thus, one of the other three techniques must be used on
each line.

One alternative is the software poll. When the processor detects an interrupt, it branches to an
interrupt-​service routine that polls each I/O module to determine which module caused the interrupt.
The poll could be in the form of a separate command line (e.g., TESTI/O). In this case, the processor
raises TESTI/O and places the address of a particular I/O module on the address lines. The I/O
module responds positively if it set the interrupt. Alternatively, each I/O module could contain an
addressable status register. The processor then reads the status register of each I/O module to
identify the interrupting module. Once the correct module is identified, the processor branches to a
device- ​service routine specific to that device.

The disadvantage of the software poll is that it is time consuming. A more efficient technique is to use
a daisy chain, which provides, in effect, a hardware poll. An example of a daisy- ​chain configuration is
shown in Figure 3.26. For interrupts, all I/O modules share a common interrupt request line. The
interrupt acknowledge line is daisy chained through the modules. When the processor senses an
interrupt, it sends out an interrupt acknowledge. This signal propagates through a series of I/O
modules until it gets to a requesting module. The requesting module typically responds by placing a
word on the data lines. This word is referred to as a vector and is either the address of the I/O module
or some other unique identifier. In either case, the processor uses the vector as a pointer to the
appropriate device- ​service routine. This avoids the need to execute a general interrupt- ​service routine
first. This technique is called a vectored interrupt.

There is another technique that makes use of vectored interrupts, and that is bus arbitration. With
bus arbitration, an I/O module must first gain control of the bus before it can raise the interrupt request
line. Thus, only one module can raise the line at a time. When the processor detects the interrupt, it
responds on the interrupt acknowledge line. The requesting module then places its vector on the data
lines.

The aforementioned techniques serve to identify the requesting I/O module. They also provide a way
of assigning priorities when more than one device is requesting interrupt service. With multiple lines,
the processor just picks the interrupt line with the highest priority. With software polling, the order in
which modules are polled determines their priority. Similarly, the order of modules on a daisy chain
determines their priority. Finally, bus arbitration can employ a priority scheme, as discussed in

Section 3.4.

We now turn to two examples of interrupt structures.

Intel 82C59A Interrupt Controller

The Intel 80386 provides a single Interrupt Request (INTR) and a single Interrupt Acknowledge (INTA)
line. To allow the 80386 to handle a variety of devices and priority structures, it is usually configured
with an external interrupt arbiter, the 82C59A. External devices are connected to the 82C59A, which in
turn connects to the 80386.

Figure 8.8 shows the use of the 82C59A to connect multiple I/O modules for the 80386. A single
82C59A can handle up to eight modules. If control for more than eight modules is required, a cascade
arrangement can be used to handle up to 64 modules.

Figure 8.8 Use of the 82C59A Interrupt Controller

The 82C59A’s sole responsibility is the management of interrupts. It accepts interrupt requests from
attached modules, determines which interrupt has the highest priority, and then signals the processor

by raising the INTR line. The processor acknowledges via the INTA line. This prompts the 82C59A to
place the appropriate vector information on the data bus. The processor can then proceed to process
the interrupt and to communicate directly with the I/O module to read or write data.

The 82C59A is programmable. The 80386 determines the priority scheme to be used by setting a
control word in the 82C59A. The following interrupt modes are possible:

Fully nested: The interrupt requests are ordered in priority from 0 (IR0) through 7 (IR7).
Rotating: In some applications a number of interrupting devices are of equal priority. In this mode
a device, after being serviced, receives the lowest priority in the group.
Special mask: This allows the processor to inhibit interrupts from certain devices.

The Intel 8255A Programmable Peripheral Interface

As an example of an I/O module used for programmed I/O and interrupt- ​driven I/O, we consider the
Intel 8255A Programmable Peripheral Interface. The 8255A is a single- ​chip, general- ​purpose I/O
module originally designed for use with the Intel 80386 processor. It has since been cloned by other
manufacturers and is a widely used peripheral controller chip. Its uses include as a controller for
simple I/O devices for microprocessors and in embedded systems, including microcontroller systems.

ARCHITECTURE AND OPERATION

Figure 8.9 shows a general block diagram plus the pin assignment for the 40-pin package in which it
is housed. As shown on the pin layout, the 8255A includes the following lines:

Figure 8.9 The Intel 8255A Programmable Peripheral Interface

D0–D7: These are the data I/O lines for the device. All information read from and written to the

8255A occurs via these eight data lines.
 (Chip Select Input): If this line is a logical 0, the microprocessor can read and write to the

8255A.
 (Read Input): If this line is a logical 0 and the input is a logical 0, the 8255A data outputs

are enabled onto the system data bus.
 (Write Input): If this input line is a logical 0 and the input is a logical 0, data are written to

the 8255A from the system data bus.
RESET: The 8255A is placed into its reset state if this input line is a logical 1. All peripheral ports
are set to the input mode.
PA0–PA7, PB0–PB7, PC0–PC7: These signal lines are used as 8-bit I/O ports. They can be
connected to peripheral devices.
A0, A1: The logical combination of these two input lines determines which internal register of the
8255A data are written to or read from.

The right side of the block diagram of Figure 8.9a is the external interface of the 8255A. The 24 I/O
lines are divided into three 8-bit groups (A, B, C). Each group can function as an 8-bit I/O port, thus
providing connection for three peripheral devices. In addition, group C is subdivided into 4-bit groups (

 and), which may be used in conjunction with the A and B I/O ports. Configured in this manner,
group C lines carry control and status signals.

The left side of the block diagram is the internal interface to the microprocessor system bus. It
includes an 8-bit bidirectional data bus (D0 through D7), used to transfer data between the
microprocessor and the I/O ports and to transfer control information.

The processor controls the 8255A by means of an 8-bit control register in the processor. The
processor can set the value of the control register to specify a variety of operating modes and
configurations. From the processor point of view, there is a control port, and the control register bits
are set in the processor and then sent to the control port over lines D0–D7. The two address lines
specify one of the three I/O ports or the control register, as follows:

A1 A2 Selects

0 0 Port A

0 1 Port B

1 0 Port C

1 1 Control register

Thus, when the processor sets both A1 and A2 to 1, the 8255A interprets the 8-bit value on the data
bus as a control word. When the processor transfers an 8-bit control word with line D7 set to 1 (Figure
8.10a), the control word is used to configure the operating mode of the 24 I/O lines. The three modes
are:

C̄S

R̄D C̄S

W̄R C̄S

CA CB

Figure 8.10 The Intel 8255A Control Word

Mode 0: This is the basic I/O mode. The three groups of eight external lines function as three 8-bit
I/O ports. Each port can be designated as input or output. Data may only be sent to a port if the
port is defined as output, and data may only be read from a port if the port is set to input.
Mode 1: In this mode, ports A and B can be configured as either input or output, and lines from
port C serve as control lines for A and B. The control signals serve two principal purposes:
“handshaking” and interrupt request. Handshaking is a simple timing mechanism. One control line
is used by the sender as a DATA READY line, to indicate when the data are present on the I/O
data lines. Another line is used by the receiver as an ACKNOWLEDGE, indicating that the data
have been read and the data lines may be cleared. Another line may be designated as an
INTERRUPT REQUEST line and tied back to the system bus.
Mode 2: This is a bidirectional mode. In this mode, port A can be configured as either the input or
output lines for bidirectional traffic on port B, with the port B lines providing the opposite direction.
Again, port C lines are used for control signaling.

When the processor sets D7 to 0 (Figure 8.10b), the control word is used to program the bit values of
port C individually. This feature is rarely used.

KEYBOARD/DISPLAY EXAMPLE

Because the 8255A is programmable via the control register, it can be used to control a variety of
simple peripheral devices. Figure 8.11 illustrates its use to control a keyboard/display terminal. The
keyboard provides 8 bits of input. Two of these bits, SHIFT and CONTROL, have special meaning to
the keyboard- ​handling program executing in the processor. However, this interpretation is transparent
to the 8255A, which simply accepts the 8 bits of data and presents them on the system data bus. Two
handshaking control lines are provided for use with the keyboard.

Figure 8.11 Keyboard/Display Interface to 8255A

The display is also linked by an 8-bit data port. Again, two of the bits have special meanings that are
transparent to the 8255A. In addition to two handshaking lines, two lines provide additional control
functions.

	8.5 Direct Memory Access

Drawbacks of Programmed and Interrupt- ​Driven I/O

Interrupt-​driven I/O, though more efficient than simple programmed I/O, still requires the active
intervention of the processor to transfer data between memory and an I/O module, and any data
transfer must traverse a path through the processor. Thus, both these forms of I/O suffer from two
inherent drawbacks:

1. The I/O transfer rate is limited by the speed with which the processor can test and service a
device.

2. The processor is tied up in managing an I/O transfer; a number of instructions must be executed
for each I/O transfer (e.g., Figure 8.5).

There is somewhat of a trade- ​off between these two drawbacks. Consider the transfer of a block of
data. Using simple programmed I/O, the processor is dedicated to the task of I/O and can move data
at a rather high rate, at the cost of doing nothing else. Interrupt I/O frees up the processor to some
extent at the expense of the I/O transfer rate. Nevertheless, both methods have an adverse impact on
both processor activity and I/O transfer rate.

When large volumes of data are to be moved, a more efficient technique is required: direct memory
access (DMA).

DMA Function

DMA involves an additional module on the system bus. The DMA module (Figure 8.12) is capable of
mimicking the processor and, indeed, of taking over control of the system from the processor. It needs
to do this to transfer data to and from memory over the system bus. For this purpose, the DMA
module must use the bus only when the processor does not need it, or it must force the processor to
suspend operation temporarily. The latter technique is more common and is referred to as cycle
stealing, because the DMA module in effect steals a bus cycle.

Figure 8.12 Typical DMA Block Diagram

When the processor wishes to read or write a block of data, it issues a command to the DMA module,
by sending to the DMA module the following information:

Whether a read or write is requested, using the read or write control line between the processor
and the DMA module.
The address of the I/O device involved, communicated on the data lines.
The starting location in memory to read from or write to, communicated on the data lines and
stored by the DMA module in its address register.
The number of words to be read or written, again communicated via the data lines and stored in
the data count register.

The processor then continues with other work. It has delegated this I/O operation to the DMA module.
The DMA module transfers the entire block of data, one word at a time, directly to or from memory,
without going through the processor. When the transfer is complete, the DMA module sends an
interrupt signal to the processor. Thus, the processor is involved only at the beginning and end of the
transfer (Figure 8.4c).

Figure 8.13 shows where in the instruction cycle the processor may be suspended. In each case, the
processor is suspended just before it needs to use the bus. The DMA module then transfers one word
and returns control to the processor. Note that this is not an interrupt; the processor does not save a
context and do something else. Rather, the processor pauses for one bus cycle. The overall effect is
to cause the processor to execute more slowly. Nevertheless, for a multiple- ​word I/O transfer, DMA is
far more efficient than interrupt- ​driven or programmed I/O.

Figure 8.13 DMA and Interrupt Breakpoints during an Instruction Cycle

The DMA mechanism can be configured in a variety of ways. Some possibilities are shown in Figure
8.14. In the first example, all modules share the same system bus. The DMA module, acting as a
surrogate processor, uses programmed I/O to exchange data between memory and an I/O module
through the DMA module. This configuration, while it may be inexpensive, is clearly inefficient. As with
processor- ​controlled programmed I/O, each transfer of a word consumes two bus cycles.

Figure 8.14 Alternative DMA Configurations

The number of required bus cycles can be cut substantially by integrating the DMA and I/O functions.
As Figure 8.14b indicates, this means that there is a path between the DMA module and one or more
I/O modules that does not include the system bus. The DMA logic may actually be a part of an I/O
module, or it may be a separate module that controls one or more I/O modules. This concept can be
taken one step further by connecting I/O modules to the DMA module using an I/O bus (Figure
8.14c). This reduces the number of I/O interfaces in the DMA module to one and provides for an
easily expandable configuration. In both of these cases (Figures 8.14b and c), the system bus that
the DMA module shares with the processor and memory is used by the DMA module only to
exchange data with memory. The exchange of data between the DMA and I/O modules takes place
off the system bus.

Intel 8237A DMA Controller

The Intel 8237A DMA controller interfaces to the family of processors and to DRAM memory to
provide a DMA capability. Figure 8.15 indicates the location of the DMA module. When the DMA

80 × 86

module needs to use the system buses (data, address, and control) to transfer data, it sends a signal
called HOLD to the processor. The processor responds with the HLDA (hold acknowledge) signal,
indicating that the DMA module can use the buses. For example, if the DMA module is to transfer a
block of data from memory to disk, it will do the following:

Figure 8.15 8237 DMA Usage of System Bus

1. The peripheral device (such as the disk controller) will request the service of the DMA by pulling
DREQ (DMA request) high.

2. The DMA will put a high on its HRQ (hold request), signaling the CPU through its HOLD pin that
it needs to use the buses.

3. The CPU will finish the present bus cycle (not necessarily the present instruction) and respond
to the DMA request by putting high on its HDLA (hold acknowledge), thus telling the 8237 DMA
that it can go ahead and use the buses to perform its task. HOLD must remain active high as
long as DMA is performing its task.

4. DMA will activate DACK (DMA acknowledge), which tells the peripheral device that it will start to
transfer the data.

5. DMA starts to transfer the data from memory to peripheral by putting the address of the first
byte of the block on the address bus and activating MEMR, thereby reading the byte from
memory into the data bus; it then activates IOW to write it to the peripheral. Then DMA
decrements the counter and increments the address pointer and repeats this process until the
count reaches zero and the task is finished.

6. After the DMA has finished its job it will deactivate HRQ, signaling the CPU that it can regain
control over its buses.

While the DMA is using the buses to transfer data, the processor is idle. Similarly, when the processor

is using the bus, the DMA is idle. The 8237 DMA is known as a fly-​by DMA controller. This means that
the data being moved from one location to another does not pass through the DMA chip and is not
stored in the DMA chip. Therefore, the DMA can only transfer data between an I/O port and a memory
address, and not between two I/O ports or two memory locations. However, as explained
subsequently, the DMA chip can perform a memory- ​to-​memory transfer via a register.

The 8237 contains four DMA channels that can be programmed independently, and any one of the
channels may be active at any moment. These channels are numbered 0, 1, 2, and 3.

The 8237 has a set of five control/command registers to program and control DMA operation over one
of its channels (Table 8.2):

Table 8.2 Intel 8237A Registers

Bit Command Status Mode Single
Mask

All Mask

D0 Memory-​to-​memory
E/D

Channel 0
has reached
TC

Channel select Select
channel
mask bit

Clear/set
channel 0
mask bit

D1 Channel 0 address
hold E/D

Channel 1
has reached
TC

Clear/set
channel 1
mask bit

D2 Controller E/D Channel 2
has reached
TC

Verify/write/read transfer Clear/set
mask bit

Clear/set
channel 2
mask bit

D3 Normal/compressed
timing

Channel 3
has reached
TC

Not used Clear/set
channel 3
mask bit

D4 Fixed/rotating
priority

Channel 0
request

Auto-​initialization E/D Not used

D5 Late/extended write
selection

Channel 0
request

Address
increment/decrement select

D6 DREQ sense active
high/low

Channel 0
request

D7 DACK sense active
high/low

Channel 0
request

Demand/single/block/cascade
mode select

E / D = enable / disable

TC = terminalcount

Command: The processor loads this register to control the operation of the DMA. D0 enables a
memory-​to-​memory transfer, in which channel 0 is used to transfer a byte into an 8237 temporary
register and channel 1 is used to transfer the byte from the register to memory. When
memory-​to-​memory is enabled, D1 can be used to disable increment/decrement on channel 0 so
that a fixed value can be written into a block of memory. D2 enables or disables DMA.
Status: The processor reads this register to determine DMA status. Bits D0–D3 are used to
indicate if channels 0–3 have reached their TC (terminal count). Bits D4–D7 are used by the
processor to determine if any channel has a DMA request pending.
Mode: The processor sets this register to determine the mode of operation of the DMA. Bits D0
and D1 are used to select a channel. The other bits select various operation modes for the
selected channel. Bits D2 and D3 determine if the transfer is from an I/O device to memory (write)
or from memory to I/O (read), or a verify operation. If D4 is set, then the memory address register
and the count register are reloaded with their original values at the end of a DMA data transfer. Bits
D6 and D7 determine the way in which the 8237 is used. In single mode, a single byte of data is
transferred. Block and demand modes are used for a block transfer, with the demand mode
allowing for premature ending of the transfer. Cascade mode allows multiple 8237s to be cascaded
to expand the number of channels to more than 4.
Single Mask: The processor sets this register. Bits D0 and D1 select the channel. Bit D2 clears or
sets the mask bit for that channel. It is through this register that the DREQ input of a specific
channel can be masked (disabled) or unmasked (enabled). While the command register can be
used to disable the whole DMA chip, the single mask register allows the programmer to disable or
enable a specific channel.
All Mask: This register is similar to the single mask register except that all four channels can be
masked or unmasked with one write operation.

In addition, the 8237A has eight data registers: one memory address register and one count register
for each channel. The processor sets these registers to indicate the location of size of main memory to
be affected by the transfers.

	8.6 Direct Cache Access
DMA has proved an effective means of enhancing performance of I/O with peripheral devices and
network I/O traffic. However, for the dramatic increases in data rates for network I/O, DMA is not able
to scale to meet the increased demand. This demand is coming primarily from the widespread
deployment of 10-Gbps and 100-Gbps Ethernet switches to handle massive amounts of data transfer
to and from database servers and other high- ​performance systems [STAL16]. A secondary but
increasingly important source of traffic comes from Wi- ​Fi in the gigabit range. Network Wi- ​Fi devices
that handle 3.2 Gbps and 6.76 Gbps are becoming widely available and producing demand on
enterprise systems [STAL16].

In this section, we will show how enabling the I/O function to have direct access to the cache can
enhance performance, a technique known as direct cache access (DCA). Throughout this section,
we are concerned only with the cache that is closest to main memory, referred to as the last-level
cache. In some systems, this will be an L2 cache, in others an L3 cache.

To begin, we describe the way in which contemporary multicore systems use on- ​chip shared cache to
enhance DMA performance. This approach involves enabling the DMA function to have direct access
to the last-​level cache. Next we examine cache- ​related performance issues that manifest when
high- ​speed network traffic is processed. From there, we look at several different strategies for DCA
that are designed to enhance network protocol processing performance. Finally, this section describes
a DCA approach implemented by Intel, referred to as Direct Data I/O.

DMA Using Shared Last- ​Level Cache

As was discussed in Chapter 1 (see Figure 1.2), contemporary multicore systems include both cache
dedicated to each core and an additional level of shared cache, either L2 or L3. With the increasing
size of available last- ​level cache, system designers have enhanced the DMA function so that the DMA
controller has access to the shared cache in a manner similar to the cores. To clarify the interaction of
DMA and cache, it will be useful to first describe a specific system architecture. For this purpose, the
following is an overview of the Intel Xeon system.

XEON MULTICORE PROCESSOR

Intel Xeon is Intel’s high- ​end, high- ​performance processor family, used in servers, high- ​performance
workstations, and supercomputers. Many of the members of the Xeon family use a ring interconnect
system, as illustrated for the Xeon E5-2600/4600 in Figure 8.16.

Figure 8.16 Xeon E5-2600/4600 Chip Architecture

The E5-2600/4600 can be configured with up to eight cores on a single chip. Each core has dedicated
L1 and L2 caches. There is a shared L3 cache of up to 20 MB. The L3 cache is divided into slices,

one associated with each core although each core can address the entire cache. Further, each slice
has its own cache pipeline, so that requests can be sent in parallel to the slices.

The bidirectional high- ​speed ring interconnect links cores, last- ​level cache, PCIe, and integrated
memory controller (IMC).

In essence, the ring operates as follows:

1. Each component that attaches to the bidirectional ring (QPI, PCIe, L3 cache, L2 cache) is
considered a ring agent, and implements ring agent logic.

2. The ring agents cooperate via a distributed protocol to request and allocate access to the ring,
in the form of time slots.

3. When an agent has data to send, it chooses the ring direction that results in the shortest path to
the destination and transmits when a scheduling slot is available.

The ring architecture provides good performance and scales well for multiple cores, up to a point. For
systems with a greater number of cores, multiple rings are used, with each ring supporting some of
the cores.

DMA USE OF THE CACHE

In traditional DMA operation, data are exchanged between main memory and an I/O device by means
of the system interconnection structure, such as a bus, ring, or QPI point- ​to-​point matrix. So, for
example, if the Xeon E5-2600/4600 used a traditional DMA technique, output would proceed as
follows. An I/O driver running on a core would send an I/O command to the I/O controller (labeled
PCIe in Figure 8.16) with the location and size of the buffer in main memory containing the data to be
transferred. The I/O controller issues a read request that is routed to the memory controller hub
(MCH), which accesses the data on DDR3 memory and puts it on the system ring for delivery to the
I/O controller. The L3 cache is not involved in this transaction and one or more off- ​chip memory reads
are required. Similarly, for input, data arrive from the I/O controller and is delivered over the system
ring to the MCH and written out to main memory. The MCH must also invalidate any L3 cache lines
corresponding to the updated memory locations. In this case, one or more off- ​chip memory writes are
required. Further, if an application wants to access the new data, a main memory read is required.

With the availability of large amounts of last- ​level cache, a more efficient technique is possible, and is
used by the Xeon E5-2600/4600. For output, when the I/O controller issues a read request, the MCH
first checks to see if the data are in the L3 cache. This is likely to be the case, if an application has
recently written data into the memory block to be output. In that case, the MCH directs data from the
L3 cache to the I/O controller; no main memory accesses are needed. However, it also causes the
data to be evicted from cache, that is, the act of reading by an I/O device causes data to be evicted.
Thus, the I/O operation proceeds efficiently because it does not require main memory access. But, if
an application does need that data in the future, it must be read back into the L3 cache from main
memory. The input operation on the Xeon E5-2600/4600 operates as described in the previous
paragraph; the L3 cache is not involved. Thus, the performance improvement involves only output
operations.

A final point. Although the output transfer is directly from cache to the I/O controller, the term direct
cache access is not used for this feature. Rather, that term is reserved for the I/O protocol application,
as described in the remainder of this section.

Cache- ​Related Performance Issues

Network traffic is transmitted in the form of a sequence of protocol blocks, called packets or protocol
data units. The lowest, or link, level protocol is typically Ethernet, so that each arriving and departing
block of data consists of an Ethernet packet containing as payload the higher- ​level protocol packet.
The higher- ​level protocols are usually the Internet Protocol (IP), operating on top of Ethernet, and the
Transmission Control Protocol (TCP), operating on top of IP. Accordingly, the Ethernet payload
consists of a block of data with a TCP header and an IP header. For outgoing data, Ethernet packets
are formed in a peripheral component, such as an I/O controller or network interface controller (NIC).
Similarly, for incoming traffic, the I/O controller strips off the Ethernet information and delivers the
TCP/IP packet to the host CPU.

For both outgoing and incoming traffic, the core, main memory, and cache are all involved. In a DMA
scheme, when an application wishes to transmit data, it places that data in an application- ​assigned
buffer in main memory. The core transfers this to a system buffer in main memory and creates the
necessary TCP and IP headers, which are also buffered in system memory. The packet is then picked
up via DMA for transfer via the NIC. This activity engages not only main memory but also the cache.
For incoming traffic, similar transfers between system and application buffers are required.

When large volumes of protocol traffic are processed, two factors in this scenario degrade
performance. First, the core consumes valuable clock cycles in copying data between system and
application buffers. Second, because memory speeds have not kept up with CPU speeds, the core
loses time waiting on memory reads and writes. In this traditional way of processing protocol traffic,
the cache does not help because the data and protocol headers are constantly changing and thus the
cache must constantly be updated.

To clarify the performance issue and to explain the benefit of DCA as a way of improving
performance, let us look at the processing of protocol traffic in more detail for incoming traffic. In
general terms, the following steps occur:

1. Packet arrives: The NIC receives an incoming Ethernet packet. The NIC processes and strips
off the Ethernet control information. This includes doing an error detection calculation. The
remaining TCP/IP packet is then transferred to the system’s DMA module, which generally is
part of the NIC. The NIC also creates a packet descriptor with information about the packet,
such as its buffer location in memory.

2. DMA: The DMA module transfers data, including the packet descriptor, to main memory. It must
also invalidate the corresponding cache lines, if any.

3. NIC interrupts host: After a number of packets have been transferred, the NIC issues an
interrupt to the host processor.

4. Retrieve descriptors and headers: The core processes the interrupt, invoking an interrupt
handling procedure, which reads the descriptor and header of the received packets.

5. Cache miss occurs: Because this is new data coming in, the cache lines corresponding to the
system buffer containing the new data are invalidated. Thus, the core must stall to read the data
from main memory into cache, and then to core registers.

6. Header is processed: The protocol software executes on the core to analyze the contents of
the TCP and IP headers. This will likely include accessing a transport control block (TCB),
which contains context information related to TCP. The TCB access may or may not trigger a
cache miss, necessitating a main memory access.

7. Payload transferred: The data portion of the packet is transferred from the system buffer to the
appropriate application buffer.

A similar sequence of steps occurs for outgoing packet traffic, but there are some differences that
affect how the cache is managed. For outgoing traffic, the following steps occur:

1. Packet transfer requested: When an application has a block of data to transfer to a remote

system, it places the data in an application buffer and alerts the OS with some type of system
call.

2. Packet created: The OS invokes a TCP/IP process to create the TCP/IP packet for
transmission. The TCP/IP process accesses the TCB (which may involve a cache miss) and
creates the appropriate headers. It also reads the data from the application buffer, and then
places the completed packet (headers plus data) in a system buffer. Note that the data that is
written into the system buffer also exists in the cache. The TCP/IP process also creates a
packet descriptor that is placed in memory shared with the DMA module.

3. Output operation invoked: This uses a device driver program to signal the DMA module that
output is ready for the NIC.

4. DMA transfer: The DMA module reads the packet descriptor, then a DMA transfer is performed
from main memory or the last-​level cache to the NIC. Note that DMA transfers invalidate the
cache line in cache even in the case of a read (by the DMA module). If the line is modified, this
causes a write back. The core does not do the invalidates. The invalidates happen when the
DMA module reads the data.

5. NIC signals completion: After the transfer is complete, the NIC signals the driver on the core
that originated the send signal.

6. Driver frees buffer: Once the driver receives the completion notice, it frees up the buffer space
for reuse. The core must also invalidate the cache lines containing the buffer data.

As can be seen, network I/O involves a number of accesses to cache and main memory and the
movement of data between an application buffer and a system buffer. The heavy involvement of main
memory becomes a bottleneck, as both core and network performance outstrip gains in memory
access times.

Direct Cache Access Strategies

Several strategies have been proposed for making more efficient use of caches for network I/O, with
the general term direct cache access applied to all of these strategies.

The simplest strategy is one that was implemented as a prototype on a number of Intel Xeon
processors between 2006 and 2010 [KUMA07, INTE08]. This form of DCA applies only to incoming
network traffic. The DCA function in the memory controller sends a prefetch hint to the core as soon
as the data are available in system memory. This enables the core to prefetch the data packet from
the system buffer, thus avoiding cache misses and the associated waste of core cycles.

While this simple form of DCA does provide some improvement, much more substantial gains can be
realized by avoiding the system buffer in main memory altogether. For the specific function of protocol
processing, note that the packet and packet descriptor information are accessed only once in the
system buffer by the core. For incoming packets, the core reads the data from the buffer and transfers
the packet payload to an application buffer. It has no need to access that data in the system buffer
again. Similarly, for outgoing packets, once the core has placed the data in the system buffer, it has
no need to access that data again. Suppose, therefore, that the I/O system were equipped not only
with the capability of directly accessing main memory, but also of accessing the cache, both for input
and output operations. Then it would be possible to use the last- ​level cache instead of the main
memory to buffer packets and descriptors of incoming and outgoing packets.

This last approach, which is a true DCA, was proposed in [HUGG05]. It has also been described as
cache injection [LEON06]. A version of this more complete form of DCA is implemented in Intel’s
Xeon processor line, referred to as Direct Data I/O [INTE12].

Direct Data I/O

Intel Direct Data I/O (DDIO) is implemented on all of the Xeon E5 family of processors. Its operation is
best explained with a side- ​by-​side comparison of transfers with and without DDIO.

PACKET INPUT

First, we look at the case of a packet arriving at the NIC from the network. Figure 8.17a shows the
steps involved for a DMA operation. The NIC initiates a memory write (1). Then the NIC invalidates
the cache lines corresponding to the system buffer (2). Next, the DMA operation is performed,
depositing the packet directly into main memory (3). Finally, after the appropriate core receives a DMA
interrupt signal, the core can read the packet data from memory through the cache (4).

Figure 8.17 Comparison of DMA and DDIO

Before discussing the processing of an incoming packet using DDIO, we need to summarize the
discussion of cache write policy from Chapter 5, and introduce a new technique. For the following
discussion, there are issues relating to cache coherency that arise in a multiprocessor or multicore
environment. These details are discussed in Chapter 19, but the details need not concern us here.
Recall that there are two techniques for dealing with an update to a cache line:

Write through: All write operations are made to main memory as well as to the cache, ensuring
that main memory is always valid. Any other core– ​cache module can monitor traffic to main
memory to maintain consistency within its own local cache.
Write back: Updates are made only in the cache. When an update occurs, a dirty bit associated
with the line is set. Then, when a block is replaced, it is written back to main memory if and only if
the dirty bit is set.

DDIO uses the write-​back strategy in the L3 cache.

A cache write operation may encounter a cache miss, which is dealt with by one of two strategies:

Write allocate: The required line is loaded into the cache from main memory. Then, the line in the
cache is updated by the write operation. This scheme is typically used with the write- ​back method.
Non-​write allocate: The block is modified directly in main memory. No change is made to the
cache. This scheme is typically used with the write- ​through method.

With the above in mind, we can describe the DDIO strategy for inbound transfers initiated by the NIC.

1. If there is a cache hit, the cache line is updated, but not main memory; this is simply the
write-​back strategy for a cache hit. The Intel literature refers to this as write update.

2. If there is a cache miss, the write operation occurs to a line in the cache that will not be written
back to main memory. Subsequent writes update the cache line, again with no reference to
main memory or no future action that writes this data to main memory. The Intel documentation
[INTE12] refers to this as write allocate, which unfortunately is not the same meaning for the
term in the general cache literature.

The DDIO strategy is effective for a network protocol application because the incoming data need not
be retained for future use. The protocol application is going to write the data to an application buffer,
and there is no need to temporarily store it in a system buffer.

Figure 8.17b shows the operation for DDIO input. The NIC initiates a memory write (1). Then the NIC
invalidates the cache lines corresponding to the system buffer and deposits the incoming data in the
cache (2). Finally, after the appropriate core receives a DCA interrupt signal, the core can read the
packet data from the cache (3).

PACKET OUTPUT

Figure 8.17c shows the steps involved for a DMA operation for outbound packet transmission. The
TCP/IP protocol handler executing on the core reads data in from an application buffer and writes it
out to a system buffer. These data access operations result in cache misses and cause data to be
read from memory and into the L3 cache (1). When the NIC receives notification for starting a transmit
operation, it reads the data from the L3 cache and transmits it (2). The cache access by the NIC
causes the data to be evicted from the cache and written back to main memory (3).

Figure 8.17d shows the steps involved for a DDIO operation for packet transmission. The TCP/IP
protocol handler creates the packet to be transmitted and stores it in allocated space in the L3 cache
(1), but not in main memory (2). The read operation initiated by the NIC is satisfied by data from the
cache, without causing evictions to main memory.

It should be clear from these side- ​by-​side comparisons that DDIO is more efficient than DMA for both
incoming and outgoing packets, and is therefore better able to keep up with a high packet traffic rate.

8.7 I/O Channels and Processors

The Evolution of the I/O Function

As computer systems have evolved, there has been a pattern of increasing complexity and
sophistication of individual components. Nowhere is this more evident than in the I/O function. We
have already seen part of that evolution. The evolutionary steps can be summarized as follows:

1. The CPU directly controls a peripheral device. This is seen in simple microprocessor- ​controlled
devices.

2. A controller or I/O module is added. The CPU uses programmed I/O without interrupts. With this
step, the CPU becomes somewhat divorced from the specific details of external device
interfaces.

3. The same configuration as in step 2 is used, but now interrupts are employed. The CPU need
not spend time waiting for an I/O operation to be performed, thus increasing efficiency.

4. The I/O module is given direct access to memory via DMA. It can now move a block of data to
or from memory without involving the CPU, except at the beginning and end of the transfer.

5. The I/O module is enhanced to become a processor in its own right, with a specialized
instruction set tailored for I/O. The CPU directs the I/O processor to execute an I/O program in
memory. The I/O processor fetches and executes these instructions without CPU intervention.
This allows the CPU to specify a sequence of I/O activities and to be interrupted only when the
entire sequence has been performed.

6. The I/O module has a local memory of its own and is, in fact, a computer in its own right. With
this architecture, a large set of I/O devices can be controlled, with minimal CPU involvement. A
common use for such an architecture has been to control communication with interactive
terminals. The I/O processor takes care of most of the tasks involved in controlling the
terminals.

As one proceeds along this evolutionary path, more and more of the I/O function is performed without
CPU involvement. The CPU is increasingly relieved of I/O- ​related tasks, improving performance. With
the last two steps (5–6), a major change occurs with the introduction of the concept of an I/O module
capable of executing a program. For step 5, the I/O module is often referred to as an I/O channel. For
step 6, the term I/O processor is often used. However, both terms are on occasion applied to both
situations. In what follows, we will use the term I/O channel.

Characteristics of I/O Channels

The I/O channel represents an extension of the DMA concept. An I/O channel has the ability to
execute I/O instructions, which gives it complete control over I/O operations. In a computer system
with such devices, the CPU does not execute I/O instructions. Such instructions are stored in main
memory to be executed by a special- ​purpose processor in the I/O channel itself. Thus, the CPU
initiates an I/O transfer by instructing the I/O channel to execute a program in memory. The program
will specify the device or devices, the area or areas of memory for storage, priority, and actions to be
taken for certain error conditions. The I/O channel follows these instructions and controls the data
transfer.

Two types of I/O channels are common, as illustrated in Figure 8.18. A selector channel controls
multiple high- ​speed devices and, at any one time, is dedicated to the transfer of data with one of those
devices. Thus, the I/O channel selects one device and effects the data transfer. Each device, or a
small set of devices, is handled by a controller, or I/O module, that is much like the I/O modules we

have been discussing. Thus, the I/O channel serves in place of the CPU in controlling these I/O
controllers. A multiplexor channel can handle I/O with multiple devices at the same time. For
low-​speed devices, a byte multiplexor accepts or transmits characters as fast as possible to multiple
devices. For example, the resultant character stream from three devices with different rates and
individual streams might be ,

and so on. For high- ​speed devices, a block multiplexor interleaves blocks of data from several
devices.

Figure 8.18 I/O Channel Architecture

A1A2A3A4 … , B1B2B3B4 … , andC1C2C3C4… A1B1C1A2C2A3B2C3A4

	8.8 External Interconnection Standards
In this section, we provide a brief overview of the most widely used external interface standards to
support I/O.

Universal Serial Bus (USB)

USB is widely used for peripheral connections. It is the default interface for slower- speed devices,
such as keyboard and pointing devices, but is also commonly used for high- ​speed I/O, including
printers, disk drives, and network adapters.

USB has gone through multiple generations. The first version, USB 1.0, defined a Low Speed data
rate of 1.5 Mbps and a Full Speed rate of 12 Mbps. USB 2.0 provides a data rate of 480 Mbps. USB
3.0 includes a new, higher speed bus called SuperSpeed in parallel with the USB 2.0 bus. The
signaling speed of SuperSpeed is 5 Gbps, but due to signaling overhead, the usable data rate is up to
4 Gbps. The most recent specification is USB 3.1, which includes a faster transfer mode called

. This transfer mode achieves a signaling rate of 10 Gbps and a theoretical usable data
rate of 9.7 Gbps.

A USB system is controlled by a root host controller, which attaches to devices to create a local
network with a hierarchical tree topology.

FireWire Serial Bus

FireWire was developed as an alternative to the small computer system interface (SCSI) to be used
on smaller systems, such as personal computers, workstations, and servers. The objective was to
meet the increasing demands for high I/O rates on these systems, while avoiding the bulky and
expensive I/O channel technologies developed for mainframe and supercomputer systems. The result
is the IEEE standard 1394, for a High Performance Serial Bus, commonly known as FireWire.

FireWire uses a daisy- ​chain configuration, with up to 63 devices connected off a single port.
Moreover, up to 1022 FireWire buses can be interconnected using bridges, enabling a system to
support as many peripherals as required.

FireWire provides for what is known as hot plugging, which makes it possible to connect and
disconnect peripherals without having to power the computer system down or reconfigure the system.
Also, FireWire provides for automatic configuration; it is not necessary manually to set device IDs or to
be concerned with the relative position of devices. With FireWire, there are no terminations, and the
system automatically performs a configuration function to assign addresses. A FireWire bus need not
be a strict daisy chain. Rather, a tree- ​structured configuration is possible.

An important feature of the FireWire standard is that it specifies a set of three layers of protocols to
standardize the way in which the host system interacts with the peripheral devices over the serial bus.
The physical layer defines the transmission media that are permissible under FireWire and the
electrical and signaling characteristics of each. Data rates from 25 Mbps to 3.2 Gbps are defined. The
link layer describes the transmission of data in the packets. The transaction layer defines a
request– ​response protocol that hides the lower- ​layer details of FireWire from applications.

Small Computer System Interface (SCSI)

SuperSpeed+

SCSI is a once common standard for connecting peripheral devices (disks, modems, printers, etc.) to
small and medium- ​sized computers. Although SCSI has evolved to higher data rates, it has lost
popularity to such competitors as USB and FireWire in smaller systems. However, high- ​speed
versions of SCSI remain popular for mass memory support on enterprise systems. For example, the
IBM zEnterprise EC12 and other IBM mainframes offer support for SCSI, and a number of Seagate
hard drive systems use SCSI.

The physical organization of SCSI is a shared bus, which can support up to 16 or 32 devices,
depending on the generation of the standard. The bus provides for parallel transmission rather than
serial, with a bus width of 16 bits on earlier generations and 32 bits on later generations. Speeds
range from 5 Mbps on the original SCSI- ​1 specification to 160 Mbps on SCSI- ​3 U3.

Thunderbolt

The most recent, and one of fastest, peripheral connection technology to become available for
general- ​purpose use is Thunderbolt, developed by Intel with collaboration from Apple. One
Thunderbolt cable can manage the work previously required of multiple cables. The technology
combines data, video, audio, and power into a single high- ​speed connection for peripherals such as
hard drives, RAID (Redundant Array of Independent Disks) arrays, video- ​capture boxes, and network
interfaces. It provides up to 10 Gbps throughput in each direction and up to 10 watts of power to
connected peripherals.

InfiniBand

InfiniBand is an I/O specification aimed at the high- ​end server market. The first version of the
specification was released in early 2001 and has attracted numerous vendors. For example, IBM
zEnterprise series of mainframes has relied heavily on InfiniBand for a number of years. The standard
describes an architecture and specifications for data flow among processors and intelligent I/O
devices. InfiniBand has become a popular interface for storage area networking and other large
storage configurations. In essence, InfiniBand enables servers, remote storage, and other network
devices to be attached in a central fabric of switches and links. The switch- ​based architecture can
connect up to 64,000 servers, storage systems, and networking devices.

PCI Express

PCI Express is a high- ​speed bus system for connecting peripherals of a wide variety of types and
speeds. Chapter 3 discusses PCI Express in detail.

SATA

Serial ATA (Serial Advanced Technology Attachment) is an interface for disk storage systems. It
provides data rates of up to 6 Gbps, with a maximum per device of 300 Mbps. SATA is widely used in
desktop computers, and in industrial and embedded applications.

Ethernet

Ethernet is the predominant wired networking technology, used in homes, offices, data centers,
enterprises, and wide- ​area networks. As Ethernet has evolved to support data rates up to 100 Gbps
and distances from a few meters to tens of km, it has become essential for supporting personal
computers, workstations, servers, and massive data storage devices in organizations large and small.

Ethernet began as an experimental bus- ​based 3-Mbps system. With a bus system, all of the attached
devices, such as PCs, connect to a common coaxial cable, much like residential cable TV systems.
The first commercially- ​available Ethernet, and the first version of IEEE 802.3, were bus- ​based
systems operating at 10 Mbps. As technology has advanced, Ethernet has moved from bus- ​based to
switch-​based, and the data rate has periodically increased by an order of magnitude. With
switch-​based systems, there is a central switch, with all of the devices connected directly to the
switch. Currently, Ethernet systems are available at speeds up to 100 Gbps. Here is a brief
chronology.

1983: 10 Mbps (megabit per second, million bits per second)
1995: 100 Mbps
1998: 1 Gbps (gigabit per second, billion bits per second)
2003: 10 Gbps
2010: 40 Gbps and 100 Gbps

Wi-​Fi

Wi-​Fi is the predominant wireless Internet access technology, used in homes, offices, and public
spaces. Wi-​Fi in the home now connects computers, tablets, smart phones, and a host of electronic
devices, such as video cameras, TVs, and thermostats. Wi- ​Fi in the enterprise has become an
essential means of enhancing worker productivity and network effectiveness. And public Wi- ​Fi
hotspots have expanded dramatically to provide free Internet access in most public places.

As the technology of antennas, wireless transmission techniques, and wireless protocol design has
evolved, the IEEE 802.11 committee has been able to introduce standards for new versions of Wi- ​Fi
at ever-​higher speeds. Once the standard is issued, industry quickly develops the products. Here is a
brief chronology, starting with the original standard, which was simply called IEEE 802.11, and
showing the maximum data rate for each version:

802.11 (1997): 2 Mbps (megabit per second, million bits per second)
802.11a (1999): 54 Mbps
802.11b (1999): 11 Mbps
802.11n (1999): 600 Mbps
802.11g (2003): 54 Mbps
802.11ad (2012): 6.76 Gbps (billion bits per second)
802.11ac (2014): 3.2 Gbps

8.9 IBM z13 I/O Structure
The z13 is IBM’s latest mainframe computer offering (at the time of this writing). The system is based
on the use of a 5-GHz multicore chip with eight cores. The z13 architecture can have a maximum of
168 processor chips, or processor units (PU), for a total of 1344 cores, and it supports up to a total of
10 TB of real memory. In this section, we look at the I/O structure of the z13.

Channel Structure

The z13 has a dedicated I/O subsystem that manages all I/O operations, completely off- ​loading this
processing and memory burden from the main processors. Figure 8.19 shows the logical structure of
the I/O subsystem. Of the 168 core processors, up to 24 of these can be dedicated for I/O use,
creating 46 channel subsystems (CSS). Each CSS is made up of the following elements:

Figure 8.19 IBM z13 I/O Channel Structure

System assist processor (SAP): The SAP is a core processor configured for I/O operation. Its
role is to offload I/O operations and manage channels and the I/O operations queues. It relieves
the other processors of all I/O tasks, allowing them to be dedicated to application logic.
Hardware system area (HSA): The HSA is a reserved part of the system memory containing the

I/O configuration. It is used by SAPs. A fixed amount of 96 GB is reserved, which is not part of the
customer-​purchased memory. This provides for greater configuration flexibility and higher
availability by eliminating planned and preplanned outages.
Logical partitions: A logical partition is a form of virtual machine, which is in essence a logical
processor defined at the operating system level. Each CSS supports up to 16 logical partitions.
 A virtual machine is an instance of an operating system along with one or more applications running in an

isolated memory partition within the computer. It enables different operating systems to run in the same
computer at the same time, as well as prevents applications from interfering with each other. See [STAL18] for a
discussion of virtual machines.

Subchannels: A subchannel appears to a program as a logical device and contains the
information required to perform an I/O operation. One subchannel exists for each I/O device
addressable by the CSS. A subchannel is used by the channel subsystem code running on a
partition to pass an I/O request to the channel subsystem. A subchannel is assigned for each
device defined to the logical partition. Up to 196k subchannels are supported per CSS.
Subchannel set: This is a collection of subchannels within a channel subsystem. The maximum
number of subchannels of a subchannel set determines how many devices are accessible to a
channel subsystem.
Channel path: A channel path is a single interface between a channel subsystem and one or more
control units, via a channel. Commands and data are sent across a channel path to perform I/O
requests. Each CSS can have up to 256 channel paths.
Channel: Channels are small processors that communicate with the I/O control units (CUs). They
manage the data transfer between memory and the external devices.

This elaborate structure enables the mainframe to manage a massive number of I/O devices and
communication links. All I/O processing is offloaded from the application and server processors,
enhancing performance. The channel subsystem processors are somewhat general in configuration,
enabling them to manage a wide variety of I/O duties and to keep up with evolving requirements. The
channel processors are specifically programmed for the I/O control units to which they interface.

I/O System Organization

To explain the I/O system organization, we need to first briefly explain the physical layout of the z13.
The system has the following characteristics:

Weight: 2567 kg (5657 lbs)
Width: 1.847 m (6.06 ft)
Depth: 1.806 m (5.9 ft)
Height: 2.154 m (7.1 ft)

Not exactly a laptop.

The system consists of two large bays called frames bolted together, that house the various
components of the z13. The A frame houses four processor drawers interconnected via Ethernet, and
one PCIe I/O drawer, which contains I/O hardware, including multiplexors and channels. The A frame
also includes two support servers used by a system manager for platform management, battery
backup, and a cooling unit (water or air).

The Z frame houses up to four I/O drawers, which can be a combination of PCIe drawers and
customer-selected I/O drawers. The Z frame also includes battery backup and a keyboard/display
tray, which contains the keyboards and the displays that are connected to the support servers.

3
3

With this background, we now show a typical configuration of the z13 I/O system structure (Figure
8.20). Each z13 processor drawer supports two types of internal (i.e., internal to the A and Z frames)
I/O infrastructures: PCI Express (PCIe) and Infiniband. Each processor drawer includes a card
containing the channel controller which provides connectivity to the I/O drawers. These channel
controllers are referred to as fanouts.

Figure 8.20 IBM z13 I/O System Structure

The InfiniBand connections from the processor book to the I/O drawers are via a Host Channel
Adapter (HCA) fanout, which has InfiniBand links to InfiniBand multiplexors in the I/O drawer. The
InfiniBand multiplexors are used to interconnect servers, communications infrastructure equipment,
storage, and embedded systems. In addition to using InfiniBand to interconnect systems, all of which
use InfiniBand, the InfiniBand multiplexor supports other I/O technologies, such as Ethernet. Ethernet
connections provide 1-Gbps and 10-Gbps connections to a variety of devices that support this popular
local area network technology. One noteworthy use of Ethernet is to construct large server farms,
particularly to interconnect blade servers with each other and with other mainframes.4

 A blade server is a server architecture that houses multiple server modules (blades) in a single chassis. It is widely

used in data centers to save space and improve system management. Either self- ​standing or rack mounted, the
chassis provides the power supply, and each blade has its own CPU, memory, and hard disk.

The PCIe connections from the processor book to the I/O drawers are via a PCIe fanout to PCIe
switches. The PCIe switches can connect to a number of I/O device controllers. Typical examples for
z13 are 1-Gbps and 10-Gbps Ethernet, Fiber Channel, and (OSA) Express Controller. OSA is an I/O
adapter technology that provides streamlined, high-speed transfer between system memory and a
high-speed network interface, such as Ethernet.

4

8.10 Key Terms, Review Questions, and Problems

Key Terms

cache injection

cycle stealing

direct cache access (DCA)

Direct Data I/O

direct memory access (DMA)

InfiniBand

interrupt

interrupt-​driven I/O

I/O channel

I/O command

I/O module

I/O processor

isolated I/O

last-level cache

memory-mapped I/O

multiplexor channel

non-​write allocate

parallel I/O

peripheral device

programmed I/O

selector channel

serial I/O

Thunderbolt

write allocate

write back

write through

write update

Review Questions

Problems

8.1 List three broad classifications of external, or peripheral, devices.
8.2 What is the International Reference Alphabet?
8.3 What are the major functions of an I/O module?
8.4 List and briefly define three techniques for performing I/O.
8.5 What is the difference between memory- ​mapped I/O and isolated I/O?
8.6 When a device interrupt occurs, how does the processor determine which device issued the
interrupt?
8.7 When a DMA module takes control of a bus, and while it retains control of the bus, what
does the processor do?

8.1 On a typical microprocessor, a distinct I/O address is used to refer to the I/O data registers
and a distinct address for the control and status registers in an I/O controller for a given device.
Such registers are referred to as ports. In the Intel 8088, two I/O instruction formats are used.
In one format, the 8-bit opcode specifies an I/O operation; this is followed by an 8-bit port
address. Other I/O opcodes imply that the port address is in the 16-bit DX register. How many
ports can the 8088 address in each I/O addressing mode?
8.2 A similar instruction format is used in the Zilog Z8000 microprocessor family. In this case,
there is a direct port addressing capability, in which a 16-bit port address is part of the
instruction, and an indirect port addressing capability, in which the instruction references one of
the 16-bit general purpose registers, which contains the port address. How many ports can the
Z8000 address in each I/O addressing mode?
	8.3 The Z8000 also includes a block I/O transfer capability that, unlike DMA, is under the direct
control of the processor. The block transfer instructions specify a port address register (Rp), a
count register (Rc), and a destination register (Rd). Rd contains the main memory address at
which the first byte read from the input port is to be stored. Rc is any of the 16-bit general
purpose registers. How large a data block can be transferred?
8.4 Consider a microprocessor that has a block I/O transfer instruction such as that found on
the Z8000. Following its first execution, such an instruction takes five clock cycles to re- ​execute.
However, if we employ a nonblocking I/O instruction, it takes a total of 20 clock cycles for
fetching and execution. Calculate the increase in speed with the block I/O instruction when
transferring blocks of 128 bytes.
8.5 A system is based on an 8-bit microprocessor and has two I/O devices. The I/O controllers
for this system use separate control and status registers. Both devices handle data on a 1-
byte-​at-​a-​time basis. The first device has two status lines and three control lines. The second
device has three status lines and four control lines.

a. How many 8-bit I/O control module registers do we need for status reading and control of
each device?

b. What is the total number of needed control module registers given that the first device is
an output-​only device?

c. How many distinct addresses are needed to control the two devices?

8.6 For programmed I/O, Figure 8.5 indicates that the processor is stuck in a wait loop doing
status checking of an I/O device. To increase efficiency, the I/O software could be written so
that the processor periodically checks the status of the device. If the device is not ready, the
processor can jump to other tasks. After some timed interval, the processor comes back to
check status again.

a. Consider the above scheme for outputting data one character at a time to a printer that
operates at 10 characters per second (cps). What will happen if its status is scanned
every 200 ms?

b. Next consider a keyboard with a single character buffer. On average, characters are
entered at a rate of 10 cps. However, the time interval between two consecutive key
depressions can be as short as 60 ms. At what frequency should the keyboard be
scanned by the I/O program?

8.7 A microprocessor scans the status of an output I/O device every 20 ms. This is
accomplished by means of a timer alerting the processor every 20 ms. The interface of the
device includes two ports: one for status and one for data output. How long does it take to scan
and service the device, given a clocking rate of 8 MHz? Assume for simplicity that all pertinent
instruction cycles take 12 clock cycles.
8.8 In Section 8.3 , one advantage and one disadvantage of memory- ​mapped I/O, compared
with isolated I/O, were listed. List two more advantages and two more disadvantages.
8.9 A particular system is controlled by an operator through commands entered from a
keyboard. The average number of commands entered in an 8-hour interval is 60.

a. Suppose the processor scans the keyboard every 100 ms. How many times will the
keyboard be checked in an 8-hour period?

b. By what fraction would the number of processor visits to the keyboard be reduced if
interrupt-​driven I/O were used?

8.10 Suppose that the 8255A shown in Figure 8.9 is configured as follows: port A as input, port
B as output, and all the bits of port C as output. Show the bits of the control register to define
this configuration.
8.11 Consider a system employing interrupt- ​driven I/O for a particular device that transfers data
at an average of 8 KB/s on a continuous basis.

a. Assume that interrupt processing takes about (i.e., the time to jump to the interrupt
service routine (ISR), execute it, and return to the main program). Determine what
fraction of processor time is consumed by this I/O device if it interrupts for every byte.

b. Now assume that the device has two 16-byte buffers and interrupts the processor when
one of the buffers is full. Naturally, interrupt processing takes longer, because the ISR
must transfer 16 bytes. While executing the ISR, the processor takes about for the
transfer of each byte. Determine what fraction of processor time is consumed by this I/O
device in this case.

c. Now assume that the processor is equipped with a block transfer I/O instruction such as
that found on the Z8000. This permits the associated ISR to transfer each byte of a block
in only . Determine what fraction of processor time is consumed by this I/O device in
this case.

8.12 In virtually all systems that include DMA modules, DMA to main memory is given higher
priority than CPU access to main memory. Why?
8.13 A DMA module is transferring characters to memory using cycle stealing, from a device
transmitting at 9600 bps. The processor is fetching instructions at the rate of 1 million
instructions per second (1 MIPS). By how much will the processor be slowed down due to the
DMA activity?
8.14 Consider a system in which bus cycles takes 500 ns. Transfer of bus control in either
direction, from processor to I/O device or vice versa, takes 250 ns. One of the I/O devices has a
data transfer rate of 50 KB/s and employs DMA. Data are transferred 1 byte at a time.

a. Suppose we employ DMA in a burst mode. That is, the DMA interface gains bus
mastership prior to the start of a block transfer and maintains control of the bus until the
whole block is transferred. For how long would the device tie up the bus when
transferring a block of 128 bytes?

b. Repeat the calculation for cycle- ​stealing mode.

100μs

8μs

2μs

8.15 Examination of the timing diagram of the 8237A indicates that once a block transfer
begins, it takes three bus clock cycles per DMA cycle. During the DMA cycle, the 8237A
transfers one byte of information between memory and I/O device.

a. Suppose we clock the 8237A at a rate of 5 MHz. How long does it take to transfer one
byte?

b. What would be the maximum attainable data transfer rate?
c. Assume that the memory is not fast enough and we have to insert two wait states per

DMA cycle. What will be the actual data transfer rate?

8.16 Assume that in the system of the preceding problem, a memory cycle takes 750 ns. To
what value could we reduce the clocking rate of the bus without effect on the attainable data
transfer rate?
8.17 A DMA controller serves four receive- ​only telecommunication links (one per DMA channel)
having a speed of 64 Kbps each.

a. Would you operate the controller in burst mode or in cycle- ​stealing mode?
b. What priority scheme would you employ for service of the DMA channels?

8.18 A 32-bit computer has two selector channels and one multiplexor channel. Each selector
channel supports two magnetic disk and two magnetic tape units. The multiplexor channel has
two line printers, two card readers, and 10 VDT terminals connected to it. Assume the following
transfer rates:

Disk drive 800 Kbytes/s

Magnetic tape drive 200 Kbytes/s

Line printer 6.6 Kbytes/s

Card reader 1.2 Kbytes/s

VDT 1 Kbyte/s

Estimate the maximum aggregate I/O transfer rate in this system.
8.19 A computer consists of a processor and an I/O device D connected to main memory M via
a shared bus with a data bus width of one word. The processor can execute a maximum of
instructions per second. An average instruction requires five machine cycles, three of which use
the memory bus. A memory read or write operation uses one machine cycle. Suppose that the
processor is continuously executing “background” programs that require 95% of its instruction
execution rate but not any I/O instructions. Assume that one processor cycle equals one bus
cycle. Now suppose the I/O device is to be used to transfer very large blocks of data between M
and D.

a. If programmed I/O is used and each one- ​word I/O transfer requires the processor to
execute two instructions, estimate the maximum I/O data- ​transfer rate, in words per
second, possible through D.

b. Estimate the same rate if DMA is used.

8.20 A data source produces 7-bit IRA characters, to each of which is appended a parity bit.
Derive an expression for the maximum effective data rate (rate of IRA data bits) over an R ﻿-​bps
line for the following:

a.

106

Asynchronous transmission, with a 1.5-unit stop bit;
b. Bit-​synchronous transmission, with a frame consisting of 48 control bits and 128

information bits;
c. Same as (b), with a 1024-bit information field;
d. Character- ​synchronous, with nine control characters per frame and 16 information

characters;
e. Same as (d), with 128 information characters.

8.21 Two women are on either side of a high fence. One of the women, named Apple- ​server,
has a beautiful apple tree loaded with delicious apples growing on her side of the fence; she is
happy to supply apples to the other woman whenever needed. The other woman, named
Apple- ​eater, loves to eat apples but has none. In fact, she must eat her apples at a fixed rate
(an apple a day keeps the doctor away). If she eats them faster than that rate, she will get sick.
If she eats them slower, she will suffer malnutrition. Neither woman can talk, and so the problem
is to get apples from Apple- ​server to Apple- ​eater at the correct rate.

a. Assume that there is an alarm clock sitting on top of the fence and that the clock can
have multiple alarm settings. How can the clock be used to solve the problem? Draw a
timing diagram to illustrate the solution.

b. Now assume that there is no alarm clock. Instead Apple- ​eater has a flag that she can
wave whenever she needs an apple. Suggest a new solution. Would it be helpful for
Apple- ​server also to have a flag? If so, incorporate this into the solution. Discuss the
drawbacks of this approach.

c. Now take away the flag and assume the existence of a long piece of string. Suggest a
solution that is superior to that of (b) using the string.

8.22 Assume that one 16-bit and two 8-bit microprocessors are to be interfaced to a system
bus. The following details are given:

1. All microprocessors have the hardware features necessary for any type of data transfer:
programmed I/O, interrupt-​driven I/O, and DMA.

2. All microprocessors have a 16-bit address bus.
3. Two memory boards, each of 64-Kbytes capacity, are interfaced with the bus. The

designer wishes to use a shared memory that is as large as possible.
4. The system bus supports a maximum of four interrupt lines and one DMA line. Make any

other assumptions necessary, and:
a. Give the system bus specifications in terms of number and types of lines.
b. Describe a possible protocol for communicating on the bus (i.e., read- ​write,

interrupt, and DMA sequences).
c. Explain how the aforementioned devices are interfaced to the system bus.

Chapter 9 Operating System Support

9.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Summarize, at a top level, the key functions of an operating system (OS) .
Discuss the evolution of operating systems for early simple batch systems to modern complex
systems.
Explain the differences among long-, medium-, and short- ​term scheduling.
Understand the reason for memory partitioning and explain the various techniques that are used.
Assess the relative advantages of paging and segmentation.

9.1 Operating System Overview
Operating System Objectives and Functions
Types of Operating Systems

9.2 Scheduling
Long-​Term Scheduling
Medium-​Term Scheduling
Short-​Term Scheduling

9.3 Memory Management
Swapping
Partitioning
Paging
Virtual Memory
Translation Lookaside Buffer
Segmentation

9.4 Intel x86 Memory Management
Address Spaces
Segmentation
Paging

9.5 ARM Memory Management
Memory System Organization
Virtual Memory Address Translation
Memory-​Management Formats
Access Control

Define virtual memory.

Although the focus of this text is computer hardware, there is one area of software
that needs to be addressed: the computer’s OS. The OS is a program that
manages the computer’s resources, provides services for programmers, and
schedules the execution of other programs. Some understanding of operating
systems is essential to appreciate the mechanisms by which the CPU controls the
computer system. In particular, explanations of the effect of interrupts and of the
management of the memory hierarchy are best explained in this context.

The chapter begins with an overview and brief history of operating systems. The
bulk of the chapter looks at the two OS functions that are most relevant to the
study of computer organization and architecture: scheduling and memory
management.

9.1 Operating System Overview

Operating System Objectives and Functions

An OS is a program that controls the execution of application programs and acts as an interface
between applications and the computer hardware. It can be thought of as having two objectives:

Convenience: An OS makes a computer more convenient to use.
Efficiency: An OS allows the computer system resources to be used in an efficient manner.

Let us examine these two aspects of an OS in turn.

THE OPERATING SYSTEM AS A USER/COMPUTER INTERFACE

The hardware and software used in providing applications to a user can be viewed in a layered or
hierarchical fashion, as depicted in Figure 9.1. The user of those applications, the end user, generally
is not concerned with the computer’s architecture. Thus the end user views a computer system in
terms of an application. That application can be expressed in a programming language and is
developed by an application programmer. To develop an application program as a set of processor
instructions that is completely responsible for controlling the computer hardware would be an
overwhelmingly complex task. To ease this task, a set of system programs is provided. Some of these
programs are referred to as utilities. These implement frequently used functions that assist in
program creation, the management of files, and the control of I/O devices. A programmer makes use
of these facilities in developing an application, and the application, while it is running, invokes the
utilities to perform certain functions. The most important system program is the OS. The OS masks
the details of the hardware from the programmer and provides the programmer with a convenient
interface for using the system. It acts as mediator, making it easier for the programmer and for
application programs to access and use those facilities and services.

Figure 9.1 Computer Hardware and Software Structure

Briefly, the OS typically provides services in the following areas:

Program creation: The OS provides a variety of facilities and services, such as editors and
debuggers, to assist the programmer in creating programs. Typically, these services are in the form
of utility programs that are not actually part of the OS but are accessible through the OS.
Program execution: A number of steps need to be performed to execute a program. Instructions
and data must be loaded into main memory, I/O devices and files must be initialized, and other
resources must be prepared. The OS handles all of this for the user.
Access to I/O devices: Each I/O device requires its own specific set of instructions or control
signals for operation. The OS takes care of the details so that the programmer can think in terms of
simple reads and writes.
Controlled access to files: In the case of files, control must include an understanding of not only
the nature of the I/O device (disk drive, tape drive) but also the file format on the storage medium.
Again, the OS worries about the details. Further, in the case of a system with multiple simultaneous
users, the OS can provide protection mechanisms to control access to the files.
System access: In the case of a shared or public system, the OS controls access to the system as
a whole and to specific system resources. The access function must provide protection of
resources and data from unauthorized users and must resolve conflicts for resource contention.
Error detection and response: A variety of errors can occur while a computer system is running.
These include internal and external hardware errors, such as a memory error, or a device failure or
malfunction; and various software errors, such as arithmetic overflow, attempt to access forbidden
memory location, and inability of the OS to grant the request of an application. In each case, the
OS must make the response that clears the error condition with the least impact on running
applications. The response may range from ending the program that caused the error, to retrying
the operation, to simply reporting the error to the application.
Accounting: A good OS collects usage statistics for various resources and monitors performance
parameters such as response time. On any system, this information is useful in anticipating the
need for future enhancements and in tuning the system to improve performance. On a multiuser
system, the information can be used for billing purposes. Figure 9.1 also indicates three key
interfaces in a typical computer system:

Instruction set architecture (ISA): The ISA defines the repertoire of machine language
instructions that a computer can follow. This interface is the boundary between hardware and
software. Note that both application programs and utilities may access the ISA directly. For
these programs, a subset of the instruction repertoire is available (user ISA). The OS has
access to additional machine language instructions that deal with managing system resources
(system ISA).
Application binary interface (ABI): The ABI defines a standard for binary portability across
programs. The ABI defines the system call interface to the operating system and the hardware
resources and services available in a system through the user ISA.
Application programming interface (API): The API gives a program access to the hardware
resources and services available in a system through the user ISA supplemented with
high-​level language (HLL) library calls. Any system calls are usually performed through
libraries. Using an API enables application software to be ported easily, through recompilation,
to other systems that support the same API.

THE OPERATING SYSTEM AS RESOURCE MANAGER

A computer is a set of resources for the movement, storage, and processing of data and for the
control of these functions. The OS is responsible for managing these resources.

Can we say that the OS controls the movement, storage, and processing of data? From one point of
view, the answer is yes: By managing the computer’s resources, the OS is in control of the computer’s
basic functions. But this control is exercised in a curious way. Normally, we think of a control

mechanism as something external to that which is controlled, or at least as something that is a distinct
and separate part of that which is controlled. (For example, a residential heating system is controlled
by a thermostat, which is completely distinct from the heat- ​generation and heat- ​distribution
apparatus.) This is not the case with the OS, which as a control mechanism is unusual in two
respects:

The OS functions in the same way as ordinary computer software; that is, it is a program executed
by the processor.
The OS frequently relinquishes control and must depend on the processor to allow it to regain
control.

Like other computer programs, the OS provides instructions for the processor. The key difference is in
the intent of the program. The OS directs the processor in the use of the other system resources and
in the timing of its execution of other programs. But in order for the processor to do any of these
things, it must cease executing the OS program and execute other programs. Thus, the OS
relinquishes control for the processor to do some “useful” work and then resumes control long enough
to prepare the processor to do the next piece of work. The mechanisms involved in all this should
become clear as the chapter proceeds.

Figure 9.2 suggests the main resources that are managed by the OS. A portion of the OS is in main
memory. This includes the kernel, or nucleus , which contains the most frequently used functions
in the OS and, at a given time, other portions of the OS currently in use. The remainder of main
memory contains user programs and data. The allocation of this resource (main memory) is controlled
jointly by the OS and memory- ​management hardware in the processor, as we will see. The OS
decides when an I/O device can be used by a program in execution, and controls access to and use of
files. The processor itself is a resource, and the OS must determine how much processor time is to be
devoted to the execution of a particular user program. In the case of a multiple- ​processor system, this
decision must span all of the processors.

Figure 9.2 The Operating System as Resource Manager

Types of Operating Systems

Certain key characteristics serve to differentiate various types of operating systems. The
characteristics fall along two independent dimensions. The first dimension specifies whether the
system is batch or interactive. In an interactive system, the user/programmer interacts directly with
the computer, usually through a keyboard/display terminal, to request the execution of a job or to
perform a transaction. Furthermore, the user may, depending on the nature of the application,
communicate with the computer during the execution of the job. A batch system is the opposite of
interactive. The user’s program is batched together with programs from other users and submitted by
a computer operator. After the program is completed, results are printed out for the user. Pure batch
systems are rare today, however, it will be useful to the description of contemporary operating
systems to briefly examine batch systems.

An independent dimension specifies whether the system employs multiprogramming or not. With
multiprogramming, the attempt is made to keep the processor as busy as possible, by having it work
on more than one program at a time. Several programs are loaded into memory, and the processor
switches rapidly among them. The alternative is a uniprogramming system that works only one
program at a time.

EARLY SYSTEMS

With the earliest computers, from the late 1940s to the mid- ​1950s, the programmer interacted directly
with the computer hardware; there was no OS. These processors were run from a console, consisting

of display lights, toggle switches, some form of input device, and a printer. Programs in processor
code were loaded via the input device (e.g., a card reader). If an error halted the program, the error
condition was indicated by the lights. The programmer could proceed to examine registers and main
memory to determine the cause of the error. If the program proceeded to a normal completion, the
output appeared on the printer.

These early systems presented two main problems:

Scheduling: Most installations used a sign- ​up sheet to reserve processor time. Typically, a user
could sign up for a block of time in multiples of a half hour or so. A user might sign up for an hour
and finish in 45 minutes; this would result in wasted computer idle time. On the other hand, the
user might run into problems, not finish in the allotted time, and be forced to stop before resolving
the problem.
Setup time: A single program, called a job, could involve loading the compiler plus the high- ​level
language program (source program) into memory, saving the compiled program (object program),
and then loading and linking together the object program and common functions. Each of these
steps could involve mounting or dismounting tapes, or setting up card decks. If an error occurred,
the hapless user typically had to go back to the beginning of the setup sequence. Thus a
considerable amount of time was spent just in setting up the program to run.

This mode of operation could be termed serial processing, reflecting the fact that users have access to
the computer in series. Over time, various system software tools were developed to attempt to make
serial processing more efficient. These include libraries of common functions, linkers, loaders,
debuggers, and I/O driver routines that were available as common software for all users.

SIMPLE BATCH SYSTEMS

Early processors were very expensive, and therefore it was important to maximize processor
utilization. The wasted time due to scheduling and setup time was unacceptable.

To improve utilization, simple batch operating systems were developed. With such a system, also
called a monitor, the user no longer has direct access to the processor. Rather, the user submits the
job on cards or tape to a computer operator, who batches the jobs together sequentially and places
the entire batch on an input device, for use by the monitor.

To understand how this scheme works, let us look at it from two points of view: that of the monitor and
that of the processor. From the point of view of the monitor, the monitor controls the sequence of
events. For this to be so, much of the monitor must always be in main memory and available for
execution (Figure 9.3). That portion is referred to as the resident monitor. The rest of the monitor
consists of utilities and common functions that are loaded as subroutines to the user program at the
beginning of any job that requires them. The monitor reads in jobs one at a time from the input device
(typically a card reader or magnetic tape drive). As it is read in, the current job is placed in the user
program area, and control is passed to this job. When the job is completed, it returns control to the
monitor, which immediately reads in the next job. The results of each job are printed out for delivery to
the user.

Figure 9.3 Memory Layout for a Resident Monitor

Now consider this sequence from the point of view of the processor. At a certain point in time, the
processor is executing instructions from the portion of main memory containing the monitor. These
instructions cause the next job to be read in to another portion of main memory. Once a job has been
read in, the processor will encounter in the monitor a branch instruction that instructs the processor to
continue execution at the start of the user program. The processor will then execute the instruction in
the user’s program until it encounters an ending or error condition. Either event causes the processor
to fetch its next instruction from the monitor program. Thus the phrase “control is passed to a job”
simply means that the processor is now fetching and executing instructions in a user program, and
“control is returned to the monitor” means that the processor is now fetching and executing
instructions from the monitor program.

It should be clear that the monitor handles the scheduling problem. A batch of jobs is queued up, and
jobs are executed as rapidly as possible, with no intervening idle time.

How about the job setup time? The monitor handles this as well. With each job, instructions are
included in a job control language (JCL). This is a special type of programming language used to
provide instructions to the monitor. A simple example is that of a user submitting a program written in
FORTRAN plus some data to be used by the program. Each FORTRAN instruction and each item of
data is on a separate punched card or a separate record on tape. In addition to FORTRAN and data
lines, the job includes job control instructions, which are denoted by the beginning “$”. The overall
format of the job looks like this:

$JOB
$FTN
⋮ }FORTRAN instructions
$LOAD
$RUN
⋮ }Data
$END

To execute this job, the monitor reads the $FTN line and loads the appropriate compiler from its mass
storage (usually tape). The compiler translates the user’s program into object code, which is stored in
memory or mass storage. If it is stored in memory, the operation is referred to as “compile, load, and
go.” If it is stored on tape, then the $LOAD instruction is required. This instruction is read by the
monitor, which regains control after the compile operation. The monitor invokes the loader, which
loads the object program into memory in place of the compiler and transfers control to it. In this
manner, a large segment of main memory can be shared among different subsystems, although only
one such subsystem could be resident and executing at a time.

We see that the monitor, or batch OS, is simply a computer program. It relies on the ability of the
processor to fetch instructions from various portions of main memory in order to seize and relinquish
control alternately. Certain other hardware features are also desirable:

Memory protection: While the user program is executing, it must not alter the memory area
containing the monitor. If such an attempt is made, the processor hardware should detect an error
and transfer control to the monitor. The monitor would then abort the job, print out an error
message, and load the next job.
Timer: A timer is used to prevent a single job from monopolizing the system. The timer is set at the
beginning of each job. If the timer expires, an interrupt occurs, and control returns to the monitor.
Privileged instructions: Certain instructions are designated privileged and can be executed only
by the monitor. If the processor encounters such an instruction while executing a user program, an
error interrupt occurs. Among the privileged instructions are I/O instructions, so that the monitor
retains control of all I/O devices. This prevents, for example, a user program from accidentally
reading job control instructions from the next job. If a user program wishes to perform I/O, it must
request that the monitor perform the operation for it. If a privileged instruction is encountered by the
processor while it is executing a user program, the processor hardware considers this an error and
transfers control to the monitor.
Interrupts: Early computer models did not have this capability. This feature gives the OS more
flexibility in relinquishing control to and regaining control from user programs.

Processor time alternates between execution of user programs and execution of the monitor. There
have been two sacrifices: Some main memory is now given over to the monitor and some processor
time is consumed by the monitor. Both of these are forms of overhead. Even with this overhead, the
simple batch system improves utilization of the computer.

MULTIPROGRAMMED BATCH SYSTEMS

Even with the automatic job sequencing provided by a simple batch OS, the processor is often idle.
The problem is that I/O devices are slow compared to the processor. Figure 9.4 details a
representative calculation. The calculation concerns a program that processes a file of records and
performs, on average, 100 processor instructions per record. In this example the computer spends
over 96% of its time waiting for I/O devices to finish transferring data! Figure 9.5a illustrates this
situation. The processor spends a certain amount of time executing, until it reaches an I/O instruction.
It must then wait until that I/O instruction concludes before proceeding.

Figure 9.4 System Utilization Example

This inefficiency is not necessary. We know that there must be enough memory to hold the OS
(resident monitor) and one user program. Suppose that there is room for the OS and two user
programs. Now, when one job needs to wait for I/O, the processor can switch to the other job, which
likely is not waiting for I/O (Figure 9.5b). Furthermore, we might expand memory to hold three, four, or
more programs and switch among all of them (Figure 9.5c). This technique is known as
multiprogramming, or multitasking . It is the central theme of modern operating systems.

 The term multitasking is sometimes reserved to mean multiple tasks within the same program that may be handled
concurrently by the OS, in contrast to multiprogramming, which would refer to multiple processes from multiple
programs. However, it is more common to equate the terms multitasking and multiprogramming, as is done in most
standards dictionaries (e.g., IEEE Std 100-1992, The New IEEE Standard Dictionary of Electrical and Electronics
Terms).

1

1

Figure 9.5 Multiprogramming Example

Example 9.1

This example illustrates the benefit of multiprogramming. Consider a computer with 250 Mbytes of
available memory (not used by the OS), a disk, a terminal, and a printer. Three programs, JOB1,
JOB2, and JOB3, are submitted for execution at the same time, with the attributes listed in Table
9.1. We assume minimal processor requirements for JOB1 and JOB2 and continuous disk and
printer use by JOB3. For a simple batch environment, these jobs will be executed in sequence.
Thus, JOB1 completes in 5 minutes. JOB2 must wait until the 5 minutes is over and then
completes 15 minutes after that. JOB3 begins after 20 minutes and completes at 30 minutes from
the time it was initially submitted. The average resource utilization, throughput, and response
times are shown in the uniprogramming column of Table 9.2. Device-​by-​device utilization is
illustrated in Figure 9.6a. It is evident that there is gross underutilization for all resources when

averaged over the required 30-minute time period.

Table 9.1 Sample Program Execution Attributes

JOB1 JOB2 JOB3

Type of job Heavy compute Heavy I/O Heavy I/O

Duration (min) 5 15 10

Memory required (M) 50 100 80

Need disk? No No Yes

Need terminal? No Yes No

Need printer? No No Yes

Table 9.2 Effects of Multiprogramming on Resource Utilization

Uniprogramming Multiprogramming

Processor use (%) 20 40

Memory use (%) 33 67

Disk use (%) 33 67

Printer use (%) 33 67

Elapsed time (min) 30 15

Throughput rate (jobs/hr) 6 12

Mean response time (min) 18 10

Figure 9.6 Utilization Histograms

Now suppose that the jobs are run concurrently under a multiprogramming OS. Because there is
little resource contention between the jobs, all three can run in nearly minimum time while
coexisting with the others in the computer (assuming that JOB2 and JOB3 are allotted enough
processor time to keep their input and output operations active). JOB1 will still require 5 minutes to
complete but at the end of that time, JOB2 will be one- ​third finished, and JOB3 will be half
finished. All three jobs will have finished within 15 minutes. The improvement is evident when
examining the multiprogramming column of Table 9.2, obtained from the histogram shown in
Figure 9.6b.

As with a simple batch system, a multiprogramming batch system must rely on certain computer
hardware features. The most notable additional feature that is useful for multiprogramming is the
hardware that supports I/O interrupts and DMA. With interrupt-​driven I/O or DMA, the processor can
issue an I/O command for one job and proceed with the execution of another job while the I/O is
carried out by the device controller. When the I/O operation is complete, the processor is interrupted
and control is passed to an interrupt- ​handling program in the OS. The OS will then pass control to
another job.

Multiprogramming operating systems are fairly sophisticated compared to single- ​program, or
uniprogramming, systems. To have several jobs ready to run, the jobs must be kept in main memory,
requiring some form of memory management. In addition, if several jobs are ready to run, the
processor must decide which one to run, which requires some algorithm for scheduling. These
concepts are discussed later in this chapter.

TIME-SHARING SYSTEMS

With the use of multiprogramming, batch processing can be quite efficient. However, for many jobs, it
is desirable to provide a mode in which the user interacts directly with the computer. Indeed, for some
jobs, such as transaction processing, an interactive mode is essential.

Today, the requirement for an interactive computing facility can be, and often is, met by the use of a
dedicated microcomputer. That option was not available in the 1960s, when most computers were big
and costly. Instead, time sharing was developed.

Just as multiprogramming allows the processor to handle multiple batch jobs at a time,
multiprogramming can be used to handle multiple interactive jobs. In this latter case, the technique is
referred to as time sharing, because the processor’s time is shared among multiple users. In a
time-​sharing system, multiple users simultaneously access the system through terminals, with the
OS interleaving the execution of each user program in a short burst or quantum of computation. Thus,
if there are n users actively requesting service at one time, each user will only see on the average 1/n
of the effective computer speed, not counting OS overhead. However, given the relatively slow human
reaction time, the response time on a properly designed system should be comparable to that on a
dedicated computer.

Both batch multiprogramming and time sharing use multiprogramming. The key differences are listed
in Table 9.3.

Table 9.3 Batch Multiprogramming versus Time Sharing

Batch Multiprogramming Time Sharing

Principal objective Maximize processor use Minimize response time

Source of directives to
operating system

Job control language commands
provided with the job

Commands entered at
the terminal

9.2 Scheduling
The key to multiprogramming is scheduling. In fact, four types of scheduling are typically involved
(Table 9.4). We will explore these presently. But first, we introduce the concept of process . This
term was first used by the designers of the Multics OS in the 1960s. It is a somewhat more general
term than job. Many definitions have been given for the term process, including

Table 9.4 Types of Scheduling

Long-term
scheduling

The decision to add to the pool of processes to be executed.

Medium-term
scheduling

The decision to add to the number of processes that are partially or fully in
main memory.

Short-term
scheduling

The decision as to which available process will be executed by the
processor.

I/O scheduling The decision as to which process’s pending I/O request shall be handled by
an available I/O device.

A program in execution
The “animated spirit” of a program
That entity to which a processor is assigned

This concept should become clearer as we proceed.

Long- ​Term Scheduling

The long- ​term scheduler determines which programs are admitted to the system for processing. Thus,
it controls the degree of multiprogramming (number of processes in memory). Once admitted, a job or
user program becomes a process and is added to the queue for the short- ​term scheduler. In some
systems, a newly created process begins in a swapped- ​out condition, in which case it is added to a
queue for the medium- ​term scheduler.

In a batch system, or for the batch portion of a general- ​purpose OS, newly submitted jobs are routed
to disk and held in a batch queue. The long- ​term scheduler creates processes from the queue when it
can. There are two decisions involved here. First, the scheduler must decide that the OS can take on
one or more additional processes. Second, the scheduler must decide which job or jobs to accept and
turn into processes. The criteria used may include priority, expected execution time, and I/O
requirements.

For interactive programs in a time- ​sharing system, a process request is generated when a user
attempts to connect to the system. Time-​sharing users are not simply queued up and kept waiting until
the system can accept them. Rather, the OS will accept all authorized comers until the system is
saturated, using some predefined measure of saturation. At that point, a connection request is met
with a message indicating that the system is full and the user should try again later.

Medium- ​Term Scheduling

Medium- ​term scheduling is part of the swapping function, described in Section 9.3. Typically, the
swapping- ​in decision is based on the need to manage the degree of multiprogramming. On a system
that does not use virtual memory, memory management is also an issue. Thus, the swapping- ​in
decision will consider the memory requirements of the swapped- ​out processes.

Short-​Term Scheduling

The long- ​term scheduler executes relatively infrequently and makes the coarse- ​grained decision of
whether or not to take on a new process, and which one to take. The short- ​term scheduler, also
known as the dispatcher, executes frequently and makes the fine- ​grained decision of which job to
execute next.

PROCESS STATES

To understand the operation of the short- ​term scheduler, we need to consider the concept of a
process state. During the lifetime of a process, its status will change a number of times. Its status at
any point in time is referred to as a state. The term state is used because it connotes that certain
information exists that defines the status at that point. At minimum, there are five defined states for a
process (Figure 9.7):

Figure 9.7 Five-​State Process Model

New: A program is admitted by the high- ​level scheduler but is not yet ready to execute. The OS
will initialize the process, moving it to the ready state.
Ready: The process is ready to execute and is awaiting access to the processor.
Running: The process is being executed by the processor.
Waiting: The process is suspended from execution waiting for some system resource, such as I/O.
Halted: The process has terminated and will be destroyed by the OS.

For each process in the system, the OS must maintain information indicating the state of the process
and other information necessary for process execution. For this purpose, each process is represented
in the OS by a process control block (Figure 9.8), which typically contains:

Figure 9.8 Process Control Block

Identifier: Each current process has a unique identifier.
State: The current state of the process (new, ready, and so on).
Priority: Relative priority level.
Program counter: The address of the next instruction in the program to be executed.
Memory pointers: The starting and ending locations of the process in memory.
Context data: These are data that are present in registers in the processor while the process is
executing, and they will be discussed in Part Three. For now, it is enough to say that these data
represent the “context” of the process. The context data plus the program counter are saved when
the process leaves the running state. They are retrieved by the processor when it resumes
execution of the process.
I/O status information: Includes outstanding I/O requests, I/O devices (e.g., tape drives) assigned
to this process, a list of files assigned to the process, and so on.
Accounting information: May include the amount of processor time and clock time used, time
limits, account numbers, and so on.

When the scheduler accepts a new job or user request for execution, it creates a blank process
control block and places the associated process in the new state. After the system has properly filled
in the process control block, the process is transferred to the ready state.

SCHEDULING TECHNIQUES

To understand how the OS manages the scheduling of the various jobs in memory, let us begin by
considering the simple example in Figure 9.9. The figure shows how main memory is partitioned at a
given point in time. The kernel of the OS is, of course, always resident. In addition, there are a number
of active processes, including A and B, each of which is allocated a portion of memory.

Figure 9.9 Scheduling Example

We begin at a point in time when process A is running. The processor is executing instructions from
the program contained in A’s memory partition. At some later point in time, the processor ceases to
execute instructions in A and begins executing instructions in the OS area. This will happen for one of
three reasons:

1. Process A issues a service call (e.g., an I/O request) to the OS. Execution of A is suspended
until this call is satisfied by the OS.

2. Process A causes an interrupt. An interrupt is a hardware- ​generated signal to the processor.
When this signal is detected, the processor ceases to execute A and transfers to the interrupt
handler in the OS. A variety of events related to A will cause an interrupt. One example is an
error, such as attempting to execute a privileged instruction. Another example is a timeout; to
prevent any one process from monopolizing the processor, each process is only granted the
processor for a short period at a time.

3. Some event unrelated to process A that requires attention causes an interrupt. An example is
the completion of an I/O operation.

In any case, the result is the following. The processor saves the current context data and the program
counter for A in A’s process control block and then begins executing in the OS. The OS may perform
some work, such as initiating an I/O operation. Then the short- ​term-​scheduler portion of the OS
decides which process should be executed next. In this example, B is chosen. The OS instructs the
processor to restore B’s context data and proceed with the execution of B where it left off.

This simple example highlights the basic functioning of the short- ​term scheduler. Figure 9.10 shows
the major elements of the OS involved in the multiprogramming and scheduling of processes. The OS
receives control of the processor at the interrupt handler if an interrupt occurs and at the service- ​call
handler if a service call occurs. Once the interrupt or service call is handled, the short- ​term scheduler
is invoked to select a process for execution.

Figure 9.10 Key Elements of an Operating System for Multiprogramming

To do its job, the OS maintains a number of queues. Each queue is simply a waiting list of processes
waiting for some resource. The long-​term queue is a list of jobs waiting to use the system. As
conditions permit, the high- ​level scheduler will allocate memory and create a process for one of the
waiting items. The short-​term queue consists of all processes in the ready state. Any one of these
processes could use the processor next. It is up to the short- ​term scheduler to pick one. Generally,
this is done with a round- ​robin algorithm, giving each process some time in turn. Priority levels may
also be used. Finally, there is an I/O queue for each I/O device. More than one process may request
the use of the same I/O device. All processes waiting to use each device are lined up in that device’s
queue.

Figure 9.11 suggests how processes progress through the computer under the control of the OS.
Each process request (batch job, user- ​defined interactive job) is placed in the long- ​term queue. As
resources become available, a process request becomes a process and is then placed in the ready

state and put in the short-​term queue. The processor alternates between executing OS instructions
and executing user processes. While the OS is in control, it decides which process in the short- ​term
queue should be executed next. When the OS has finished its immediate tasks, it turns the processor
over to the chosen process.

Figure 9.11 Queuing Diagram Representation of Processor Scheduling

As was mentioned earlier, a process being executed may be suspended for a variety of reasons. If it is
suspended because the process requests I/O, then it is placed in the appropriate I/O queue. If it is
suspended because of a timeout or because the OS must attend to pressing business, then it is
placed in the ready state and put into the short- ​term queue.

Finally, we mention that the OS also manages the I/O queues. When an I/O operation is completed,
the OS removes the satisfied process from that I/O queue and places it in the short- ​term queue. It
then selects another waiting process (if any) and signals for the I/O device to satisfy that process’s
request.

9.3 Memory Management
In a uniprogramming system, main memory is divided into two parts: one part for the OS (resident
monitor) and one part for the program currently being executed. In a multiprogramming system, the
“user” part of memory is subdivided to accommodate multiple processes. The task of subdivision is
carried out dynamically by the OS and is known as memory management.

Effective memory management is vital in a multiprogramming system. If only a few processes are in
memory, then for much of the time all of the processes will be waiting for I/O and the processor will be
idle. Thus, memory needs to be allocated efficiently to pack as many processes into memory as
possible.

Swapping

Referring back to Figure 9.11, we have discussed three types of queues: the long- ​term queue of
requests for new processes, the short- ​term queue of processes ready to use the processor, and the
various I/O queues of processes that are not ready to use the processor. Recall that the reason for
this elaborate machinery is that I/O activities are much slower than computation and therefore the
processor in a uniprogramming system is idle most of the time.

But the arrangement in Figure 9.11 does not entirely solve the problem. It is true that, in this case,
memory holds multiple processes and that the processor can move to another process when one
process is waiting. But the processor is so much faster than I/O that it will be common for all the
processes in memory to be waiting on I/O. Thus, even with multiprogramming, a processor could be
idle most of the time.

What to do? Main memory could be expanded, and so be able to accommodate more processes. But
there are two flaws in this approach. First, main memory is expensive, even today. Second, the
appetite of programs for memory has grown as fast as the cost of memory has dropped. So larger
memory results in larger processes, not more processes.

Another solution is swapping, depicted in Figure 9.12. We have a long-​term queue of process
requests, typically stored on disk. These are brought in, one at a time, as space becomes available.
As processes are completed, they are moved out of main memory. Now the situation will arise that
none of the processes in memory are in the ready state (e.g., all are waiting on an I/O operation).
Rather than remain idle, the processor swaps one of these processes back out to disk into an
intermediate queue. This is a queue of existing processes that have been temporarily kicked out of
memory. The OS then brings in another process from the intermediate queue, or it honors a new
process request from the long- ​term queue. Execution then continues with the newly arrived process.

Figure 9.12 The Use of Swapping

Swapping, however, is an I/O operation, and therefore there is the potential for making the problem
worse, not better. But because disk I/O is generally the fastest I/O on a system (e.g., compared with
tape or printer I/O), swapping will usually enhance performance. A more sophisticated scheme,
involving virtual memory, improves performance over simple swapping. This will be discussed shortly.
But first, we must prepare the ground by explaining partitioning and paging.

Partitioning

The simplest scheme for partitioning available memory is to use fixed-​size partitions, as shown in
Figure 9.13. Note that, although the partitions are of fixed size, they need not be of equal size. When
a process is brought into memory, it is placed in the smallest available partition that will hold it.

Figure 9.13 Example of Fixed Partitioning of a 64-Mbyte Memory

Even with the use of unequal fixed- ​size partitions, there will be wasted memory. In most cases, a
process will not require exactly as much memory as provided by the partition. For example, a process
that requires 3M bytes of memory would be placed in the 4M partition of Figure 9.13b, wasting 1M
that could be used by another process.

A more efficient approach is to use variable- ​size partitions. When a process is brought into memory, it
is allocated exactly as much memory as it requires and no more.

Example 9.2

An example, using 64 Mbytes of main memory, is shown in Figure 9.14. Initially, main memory is
empty, except for the OS (a). The first three processes are loaded in, starting where the OS ends
and occupying just enough space for each process (b, c, d). This leaves a “hole” at the end of

memory that is too small for a fourth process. At some point, none of the processes in memory is
ready. The OS swaps out process 2 (e), which leaves sufficient room to load a new process,
process 4 (f). Because process 4 is smaller than process 2, another small hole is created. Later, a
point is reached at which none of the processes in main memory is ready, but process 2, in the
ready-​suspend state, is available. Because there is insufficient room in memory for process 2, the
OS swaps process 1 out (g) and swaps process 2 back in (h).

As this example shows, this method starts out well, but eventually it leads to a situation in which there
are a lot of small holes in memory. As time goes on, memory becomes more and more fragmented,
and memory utilization declines. One technique for overcoming this problem is compaction: From
time to time, the OS shifts the processes in memory to place all the free memory together in one
block. This is a time-​consuming procedure, wasteful of processor time.

Before we consider ways of dealing with the shortcomings of partitioning, we must clear up one loose
end. Consider Figure 9.14; it should be obvious that a process is not likely to be loaded into the same
place in main memory each time it is swapped in. Furthermore, if compaction is used, a process may
be shifted while in main memory. A process in memory consists of instructions plus data. The
instructions will contain addresses for memory locations of two types:

Addresses of data items
Addresses of instructions, used for branching instructions

Figure 9.14 The Effect of Dynamic Partitioning

But these addresses are not fixed. They will change each time a process is swapped in. To solve this
problem, a distinction is made between logical addresses and physical addresses. A logical address
is expressed as a location relative to the beginning of the program. Instructions in the program contain
only logical addresses. A physical address is an actual location in main memory. When the
processor executes a process, it automatically converts from logical to physical address by adding the
current starting location of the process, called its base address , to each logical address. This is
another example of a processor hardware feature designed to meet an OS requirement. The exact
nature of this hardware feature depends on the memory management strategy in use. We will see
several examples later in this chapter.

Paging

Both unequal fixed- ​size and variable- ​size partitions are inefficient in the use of memory. Suppose,
however, that memory is partitioned into equal fixed- ​size chunks that are relatively small, and that
each process is also divided into small fixed- ​size chunks of some size. Then the chunks of a program,
known as pages , could be assigned to available chunks of memory, known as frames, or page
frames. At most, then, the wasted space in memory for that process is a fraction of the last page.

Figure 9.15 shows an example of the use of pages and frames. At a given point in time, some of the
frames in memory are in use and some are free. The list of free frames is maintained by the OS.
Process A, stored on disk, consists of four pages. When it comes time to load this process, the OS
finds four free frames and loads the four pages of process A into the four frames.

Figure 9.15 Allocation of Free Frames

Now suppose, as in this example, that there are not sufficient unused contiguous frames to hold the
process. Does this prevent the OS from loading A? The answer is no, because we can once again
use the concept of logical address. A simple base address will no longer suffice. Rather, the OS
maintains a page table for each process. The page table shows the frame location for each page of
the process. Within the program, each logical address consists of a page number and a relative
address within the page. Recall that in the case of simple partitioning, a logical address is the location
of a word relative to the beginning of the program; the processor translates that into a physical
address. With paging, the logical- ​to-​physical address translation is still done by processor hardware.

The processor must know how to access the page table of the current process. Presented with a
logical address (page number, relative address), the processor uses the page table to produce a
physical address (frame number, relative address). An example is shown in Figure 9.16.

Figure 9.16 Logical and Physical Addresses

This approach solves the problems raised earlier. Main memory is divided into many small equal- ​size
frames. Each process is divided into frame- ​size pages: smaller processes require fewer pages, larger
processes require more. When a process is brought in, its pages are loaded into available frames, and
a page table is set up.

Virtual Memory

DEMAND PAGING

With the use of paging, truly effective multiprogramming systems came into being. Furthermore, the
simple tactic of breaking a process up into pages led to the development of another important
concept: virtual memory.

To understand virtual memory, we must add a refinement to the paging scheme just discussed. That
refinement is demand paging , which simply means that each page of a process is brought in only
when it is needed, that is, on demand.

Consider a large process, consisting of a long program plus a number of arrays of data. Over any
short period of time, execution may be confined to a small section of the program (e.g., a subroutine),
and perhaps only one or two arrays of data are being used. This is the principle of locality, which we
introduced in Chapter 4. It would clearly be wasteful to load in dozens of pages for that process when
only a few pages will be used before the program is suspended. We can make better use of memory
by loading in just a few pages. Then, if the program branches to an instruction on a page not in main
memory, or if the program references data on a page not in memory, a page fault is triggered. This
tells the OS to bring in the desired page.

Thus, at any one time, only a few pages of any given process are in memory, and therefore more
processes can be maintained in memory. Furthermore, time is saved because unused pages are not
swapped in and out of memory. However, the OS must be clever about how it manages this scheme.
When it brings one page in, it must throw another page out; this is known as page replacement. If it
throws out a page just before it is about to be used, then it will just have to go get that page again
almost immediately. Too much of this leads to a condition known as thrashing: the processor spends
most of its time swapping pages rather than executing instructions. The avoidance of thrashing was a
major research area in the 1970s and led to a variety of complex but effective algorithms. In essence,
the OS tries to guess, based on recent history, which pages are least likely to be used in the near
future.

Aleksandr Lukin/123RF

Page Replacement Algorithm Simulators

A discussion of page replacement algorithms is beyond the scope of this chapter. A potentially
effective technique is least recently used (LRU), the same algorithm discussed in Chapter 4 for cache
replacement. In practice, LRU is difficult to implement for a virtual memory paging scheme. Several
alternative approaches that seek to approximate the performance of LRU are in use.

With demand paging, it is not necessary to load an entire process into main memory. This fact has a
remarkable consequence: It is possible for a process to be larger than all of main memory. One of the
most fundamental restrictions in programming has been lifted. Without demand paging, a programmer
must be acutely aware of how much memory is available. If the program being written is too large, the
programmer must devise ways to structure the program into pieces that can be loaded one at a time.
With demand paging, that job is left to the OS and the hardware. As far as the programmer is
concerned, he or she is dealing with a huge memory, the size associated with disk storage.

Because a process executes only in main memory, that memory is referred to as real memory. But a
programmer or user perceives a much larger memory— ​that which is allocated on the disk. This latter
is therefore referred to as virtual memory. Virtual memory allows for very effective multiprogramming
and relieves the user of the unnecessarily tight constraints of main memory.

PAGE TABLE STRUCTURE

The basic mechanism for reading a word from memory involves the translation of a virtual, or logical,
address, consisting of page number and offset, into a physical address, consisting of frame number
and offset, using a page table. Because the page table is of variable length, depending on the size of

the process, we cannot expect to hold it in registers. Instead, it must be in main memory to be
accessed. Figure 9.16 suggests a hardware implementation of this scheme. When a particular
process is running, a register holds the starting address of the page table for that process. The page
number of a virtual address is used to index that table and look up the corresponding frame number.
This is combined with the offset portion of the virtual address to produce the desired real address.

In most systems, there is one page table per process. But each process can occupy huge amounts of
virtual memory. For example, in the VAX architecture, each process can have up to Gbytes of
virtual memory. Using , that means that as many as page table entries are
required per process. Clearly, the amount of memory devoted to page tables alone could be
unacceptably high. To overcome this problem, most virtual memory schemes store page tables in
virtual memory rather than real memory. This means that page tables are subject to paging just as
other pages are. When a process is running, at least a part of its page table must be in main memory,
including the page table entry of the currently executing page. Some processors make use of a
two-​level scheme to organize large page tables. In this scheme, there is a page directory, in which
each entry points to a page table. Thus, if the length of the page directory is X, and if the maximum
length of a page table is Y, then a process can consist of up to pages. Typically, the maximum
length of a page table is restricted to be equal to one page. We will see an example of this two- ​level
approach when we consider the Intel x86 later in this chapter.

An alternative approach to the use of one- ​ or two-​level page tables is the use of an inverted page
table structure (Figure 9.17). Variations on this approach are used on the PowerPC, UltraSPARC,
and the IA-​64 architecture. An implementation of the Mach OS on the RT- ​PC also uses this technique.

231 = 2
29 = 512 − byte pages 222

X × Y

Figure 9.17 Inverted Page Table Structure

In this approach, the page number portion of a virtual address is mapped into a hash value using a
simple hashing function. The hash value is a pointer to the inverted page table, which contains the
page table entries. There is one entry in the inverted page table for each real memory page frame,
rather than one per virtual page. Thus a fixed proportion of real memory is required for the tables
regardless of the number of processes or virtual pages supported. Because more than one virtual
address may map into the same hash table entry, a chaining technique is used for managing the
overflow. The hashing technique results in chains that are typically short— ​between one and two
entries. The page table’s structure is called inverted because it indexes page table entries by frame
number rather than by virtual page number.

 A hash function maps numbers in the range 0 through M into numbers in the range 0 through N, where . The

output of the hash function is used as an index into the hash table. Since more than one input maps into the same
output, it is possible for an input item to map to a hash table entry that is already occupied. In that case, the new
item must overflow into another hash table location. Typically, the new item is placed in the first succeeding empty
space, and a pointer from the original location is provided to chain the entries together.

Translation Lookaside Buffer

In principle, then, every virtual memory reference can cause two physical memory accesses: one to
fetch the appropriate page table entry, and one to fetch the desired data. Thus, a straightforward
virtual memory scheme would have the effect of doubling the memory access time. To overcome this
problem, most virtual memory schemes make use of a special cache for page table entries, usually
called a translation lookaside buffer (TLB). This cache functions in the same way as a memory
cache and contains those page table entries that have been most recently used. Figure 9.18 is a
flowchart that shows the use of the TLB. By the principle of locality, most virtual memory references
will be to locations in recently used pages. Therefore, most references will involve page table entries
in the cache. Numerous studies have shown that this scheme can significantly improve performance
[MITT17b].

2

2 M > N

Figure 9.18 Operation of Paging and Translation Lookaside Buffer (TLB)

Note that the virtual memory mechanism must interact with the cache system (not the TLB cache, but
the main memory cache). This is illustrated in Figure 9.19. A virtual address will generally be in the
form of a page number, offset. First, the memory system consults the TLB to see if the matching page
table entry is present. If it is, the real (physical) address is generated by combining the frame number
with the offset. If not, the entry is accessed from a page table. Once the real address is generated,
which is in the form of a tag and a remainder, the cache is consulted to see if the block containing that
word is present (see Figure 5.3). If so, it is returned to the processor. If not, the word is retrieved from
main memory. The TLB is sometimes implemented as content-addressable memory (CAM). The CAM

search key is the virtual address and the search result is a physical address. If the requested address
is present in the TLB, the CAM search yields a match quickly and the retrieved physical address can
be used to access memory.

Figure 9.19 Translation Lookaside Buffer and Cache Operation

The reader should be able to appreciate the complexity of the processor hardware involved in a single
memory reference. The virtual address is translated into a real address. This involves reference to a
page table, which may be in the TLB, in main memory, or on disk. The referenced word may be in
cache, in main memory, or on disk. In the latter case, the page containing the word must be loaded
into main memory and its block loaded into the cache. In addition, the page table entry for that page
must be updated.

Segmentation

There is another way in which addressable memory can be subdivided, known as segmentation.
Whereas paging is invisible to the programmer and serves the purpose of providing the programmer
with a larger address space, segmentation is usually visible to the programmer and is provided as a
convenience for organizing programs and data, and as a means for associating privilege and
protection attributes with instructions and data.

Segmentation allows the programmer to view memory as consisting of multiple address spaces or
segments. Segments are of variable, indeed dynamic, size. Typically, the programmer or the OS will
assign programs and data to different segments. There may be a number of program segments for
various types of programs, as well as a number of data segments. Each segment may be assigned
access and usage rights. Memory references consist of a (segment number, offset) form of address.

This organization has a number of advantages to the programmer over a non- ​segmented address
space:

1. It simplifies the handling of growing data structures. If the programmer does not know ahead of
time how large a particular data structure will become, it is not necessary to guess. The data
structure can be assigned its own segment, and the OS will expand or shrink the segment as
needed.

2. It allows programs to be altered and recompiled independently without requiring that an entire
set of programs be relinked and reloaded. Again, this is accomplished using multiple segments.

3. It lends itself to sharing among processes. A programmer can place a utility program or a useful
table of data in a segment that can be addressed by other processes.

4. It lends itself to protection. Because a segment can be constructed to contain a well- ​defined set
of programs or data, the programmer or a system administrator can assign access privileges in
a convenient fashion.

These advantages are not available with paging, which is invisible to the programmer. On the other
hand, we have seen that paging provides for an efficient form of memory management. To combine
the advantages of both, some systems are equipped with the hardware and OS software to provide
both.

9.4 Intel x86 Memory Management
Since the introduction of the 32-bit architecture, microprocessors have evolved sophisticated memory
management schemes that build on the lessons learned with medium- ​ and large- ​scale systems. In
many cases, the microprocessor versions are superior to their larger- ​system antecedents. Because
the schemes were developed by the microprocessor hardware vendor and may be employed with a
variety of operating systems, they tend to be quite general purpose. A representative example is the
scheme used on the Intel x86 architecture.

Address Spaces

The x86 includes hardware for both segmentation and paging. Both mechanisms can be disabled,
allowing the user to choose from four distinct views of memory:

Unsegmented unpaged memory: In this case, the virtual address is the same as the physical
address. This is useful, for example, in low- ​complexity, high- ​performance controller applications.
Unsegmented paged memory: Here memory is viewed as a paged linear address space.
Protection and management of memory is done via paging. This is favored by some operating
systems (e.g., Berkeley UNIX).
Segmented unpaged memory: Here memory is viewed as a collection of logical address spaces.
The advantage of this view over a paged approach is that it affords protection down to the level of
a single byte, if necessary. Furthermore, unlike paging, it guarantees that the translation table
needed (the segment table) is on- ​chip when the segment is in memory. Hence, segmented
unpaged memory results in predictable access times.
Segmented paged memory: Segmentation is used to define logical memory partitions subject to
access control, and paging is used to manage the allocation of memory within the partitions.
Operating systems such as UNIX System V favor this view.

Segmentation

When segmentation is used, each virtual address (called a logical address in the x86 documentation)
consists of a 16-bit segment reference and a 32-bit offset. Two bits of the segment reference deal with
the protection mechanism, leaving 14 bits for specifying a particular segment. Thus, with
unsegmented memory, the user’s virtual memory is . With segmented memory, the total
virtual memory space as seen by a user is (Tbytes). The physical address space
employs a 32-bit address for a maximum of 4 Gbytes.

The amount of virtual memory can actually be larger than the 64 Tbytes. This is because the
processor’s interpretation of a virtual address depends on which process is currently active. Virtual
address space is divided into two parts. One- ​half of the virtual address space ()
is global, shared by all processes; the remainder is local and is distinct for each process.

Associated with each segment are two forms of protection: privilege level and access attribute. There
are four privilege levels, from most protected (level 0) to least protected (level 3). The privilege level
associated with a data segment is its “classification”; the privilege level associated with a program
segment is its “clearance.” An executing program may only access data segments for which its
clearance level is lower than (more privileged) or equal to (same privilege) the privilege level of the
data segment.

The hardware does not dictate how these privilege levels are to be used; this depends on the OS

232 = 4Gbytes
246 = 64terabytes

8K segments × 4Gbytes

design and implementation. It was intended that privilege level 1 would be used for most of the OS,
and level 0 would be used for that small portion of the OS devoted to memory management,
protection, and access control. This leaves two levels for applications. In many systems, applications
will reside at level 3, with level 2 being unused. Specialized application subsystems that must be
protected because they implement their own security mechanisms are good candidates for level 2.
Some examples are database management systems, office automation systems, and software
engineering environments.

In addition to regulating access to data segments, the privilege mechanism limits the use of certain
instructions. Some instructions, such as those dealing with memory- ​management registers, can only
be executed in level 0. I/O instructions can only be executed up to a certain level that is designated by
the OS; typically, this will be level 1.

The access attribute of a data segment specifies whether read/write or read- ​only accesses are
permitted. For program segments, the access attribute specifies read/execute or read- ​only access.

The address translation mechanism for segmentation involves mapping a virtual address into what is
referred to as a linear address (Figure 9.20b). A virtual address consists of the 32-bit offset and a 16-
bit segment selector (Figure 9.20a). An instruction fetching or storing an operand specifies the offset
and a register containing the segment selector. The segment selector consists of the following fields:

Figure 9.20 Intel x86 Memory Management Formats

Table Indicator (TI): Indicates whether the global segment table or a local segment table should
be used for translation.

Segment Number: The number of the segment. This serves as an index into the segment table.
Requested Privilege Level (RPL): The privilege level requested for this access.

Each entry in a segment table consists of 64 bits, as shown in Figure 9.20c. The fields are defined in
Table 9.5.

Table 9.5 x86 Memory Management Parameters

Segment Descriptor (Segment Table Entry)

Base

Defines the starting address of the segment within the 4-Gbyte linear address space.

D/B bit

In a code segment, this is the D bit and indicates whether operands and addressing modes are 16
or 32 bits.

Descriptor Privilege Level (DPL)

Specifies the privilege level of the segment referred to by this segment descriptor.

Granularity bit (G)

Indicates whether the Limit field is to be interpreted in units by one byte or 4 Kbytes.

Limit

Defines the size of the segment. The processor interprets the limit field in one of two ways,
depending on the granularity bit: in units of one byte, up to a segment size limit of 1 Mbyte, or in
units of 4 Kbytes, up to a segment size limit of 4 Gbytes.

S bit

Determines whether a given segment is a system segment or a code or data segment.

Segment Present bit (P)

Used for nonpaged systems. It indicates whether the segment is present in main memory. For
paged systems, this bit is always set to 1.

Type

Distinguishes between various kinds of segments and indicates the access attributes.

Page Directory Entry and Page Table Entry

Accessed bit (A)

This bit is set to 1 by the processor in both levels of page tables when a read or write operation to
the corresponding page occurs.

Dirty bit (D)

This bit is set to 1 by the processor when a write operation to the corresponding page occurs.

Page Frame Address

Provides the physical address of the page in memory if the present bit is set. Since page frames
are aligned on 4K boundaries, the bottom 12 bits are 0, and only the top 20 bits are included in the
entry. In a page directory, the address is that of a page table.

Page Cache Disable bit (PCD)

Indicates whether data from page may be cached.

Page Size bit (PS)

Indicates whether page size is 4 Kbyte or 4 Mbyte.

Page Write Through bit (PWT)

Indicates whether write- ​through or write- ​back caching policy will be used for data in the
corresponding page.

Present bit (P)

Indicates whether the page table or page is in main memory.

Read/Write bit (RW)

For user-​level pages, indicates whether the page is read- ​only access or read/write access for
user-​level programs.

User/Supervisor bit (US)

Indicates whether the page is available only to the operating system (supervisor level) or is
available to both operating system and applications (user level).

Paging

Segmentation is an optional feature and may be disabled. When segmentation is in use, addresses

used in programs are virtual addresses and are converted into linear addresses, as just described.
When segmentation is not in use, linear addresses are used in programs. In either case, the following
step is to convert that linear address into a real 32-bit address.

To understand the structure of the linear address, you need to know that the x86 paging mechanism is
actually a two- ​level table lookup operation. The first level is a page directory, which contains up to
1024 entries. This splits the 4-Gbyte linear memory space into 1024 page groups, each with its own
page table, and each 4 Mbytes in length. Each page table contains up to 1024 entries; each entry
corresponds to a single 4-Kbyte page. Memory management has the option of using one page
directory for all processes, one page directory for each process, or some combination of the two. The
page directory for the current task is always in main memory. Page tables may be in virtual memory.

Figure 9.20 shows the formats of entries in page directories and page tables, and the fields are
defined in Table 9.5. Note that access control mechanisms can be provided on a page or page group
basis.

The x86 also makes use of a translation lookaside buffer. The buffer can hold 32 page table entries.
Each time that the page directory is changed, the buffer is cleared.

Figure 9.21 illustrates the combination of segmentation and paging mechanisms. For clarity, the
translation lookaside buffer and memory cache mechanisms are not shown.

Figure 9.21 Intel x86 Memory Address Translation Mechanisms

Finally, the x86 includes a new extension not found on the earlier 80386 or 80486, the provision for
two page sizes. If the PSE (page size extension) bit in control register 4 is set to 1, then the paging
unit permits the OS programmer to define a page as either 4 Kbyte or 4 Mbyte in size.

When 4-Mbyte pages are used, there is only one level of table lookup for pages. When the hardware
accesses the page directory, the page directory entry (Figure 9.20d) has the PS bit set to 1. In this
case, bits 9 through 21 are ignored and bits 22 through 31 define the base address for a 4-Mbyte
page in memory. Thus, there is a single page table.

The use of 4-Mbyte pages reduces the memory- ​management storage requirements for large main
memories. With 4-Kbyte pages, a full 4-Gbyte main memory requires about 4 Mbytes of memory just
for the page tables. With 4-Mbyte pages, a single table, 4 Kbytes in length, is sufficient for page
memory management.

9.5 ARM Memory Management
ARM provides a versatile virtual memory system architecture that can be tailored to the needs of the
embedded system designer.

Memory System Organization

Figure 9.22 provides an overview of the memory management hardware in the ARM for virtual
memory. The virtual memory translation hardware uses one or two levels of tables for translation from
virtual to physical addresses, as explained subsequently. The translation lookaside buffer (TLB) is a
cache of recent page table entries. If an entry is available in the TLB, then the TLB directly sends a
physical address to main memory for a read or write operation. As explained in Chapter 5, data is
exchanged between the processor and main memory via the cache. If a logical cache organization is
used (Figure 5.5a), then the ARM supplies that address directly to the cache as well as supplying it to
the TLB when a cache miss occurs. If a physical cache organization is used (Figure 5.5b), then the
TLB must supply the physical address to the cache.

Figure 9.22 ARM Memory System Overview

Entries in the translation tables also include access control bits, which determine whether a given
process may access a given portion of memory. If access is denied, access control hardware supplies
an abort signal to the ARM processor.

Virtual Memory Address Translation

The ARM supports memory access based on either sections or pages:

Supersections (optional): Consist of 16-MB blocks of main memory.
Sections: Consist of 1-MB blocks of main memory.

Large pages: Consist of 64-kB blocks of main memory.
Small pages: Consist of 4-kB blocks of main memory.

Sections and supersections are supported to allow mapping of a large region of memory while using
only a single entry in the TLB. Additional access control mechanisms are extended within small pages
to 1kB subpages, and within large pages to 16kB subpages. The translation table held in main
memory has two levels:

Level 1 table: Holds level 1 descriptors that contain the base address and translation properties
for a Section and Supersection; and translation properties and pointers to a level 2 table for a large
page or a small page.
Level 2 table: Holds level 2 descriptors that contain the base address and translation properties
for a Small page or a Large page. A level 2 table requires 1 kB of memory.

The memory-​management unit (MMU) translates virtual addresses generated by the processor into
physical addresses to access main memory, and also derives and checks the access permission.
Translations occur as the result of a TLB miss, and start with a first-​level fetch. A section-​mapped
access only requires a first- ​level fetch, whereas a page- ​mapped access also requires a second- ​level
fetch.

Figure 9.23 shows the two-​level address translation process for small pages. There is a single level 1
(L1) page table with 4K 32-bit entries. Each L1 entry points to a level 2 (L2) page table with 256 32-bit
entries. Each of the L2 entry points to a 4-kB page in main memory. The 32-bit virtual address is
interpreted as follows: The most significant 12 bits are an index into the L1 page table. The next 8 bits
are an index into the relevant L2 page table. The least significant 12 bits index a byte in the relevant
page in main memory.

Figure 9.23 ARM Virtual Memory Address Translation for Small Pages

A similar two-​page lookup procedure is used for large pages. For sections and supersections, only the
L1 page table lookup is required.

Memory-​Management Formats

To get a better understanding of the ARM memory management scheme, we consider the key
formats, as shown in Figure 9.24. The control bits shown in this figure are defined in Table 9.6.

Figure 9.24 ARM Memory-​Management Formats

Table 9.6 ARM Memory-​Management Parameters

Access Permission (AP), Access Permission Extension (APX)

These bits control access to the corresponding memory region. If an access is made to an area of
memory without the required permissions, a Permission Fault is raised.

Bufferable (B) bit

Determines, with the TEX bits, how the write buffer is used for cacheable memory.

Cacheable (C) bit

Determines whether this memory region can be mapped through the cache.

Domain

Collection of memory regions. Access control can be applied on the basis of domain.

not Global (nG)

Determines whether the translation should be marked as global (0), or process specific (1).

Shared (S)

Determines whether the translation is for not- ​shared (0), or shared (1) memory.

SBZ

Should be zero.

Type Extension (TEX)

These bits, together with the B and C bits, control accesses to the caches, how the write buffer is
used, and if the memory region is shareable and therefore must be kept coherent.

Execute Never (XN)

Determines whether the region is executable (0) or not executable (1).

For the L1 table, each entry is a descriptor of how its associated 1-MB virtual address range is
mapped. Each entry has one of four alternative formats:

 The associated virtual addresses are unmapped, and attempts to access them
generate a translation fault.

 The entry gives the physical address of an L2 page table, which specifies how the
associated virtual address range is mapped.

 and The entry is a section descriptor for its associated virtual
addresses.

 and The entry is a supersection descriptor for its associated virtual
addresses.

Entries with are reserved.

Bits [1 : 0] = 00:

Bits [1 : 0] = 01:

Bits [1 : 0] = 01: bit19 = 0:

Bits [1 : 0] = 01: bit19 = 1:

bits [1 : 0] = 11

For memory structured into pages, a two- ​level page table access is required. Bits [31:10] of the L1
page entry contain a pointer to a L2 page table. For small pages, the L2 entry contains a 20-bit pointer
to the base address of a 4-kB page in main memory.

For large pages, the structure is more complex. As with virtual addresses for small pages, a virtual
address for a large page structure includes a 12-bit index into the level one table and an 8-bit index
into the L2 table. For the 64-kB large pages, the page index portion of the virtual address must be 16
bits. To accommodate all of these bits in a 32-bit format, there is a 4-bit overlap between the page
index field and the L2 table index field. ARM accommodates this overlap by requiring that each page
table entry in a L2 page table that supports large pages be replicated 16 times. In effect, the size of
the L2 page table is reduced from 256 entries to 16 entries, if all of the entries refer to large pages.
However, a given L2 page can service a mixture of large and small pages, hence the need for the
replication of large page entries.

For memory structured into sections or supersections, a one- ​level page table access is required. For
sections, bits [31:20] of the L1 entry contain a 12-bit pointer to the base of the 1-MB section in main
memory.

For supersections, bits [31:24] of the L1 entry contain an 8-bit pointer to the base of the 16-MB section
in main memory. As with large pages, a page table entry replication is required. In the case of
supersections, the L1 table index portion of the virtual address overlaps by 4 bits with the supersection
index portion of the virtual address. Therefore, 16 identical L1 page table entries are required.

The range of physical address space can be expanded by up to eight additional address bits (bits
[23:20] and [8:5]). The number of additional bits is implementation dependent. These additional bits
can be interpreted as extending the size of physical memory by as much as a factor of . Thus,
physical memory may in fact be as much as 256 times as large as the memory space available to
each individual process.

Access Control

The AP access control bits in each table entry control access to a region of memory by a given
process. A region of memory can be designated as no access, read only, or read- ​write. Further, the
region can be designated as privileged access only, reserved for use by the OS and not by
applications.

ARM also employs the concept of a domain, which is a collection of sections and/or pages that have
particular access permissions. The ARM architecture supports 16 domains. The domain feature allows
multiple processes to use the same translation tables while maintaining some protection from each
other.

Each page table entry and TLB entry contains a field that specifies which domain the entry is in. A 2-
bit field in the Domain Access Control Register controls access to each domain. Each field allows the
access to an entire domain to be enabled and disabled very quickly, so that whole memory areas can
be swapped in and out of virtual memory very efficiently. Two kinds of domain access are supported:

Clients: Users of domains (execute programs and access data) that must observe the access
permissions of the individual sections and/or pages that make up that domain.
Managers: Control the behavior of the domain (the current sections and pages in the domain, and
the domain access), and bypass the access permissions for table entries in that domain.

One program can be a client of some domains, and a manager of some other domains, and have no
access to the remaining domains. This allows very flexible memory protection for programs that

28 = 256

access different memory resources.

9.6 Key Terms, Review Questions, and Problems

Key Terms

batch system

demand paging

interactive operating system

interrupt

job control language (JCL)

kernel

logical address

long-term scheduling

medium-term scheduling

memory management

memory protection

multiprogramming

multitasking

nucleus

operating system (OS)

page table

paging

partitioning

physical address

privileged instruction

process

process control block

process state

real memory

resident monitor

segmentation

short-term scheduling

swapping

thrashing

time-​sharing system

translation lookaside buffer (TLB)

utility

virtual memory

Review Questions

Problems

9.1 What is an operating system?
9.2 List and briefly define the key services provided by an OS.
9.3 List and briefly define the major types of OS scheduling.
9.4 What is the difference between a process and a program?
9.5 What is the purpose of swapping?
9.6 If a process may be dynamically assigned to different locations in main memory, what is the
implication for the addressing mechanism?
9.7 Is it necessary for all of the pages of a process to be in main memory while the process is
executing?
9.8 Must the pages of a process in main memory be contiguous?
9.9 Is it necessary for the pages of a process in main memory to be in sequential order?
9.10 What is the purpose of a translation lookaside buffer?

9.1 Suppose that we have a multiprogrammed computer in which each job has identical
characteristics. In one computation period, T, for a job, half the time is spent in I/O and the other
half in processor activity. Each job runs for a total of N periods. Assume that a simple
round- ​robin priority is used, and that I/O operations can overlap with processor operation.
Define the following quantities:

.
.

.
Compute these quantities for one, two, and four simultaneous jobs, assuming that the period T
is distributed in each of the following ways:

a. I/O first half, processor second half;
b. I/O first and fourth quarters, processor second and third quarters.

9.2 An I/O-​bound program is one that, if run alone, would spend more time waiting for I/O than
using the processor. A processor- ​bound program is the opposite. Suppose a short- ​term
scheduling algorithm favors those programs that have used little processor time in the recent
past. Explain why this algorithm favors I/O- ​bound programs and yet does not permanently deny
processor time to processor- ​bound programs.
9.3 A program computes the row sums

of an array A that is 100 by 100. Assume that the computer uses demand paging with a page
size of 1000 words, and that the amount of main memory allotted for data is five page frames. Is
there any difference in the page fault rate if A were stored in virtual memory by rows or
columns? Explain.

Turnaround time = actual to complete a job.

Throughput = average number of jobs completed per time period T

Processor utilization = percentage of time that the processor is active (not waiting)

Ci = n∑
j = 1

aij

16

9.4 Consider a fixed partitioning scheme with equal- ​size partitions of and a total main
memory size of . A process table is maintained that includes a pointer to a partition for
each resident process. How many bits are required for the pointer?
9.5 Consider a dynamic partitioning scheme. Show that, on average, the memory contains half
as many holes as segments.
9.6 Suppose the page table for the process currently executing on the processor looks like the
following. All numbers are decimal, everything is numbered starting from zero, and all
addresses are memory byte addresses. The page size is 1024 bytes.

Virtual page number Valid bit Reference bit Modify bit Page frame number

0 1 1 0 4

1 1 1 1 7

2 0 0 0 —

3 1 0 0 2

4 0 0 0 —

5 1 0 1 0

a. Describe exactly how, in general, a virtual address generated by the CPU is translated
into a physical main memory address.

b. What physical address, if any, would each of the following virtual addresses correspond
to? (Do not try to handle any page faults, if any.)

i. 1052
ii. 2221
iii. 5499

9.7 Give reasons that the page size in a virtual memory system should be neither very small nor
very large.
9.8 A process references five pages, A, B, C, D, and E, in the following order:
A; B; C; D; A; B; E; A; B; C; D; E
Assume that the replacement algorithm is first- ​in-​first-​out and find the number of page transfers
during this sequence of references starting with an empty main memory with three page frames.
Repeat for four page frames.
9.9 The following sequence of virtual page numbers is encountered in the course of execution
on a computer with virtual memory:
3 4 2 6 4 7 1 3 2 6 3 5 1 2 3
Assume that a least recently used page replacement policy is adopted. Plot a graph of page hit
ratio (fraction of page references in which the page is in main memory) as a function of
main-​memory page capacity n for . Assume that main memory is initially empty.
9.10 In the VAX computer, user page tables are located at virtual addresses in the system
space. What is the advantage of having user page tables in virtual rather than main memory?
What is the disadvantage?
9.11 Suppose the program statement

2 bytes
224bytes

1 ≤ n ≤ 8

for (i = 1 ; i6 = n ; i +)
a[i]=b[i]+c[i];

is executed in a memory with page size of 1000 words. Let . Using a machine that has
a full range of register- ​to-​register instructions and employs index registers, write a hypothetical
program to implement the foregoing statement. Then show the sequence of page references
during execution.
9.12 The IBM System/370 architecture uses a two-​level memory structure and refers to the two
levels as segments and pages, although the segmentation approach lacks many of the features
described earlier in this chapter. For the basic 370 architecture, the page size may be either 2
Kbytes or 4 Kbytes, and the segment size is fixed at either 64 Kbytes or 1 Mbyte. For the
370/XA and 370/ESA architectures, the page size is 4 Kbytes and the segment size is 1 Mbyte.
Which advantages of segmentation does this scheme lack? What is the benefit of segmentation
for the 370?
9.13 Consider a computer system with both segmentation and paging. When a segment is in
memory, some words are wasted on the last page. In addition, for a segment size s and a page
size p, there are s/p page table entries. The smaller the page size, the less waste in the last
page of the segment, but the larger the page table. What page size minimizes the total
overhead?
9.14 A computer has a cache, main memory, and a disk used for virtual memory. If a referenced
word is in the cache, 20 ns are required to access it. If it is in main memory but not in the cache,
60 ns are needed to load it into the cache, and then the reference is started again. If the word is
not in main memory, 12 ms are required to fetch the word from disk, followed by 60 ns to copy it
to the cache, and then the reference is started again. The cache hit ratio is 0.9 and the
main-​memory hit ratio is 0.6. What is the average time in ns required to access a referenced
word on this system?
9.15 Assume a task is divided into four equal- ​sized segments and that the system builds an
eight-​entry page descriptor table for each segment. Thus, the system has a combination of
segmentation and paging. Assume also that the page size is 2 Kbytes.

a. What is the maximum size of each segment?
b. What is the maximum logical address space for the task?
c. Assume that an element in physical location 00021ABC is accessed by this task. What is

the format of the logical address that the task generates for it? What is the maximum
physical address space for the system?

9.16 Assume a microprocessor capable of accessing up to of physical main memory. It
implements one segmented logical address space of maximum size . Each instruction
contains the whole two- ​part address. External memory management units (MMUs) are used,
whose management scheme assigns contiguous blocks of physical memory of fixed size

 to segments. The starting physical address of a segment is always divisible by 1024.
Show the detailed interconnection of the external mapping mechanism that converts logical
addresses to physical addresses using the appropriate number of MMUs, and show the detailed
internal structure of an MMU (assuming that each MMU contains a 128-entry directly mapped
segment descriptor cache) and how each MMU is selected.
9.17 Consider a paged logical address space (composed of 32 pages of 2 Kbytes each)
mapped into a 1-Mbyte physical memory space.

a. What is the format of the processor’s logical address?
b. What is the length and width of the page table (disregarding the “access rights” bits)?
c. What is the effect on the page table if the physical memory space is reduced by half?

9.18 In IBM’s mainframe operating system, OS/390, one of the major modules in the kernel is
the System Resource Manager (SRM). This module is responsible for the allocation of
resources among address spaces (processes). The SRM gives OS/390 a degree of

n = 1000

232bytes
231bytes

222bytes

sophistication unique among operating systems. No other mainframe OS, and certainly no other
type of OS, can match the functions performed by SRM. The concept of resource includes
processor, real memory, and I/O channels. SRM accumulates statistics pertaining to utilization
of processor, channel, and various key data structures. Its purpose is to provide optimum
performance based on performance monitoring and analysis. The installation sets forth various
performance objectives, and these serve as guidance to the SRM, which dynamically modifies
installation and job performance characteristics based on system utilization. In turn, the SRM
provides reports that enable the trained operator to refine the configuration and parameter
settings to improve user service.
This problem concerns one example of SRM activity. Real memory is divided into equal- ​sized
blocks called frames, of which there may be many thousands. Each frame can hold a block of
virtual memory referred to as a page. SRM receives control approximately 20 times per second
and inspects each and every page frame. If the page has not been referenced or changed, a
counter is incremented by 1. Over time, SRM averages these numbers to determine the
average number of seconds that a page frame in the system goes untouched. What might be
the purpose of this and what action might SRM take?
9.19 For each of the ARM virtual address formats shown in Figure 9.24 , show the physical
address format.
9.20 Draw a figure similar to Figure 9.23 for ARM virtual memory translation when main
memory is divided into sections.

Part Three Arithmetic and Logic

Chapter 10 Number Systems

10.6 Key Terms and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the basic concepts and terminology of positional number systems.
Explain the techniques for converting between decimal and binary for both integers and fractions.
Explain the rationale for using hexadecimal notation.

10.1 The Decimal System
10.2 Positional Number Systems
10.3 The Binary System
10.4 Converting Between Binary and Decimal

Integers
Fractions

10.5 Hexadecimal Notation

10.1 The Decimal System
In everyday life we use a system based on decimal digits (0, 1, 2, 3, 4, 5, 6, 7, 8, 9) to represent
numbers, and refer to the system as the decimal system. Consider what the number 83 means. It
means eight tens plus three:

The number 4728 means four thousands, seven hundreds, two tens, plus eight:

The decimal system is said to have a base , or radix, of 10. This means that each digit in the
number is multiplied by 10 raised to a power corresponding to that digit’s position:

The same principle holds for decimal fractions, but negative powers of 10 are used. Thus, the decimal
fraction 0.256 stands for 2 tenths plus 5 hundredths plus 6 thousandths:

A number with both an integer and fractional part has digits raised to both positive and negative
powers of 10:

In any number, the leftmost digit is referred to as the most significant digit, because it carries the
highest value. The rightmost digit is called the least significant digit. In the preceding decimal
number, the 4 on the left is the most significant digit and the 6 on the right is the least significant digit.

Table 10.1 shows the relationship between each digit position and the value assigned to that position.
Each position is weighted 10 times the value of the position to the right and one-tenth the value of the
position to the left. Thus, positions represent successive powers of 10. If we number the positions as
indicated in Table 10.1, then position i is weighted by the value .

Table 10.1 Positional Interpretation of a Decimal Number

4 7 2 2 5 6

100s 10s 1s tenths hundredths thousandths

position 2 position 1 position 0 position position position

83 = (8 × 10) + 3

4728 = (4 × 1000) + (7 × 100) + (2 × 10) + 8

83 = (8 × 101) + (3 × 100)
4728 = (4 × 103) + (7 × 102) + (2 × 101) + (8 × 100)

0.256 = (2 × 10
− 1

) + (5 × 10
− 2

) + (6 × 10
− 3

)

442.256 =
(4 × 102) + (4 + 101) + (2 × 100) + (2 × 10

− 1
) + (5 × 10

− 2
)

+ (6 × 10
− 3

)

10i

102 101 100
10

− 1
10

− 2
10

− 3

−1 −2 −3

In general, for the decimal representation of , the value of X is

One other observation is worth making. Consider the number 509 and ask how many tens are in the
number. Because there is a 0 in the tens position, you might be tempted to say there are no tens. But
there are in fact 50 tens. What the 0 in the tens position means is that there are no tens left over that
cannot be lumped into the hundreds, or thousands, and so on. Therefore, because each position
holds only the leftover numbers that cannot be lumped into higher positions, each digit position needs
to have a value of no greater than nine. Nine is the maximum value that a position can hold before it
flips over into the next higher position.

X = { … d2d1d0 . d− 1d− 2d− 3 … }

X = ∑
i

(di × 10i) (10.1)

10.2 Positional Number Systems
In a positional number system, each number is represented by a string of digits in which each digit
position i has an associated weight , where r is the radix, or base, of the number system. The
general form of a number in such a system with radix r is

where the value of any digit is an integer in the range . The dot between and is
called the radix point. The number is defined to have the value

The decimal system, then, is a special case of a positional number system with radix 10 and with
digits in the range 0 through 9.

As an example of another positional system, consider the system with base 7. Table 10.2 shows the
weighting value for positions through 4. In each position, the digit value ranges from 0 through 6.

Table 10.2 Positional Interpretation of a Number in Base 7

Position 4 3 2 1 0

Value in Exponential Form

Decimal Value 2401 343 49 7 1 1/7

ri

(… a3a2a1a0 . a− 1a− 2a− 3 …)
r

ai 0 ≤ ai < r a0 a− 1

… + a3r3 + a2r2 + a1r1 + a0r0 + a− 1r
− 1

+ a− 2r
− 2

+ a− 3r
− 3

+ …

=∑
i

(ai × bi)

(10.2)

−1

−1

74 73 72 71 70
7

− 1

	10.3 The Binary System
In the decimal system, 10 different digits are used to represent numbers with a base of 10. In the
binary system, we have only two digits, 1 and 0. Thus, numbers in the binary system are represented
to base 2.

To avoid confusion, we will sometimes put a subscript on a number to indicate its base. For example,
 and are numbers represented in decimal notation or, more briefly, decimal numbers. The

digits 1 and 0 in binary notation have the same meaning as in decimal notation:

To represent larger numbers, as with decimal notation, each digit in a binary number has a value
depending on its position:

and so on. Again, fractional values are represented with negative powers of the radix:

In general, for the binary representation of , the value of Y is

8310 472810

02 = 010
12 = 110

102 =
(1 × 21) + (0 × 20) = 210

112 =
(1 × 21) + (1 × 20) = 310

1002 =
(1 × 22) + (0 × 21) + (0 × 20) = 410

1001.101 = 23 + 20 + 2
− 1

+ 2
− 3

= 9.62510

Y = { … b2b1b0 . b− 1b− 2b− 3 … }

Y = ∑
i

(bi × 2i) (10.3)

10.4 Converting Between Binary and Decimal
It is a simple matter to convert a number from binary notation to decimal notation. In fact, we showed
several examples in the previous subsection. All that is required is to multiply each binary digit by the
appropriate power of 2 and add the results.

To convert from decimal to binary, the integer and fractional parts are handled separately.

Integers

For the integer part, recall that in binary notation, an integer represented by

has the value

Suppose it is required to convert a decimal integer N into binary form. If we divide N by 2, in the
decimal system, and obtain a quotient and a remainder , we may write

Next, we divide the quotient by 2. Assume that the new quotient is and the new remainder .
Then

so that

If next

we have

Because , continuing this sequence will eventually produce a quotient (except

for the decimal integers 0 and 1, whose binary equivalents are 0 and 1, respectively) and a remainder
, which is 0 or 1. Then

which is the binary form of N. Hence, we convert from base 10 to base 2 by repeated divisions by 2.
The remainders and the final quotient, 1, give us, in order of increasing significance, the binary digits

bm − 1bm − 2 … b2b1b0 bi = 0or 1

(bm − 1 × 2
m − 1

) + (bm − 2 × 2
m − 2

) + … + (b1 × 21) + b0

N1 R0

N = 2 × N1 + R0 R0 = 0or 1

N1 N2 R1

N1 = 2 × N2 + R1 R1 = 0or 1

N = 2(2N2 + R1) + R0 = (N2 × 22) + (R1 × 21) + R0

N2 = 2N3 + R2

N = (N3 × 23) + (R2 × 22) + (R1 × 21) + R0

N > N1 > N2… Nm − 1 = 1

Rm − 2

N = (1 × 2
m − 1

) + (Rm − 2 × 2
m − 2

) + … + (R2 × 22) + (R1 × 21) + R0

of N. Figure 10.1 shows two examples.

Figure 10.1 Examples of Converting from Decimal Notation to Binary Notation for Integers

Fractions

For the fractional part, recall that in binary notation, a number with a value between 0 and 1 is
represented by

and has the value

0 . b− 1b− 2b− 3… bi = 0or 1

(b− 1 × 2
− 1

) + (b− 2 × 2
− 2

) + (b− 3 × 2
− 3

) …

This can be rewritten as

This expression suggests a technique for conversion. Suppose we want to convert the number
 from decimal to binary notation. We know that F can be expressed in the form

If we multiply F by 2, we obtain,

From this equation, we see that the integer part of , which must be either 0 or 1 because
, is simply . So we can say , where and where

To find , we repeat the process. Therefore, the conversion algorithm involves repeated
multiplication by 2. At each step, the fractional part of the number from the previous step is multiplied
by 2. The digit to the left of the decimal point in the product will be 0 or 1 and contributes to the binary
representation, starting with the most significant digit. The fractional part of the product is used as the
multiplicand in the next step. Figure 10.2 shows two examples.

2
− 1

× (b− 1 + 2
− 1

× (b− 2 + 2
− 1

× (b− 3 + …) …))

F (0 < F < 1)

F = 2
− 1

× (b− 1 + 2
− 1

× (b− 2 + 2
− 1

× (b− 3 + …) …))

2 × F = b− 1 + 2
− 1

× (b− 2 + 2
− 1

× (b− 3 + …) …)

(2 × F)
0 < F < 1 b− 1 (2 × F) = b− 1 + F1 0 < F1 < 1

F1 = 2
− 1

× (b− 2 + 2
− 1

× (b− 3 + 2
− 1

× (b− 4 + …) …))

b− 2

Figure 10.2 Examples of Converting from Decimal Notation to Binary Notation for Fractions

This process is not necessarily exact; that is, a decimal fraction with a finite number of digits may
require a binary fraction with an infinite number of digits. In such cases, the conversion algorithm is
usually halted after a prespecified number of steps, depending on the desired accuracy.

	10.5 Hexadecimal Notation
Because of the inherent binary nature of digital computer components, all forms of data within
computers are represented by various binary codes. However, no matter how convenient the binary
system is for computers, it is exceedingly cumbersome for human beings. Consequently, most
computer professionals who must spend time working with the actual raw data in the computer prefer
a more compact notation.

What notation to use? One possibility is the decimal notation. This is certainly more compact than
binary notation, but it is awkward because of the tediousness of converting between base 2 and base
10.

Instead, a notation known as hexadecimal has been adopted. Binary digits are grouped into sets of
four bits, called a nibble. Each possible combination of four binary digits is given a symbol, as follows:

Because 16 symbols are used, the notation is called hexadecimal, and the 16 symbols are the
hexadecimal digits.

A sequence of hexadecimal digits can be thought of as representing an integer in base 16 (Table
10.3). Thus,

Table 10.3 Decimal, Binary, and Hexadecimal

Decimal (base 10) Binary (base 2) Hexadecimal (base 16)

  0 0000 0

  1 0001 1

  2 0010 2

  3 0011 3

  4 0100 4

  5 0101 5

  6 0110 6

  7 0111 7

  8 1000 8

0000 = 0 0100 = 4 1000 = 8 1100 = C
0001 = 1 0101 = 5 1001 = 9 1101 = D
0010 = 2 0110 = 6 1010 = A 1110 = E
0011 = 3 0111 = 7 1011 = B 1111 = F

  9 1001 9

 10 1010 A

 11 1011 B

 12 1100 C

 13 1101 D

 14 1110 E

 15 1111  F

 16 0001 0000 10

 17 0001 0001 11

 18 0001 0010 12

 31 0001 1111 1F

100 0110 0100 64

255 1111 1111 FF

256 0001 0000 0000 100

Thus, viewing hexadecimal numbers as numbers in the positional number system with base 16, we
have

where 16 is the base and each hexadecimal digit is in the decimal range , equivalent to
the hexadecimal range .

Hexadecimal notation is not only used for representing integers but also used as a concise notation
for representing any sequence of binary digits, whether they represent text, numbers, or some other
type of data. The reasons for using hexadecimal notation are as follows:

1. It is more compact than binary notation.
2. In most computers, binary data occupy some multiple of 4 bits, and hence some multiple of a

single hexadecimal digit.

2C16 = (216 × 161) + (C16 × 160)
= (210 × 161) + (1210 × 160) = 44

Z = ∑
i

(hi × 16i) (10.4)

hi 0 ≤ hi < 15
0 ≤ hi ≤ F

3. It is extremely easy to convert between binary and hexadecimal notation.

As an example of the last point, consider the binary string 110111100001. This is equivalent to

This process is performed so naturally that an experienced programmer can mentally convert visual
representations of binary data to their hexadecimal equivalent without written effort.

1101 1110 0001 = DE116
D E 1

10.6 Key Terms and Problems

Key Terms

base

binary

decimal

fraction

hexadecimal

integer

least significant digit

most significant digit

nibble

positional number system

radix

radix point

Problems

10.1 Count from 1 to in the following bases:
a. 8
b. 6
c. 5
d. 3

10.2 Order the numbers and from smallest to largest.
10.3 Perform the indicated base conversions:

a. to base 5
b. to base 7
c. to base 7
d. to base 9

10.4 What generalizations can you draw about converting a number from one base to a power
of that base; e.g., from base 3 to base or from base 2 to base or base ?
10.5 Convert the following binary numbers to their decimal equivalents:

a. 001100
b. 000011
c. 011100
d. 111100
e. 101010

2010

(1.1)2 , (1.4)10, (1.5)16

548

3124

5206

122123

9 (32) 4 (22) 8 (23)

10.6 Convert the following binary numbers to their decimal equivalents:
a. 11100.011
b. 110011.10011
c. 1010101010.1

10.7 Convert the following decimal numbers to their binary equivalents:
a. 64
b. 100
c. 111
d. 145
e. 255

10.8 Convert the following decimal numbers to their binary equivalents:
a. 34.75
b. 25.25
c. 27.1875

	10.9 Prove that every real number with a terminating binary representation (finite number of
digits to the right of the binary point) also has a terminating decimal representation (finite
number of digits to the right of the decimal point).
10.10 Express the following octal numbers (number with radix 8) in hexadecimal notation:

a. 12
b. 5655
c. 2550276
d. 76545336
e. 3726755

10.11 Convert the following hexadecimal numbers to their decimal equivalents:
a. C
b. 9F
c. D52
d. 67E
e. ABCD

10.12 Convert the following hexadecimal numbers to their decimal equivalents:
a. F.4
b. D3.E
c. 1111.1
d. 888.8
e. EBA.C

10.13 Convert the following decimal numbers to their hexadecimal equivalents:
a. 16
b. 80
c. 2560
d. 3000
e. 62,500

10.14 Convert the following decimal numbers to their hexadecimal equivalents:
a. 204.125
b. 255.875

c. 631.25
d. 10000.00390625

10.15 Convert the following hexadecimal numbers to their binary equivalents:
a. E
b. 1C
c. A64
d. 1F.C
e. 239.4

10.16 Convert the following binary numbers to their hexadecimal equivalents:
a. 1001.1111
b. 110101.011001
c. 10100111.111011

Chapter 11 Computer Arithmetic

11.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the distinction between the way in which numbers are represented (the binary format)
and the algorithms used for the basic arithmetic operations.
Explain twos complement representation.
Present an overview of the techniques for doing basic arithmetic operations in twos complement
notation.
Understand the use of significand, base, and exponent in the representation of floating-point
numbers.
Present an overview of the IEEE 754 standard for floating-point representation.
Understand some of the key concepts related to floating-point arithmetic, including guard bits,
rounding, subnormal numbers, underflow and overflow.

We begin our examination of the processor with an overview of the arithmetic and

11.1 The Arithmetic and Logic Unit
11.2 Integer Representation

Sign-Magnitude Representation
Twos Complement Representation
Range Extension
Fixed-Point Representation

11.3 Integer Arithmetic
Negation
Addition and Subtraction
Multiplication
Division

11.4 Floating-Point Representation
Principles
IEEE Standard for Binary Floating-Point Representation

11.5 Floating-Point Arithmetic
Addition and Subtraction
Multiplication and Division
Precision Considerations
IEEE Standard for Binary Floating-Point Arithmetic

logic unit (ALU). The chapter then focuses on the most complex aspect of the
ALU, computer arithmetic. The implementation of simple logic and arithmetic
functions in digital logic are described in Chapter 12, and logic functions that are
part of the ALU are described in Chapter 13.

Computer arithmetic is commonly performed on two very different types of
numbers: integer and floating point. In both cases, the representation chosen is a
crucial design issue and is treated first, followed by a discussion of arithmetic
operations.

This chapter includes a number of examples, each of which is highlighted in a
shaded box.

11.1 The Arithmetic and Logic Unit
The ALU is that part of the computer that actually performs arithmetic and logical operations on data.
All of the other elements of the computer system—control unit, registers, memory, I/O—are there
mainly to bring data into the ALU for it to process and then to take the results back out. We have, in a
sense, reached the core or essence of a computer when we consider the ALU.

An ALU and indeed, all electronic components in the computer, are based on the use of simple digital
logic devices that can store binary digits and perform simple Boolean logic operations.

Figure 11.1 indicates, in general terms, how the ALU is interconnected with the rest of the processor.
Operands for arithmetic and logic operations are presented to the ALU in registers, and the results of
an operation are stored in registers. These registers are temporary storage locations within the
processor that are connected by signal paths to the ALU (e.g., see Figure 1.6). The ALU may also set
flags as the result of an operation. For example, an overflow flag is set to 1 if the result of a
computation exceeds the length of the register into which it is to be stored.

Figure 11.1 ALU Inputs and Outputs

The flag values are also stored in registers within the processor. The processor provides signals that
control the operation of the ALU and the movement of the data into and out of the ALU.

11.2 Integer Representation
In the binary number system, arbitrary numbers can be represented with just the digits zero and one,
the minus sign (for negative numbers), and the period, or radix point (for numbers with a fractional
component).

 See Chapter 10 for a basic refresher on number systems (decimal, binary, hexadecimal).

For purposes of computer storage and processing, however, we do not have the benefit of special
symbols for the minus sign and radix point. Only binary digits (0 and 1) may be used to represent
numbers. If we are limited to nonnegative integers, the representation is straightforward.

An 8-bit word can represent the numbers from 0 to 255, such as

In general, if an n-bit sequence of binary digits is interpreted as an unsigned integer

A, its value is

Sign-Magnitude Representation

There are several alternative conventions used to represent negative as well as positive integers, all
of which involve treating the most significant (leftmost) bit in the word as a sign bit. If the sign bit is 0,
the number is positive; if the sign bit is 1, the number is negative.

The simplest form of representation that employs a sign bit is the sign-magnitude representation. In an
n-bit word, the rightmost bits hold the magnitude of the integer.

The general case can be expressed as follows:

Sign Magnitude

1

1

−1101.01012 = − 13.312510

00000000 = 0
00000001 = 1
00101001 = 41
10000000 = 128
11111111 = 255

an − 1an − 2 … a1a0

A = n − 1∑
i = 0

2iai

n − 1

+ 18 = 00010010
− 18 = 10010010 (sign magnitude)

A =

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

n − 2∑
i = 0

2iai
if an − 1 = 0

−n − 2∑
i = 0

2iai
if an − 1 = 1

⎧

⎨

⎩

(11.1)

There are several drawbacks to sign-magnitude representation. One is that addition and subtraction
require a consideration of both the signs of the numbers and their relative magnitudes to carry out the
required operation. This should become clear in the discussion in Section 11.3. Another drawback is
that there are two representations of 0:

This is inconvenient because it is slightly more difficult to test for 0 (an operation performed frequently
on computers) than if there were a single representation.

Because of these drawbacks, sign-magnitude representation is rarely used in implementing the
integer portion of the ALU. Instead, the most common scheme is twos complement representation.

 In the literature, the terms two’s complement or 2’s complement are often used. Here we follow the practice used
in standards documents and omit the apostrophe (e.g., IEEE Std 100-1992, The New IEEE Standard Dictionary of
Electrical and Electronics Terms).

Twos Complement Representation

Like sign magnitude, twos complement representation uses the most significant bit as a sign bit,
making it easy to test whether an integer is positive or negative. It differs from the use of the sign-
magnitude representation in the way that the other bits are interpreted. Table 11.1 highlights key
characteristics of twos complement representation and arithmetic, which are elaborated in this section
and the next.

Table 11.1 Characteristics of Twos Complement Representation and Arithmetic

Range

Number of
Representations
of Zero

One

Negation Take the Boolean complement of each bit of the corresponding positive
number, then add 1 to the resulting bit pattern viewed as an unsigned integer.

Expansion of Bit
Length

Add additional bit positions to the left and fill in with the value of the original
sign bit.

Overflow Rule If two numbers with the same sign (both positive or both negative) are added,
then overflow occurs if and only if the result has the opposite sign.

Subtraction Rule To subtract B from A, take the twos complement of B and add it to A.

+010 = 00000000
−010 = 10000000 (sign magnitude)

2

2

−2
n − 1

through 2
n − 1

− 1

Most treatments of twos complement representation focus on the rules for producing negative
numbers, with no formal proof that the scheme is valid. Instead, our presentation of twos complement
integers in this section and in Section 11.3 is based on [DATT93], which suggests that twos
complement representation is best understood by defining it in terms of a weighted sum of bits, as we
did previously for unsigned and sign-magnitude representations. The advantage of this treatment is
that it does not leave any lingering doubt that the rules for arithmetic operations in twos complement
notation may not work for some special cases.

Consider an n-bit integer, A, in twos complement representation. If A is positive, then the sign bit,
 is zero. The remaining bits represent the magnitude of the number in the same fashion as for

sign magnitude:

The number zero is identified as positive and therefore has a 0 sign bit and a magnitude of all 0s. We
can see that the range of positive integers that may be represented is from 0 (all of the magnitude bits
are 0) through (all of the magnitude bits are 1). Any larger number would require more bits.

Now, for a negative number the sign bit, , is one. The remaining bits can take on
any one of values. Therefore, the range of negative integers that can be represented is from
to . We would like to assign the bit values to negative integers in such a way that arithmetic can
be handled in a straightforward fashion, similar to unsigned integer arithmetic. In unsigned integer
representation, to compute the value of an integer from the bit representation, the weight of the most
significant bit is . For a representation with a sign bit, it turns out that the desired arithmetic
properties are achieved, as we will see in Section 11.3, if the weight of the most significant bit is

. This is the convention used in twos complement representation, yielding the following
expression for negative numbers:

Twos Complement

Equation (11.2) defines the twos complement representation for both positive and negative numbers.
For the term and the equation defines a nonnegative integer. When

 the term is subtracted from the summation term, yielding a negative integer.

Table 11.2 compares the sign-magnitude and twos complement representations for 4-bit integers.
Although twos complement is an awkward representation from the human point of view, we will see
that it facilitates the most important arithmetic operations, addition and subtraction. For this reason, it
is almost universally used as the processor representation for integers.

Table 11.2 Alternative Representations for 4-Bit Integers

Decimal
Representation

Sign-Magnitude
Representation

Twos Complement
Representation

Biased
Representation

— — 1111

an − 1,

A = n − 2∑
i = 0

2iaifor A≥0

2
n − 1

− 1

A (A < 0), an − 1 n − 1
2

n − 1
−1

−2
n − 1

+2
n − 1

−2
n − 1

A = − 2
n − 1

an − 1 + n − 2∑
i = 0

2iai (11.2)

an − 1 = 0, −2
n − 1

an − 1 = 0
an − 1 = 1, 2

n − 1

+8

0111 0111 1110

0110 0110 1101

0101 0101 1100

0100 0100 1011

0011 0011 1010

0010 0010 1001

0001 0001 1000

0000 0000 0111

1000 — —

1001 1111 0110

1010 1110 0101

1011 1101 0100

1100 1100 0011

1101 1011 0010

1110 1010 0001

1111 1001 0000

— 1000 —

A useful illustration of the nature of twos complement representation is a value box, in which the value
on the far right in the box is 1 and each succeeding position to the left is double in value, until the
leftmost position, which is negated. As you can see in Figure 11.2a, the most negative twos
complement number that can be represented is if any of the bits other than the sign bit is one,
it adds a positive amount to the number. Also, it is clear that a negative number must have a 1 at its
leftmost position and a positive number must have a 0 in that position. Thus, the largest positive
number is a 0 followed by all 1s, which equals .

The rest of Figure 11.2 illustrates the use of the value box to convert from twos complement to
decimal and from decimal to twos complement.

+7

+6

+5

+4

+3

+2

+1

+0

−0

−1

−2

−3

−4

−5

−6

−7

−8

(20)

−2
n − 1

;

2
n − 1

− 1

Figure 11.2 Use of a Value Box for Conversion between Twos Complement Binary and Decimal

Range Extension

It is sometimes desirable to take an n-bit integer and store it in m bits, where . This expansion of
bit length is referred to as range extension, because the range of numbers that can be expressed is
extended by increasing the bit length.

In sign-magnitude notation, this is easily accomplished: simply move the sign bit to the new leftmost
position and fill in with zeros.

This procedure will not work for twos complement negative integers. Using the same example,

The next to last line is easily seen using the value box of Figure 11.2. The last line can be
verified using Equation (11.2) or a 16-bit value box.

Instead, the rule for twos complement integers is to move the sign bit to the new leftmost position and
fill in with copies of the sign bit. For positive numbers, fill in with zeros, and for negative numbers, fill in
with ones. This is called sign extension.

m > n

+18 = 00010010 (sign magnitude, 8 bits)
+18 = 0000000000010010 (sign magnitude, 16 bits)
−18 = 10010010 (sign magnitude, 8 bits)
−18 = 1000000000010010 (sign magnitude, 16 bits)

+18 = 00010010 (twos complement, 8 bits)
+18 = 0000000000010010 (twos complement, 16 bits)
−18 = 11101110 (twos complement, 8 bits)

−32 , 658 = 1000000001101110 (twos complement, 16 bits)

−18 = 11101110 (twos complement, 8 bits)
−18 = 1111111111101110 (twos complement, 16 bits)

To see why this rule works, let us again consider an n-bit sequence of binary digits

interpreted as a twos complement integer A, so that its value is

If A is a positive number, the rule clearly works. Now, if A is negative we want to construct an m-bit
representation, with Then

The two values must be equal:

In going from the first to the second equation, we require that the least significant bits do not
change between the two representations. Then we get to the next to last equation, which is only true if
all of the bits in positions through are 1. Therefore, the sign-extension rule works. The
reader may find the rule easier to grasp after studying the discussion on twos complement negation at
the beginning of Section 11.3.

Fixed-Point Representation

Finally, we mention that the representations discussed in this section are sometimes referred to as
fixed point. This is because the radix point (binary point) is fixed and assumed to be to the right of the
rightmost digit. The programmer can use the same representation for binary fractions by scaling the
numbers so that the binary point is implicitly positioned at some other location.

an − 1an − 2 … a1a0

A = − 2
n − 1

an − 1 + n − 2∑
i = 0

2iai

m > n .

A = − 2
m − 1

am − 1 + m − 2∑
i = 0

2iai

− 2
m − 1

+ m − 2∑
i = 0

2iai
=

−2
n − 1

+ n − 2∑
i = 0

2iai

− 2
m − 1

+ m − 2∑
i = n − 1

2iai
=

−2
n − 1

− 2
n − 1

+ m − 2∑
i = n − 1

2iai
=

2
m − 1

1 + n − 2∑
i = 0

2i + m − 2∑
i = n − 1

2iai
=

1 + m − 2∑
i = 0

2i

m − 2∑
i = n − 1

2iai
=

m − 2∑
i = n − 1

2i

⇒am − 2=… = an − 2 = an − 2 = 1

n − 1

n − 1 m − 2

11.3 Integer Arithmetic
This section examines common arithmetic functions on numbers in twos complement representation.

Negation

In sign-magnitude representation, the rule for forming the negation of an integer is simple: invert the
sign bit. In twos complement notation, the negation of an integer can be formed with the following
rules:

1. Take the Boolean complement of each bit of the integer (including the sign bit). That is, set each
1 to 0 and each 0 to 1.

2. Treating the result as an unsigned binary integer, add 1.
This two-step process is referred to as the twos complement operation, or the taking of the
twos complement of an integer.

As expected, the negative of the negative of that number is itself:

We can demonstrate the validity of the operation just described using the definition of the twos
complement representation in Equation (11.2). Again, interpret an n-bit sequence of binary digits

 as a twos complement integer A, so that its value is

Now form the bitwise complement, and, treating this as an unsigned integer, add 1.

Finally, interpret the resulting n-bit sequence of binary digits as a twos complement integer B, so that
its value is

Now, we want , which means . This is easily shown to be true:

+18 = 00010010 (twos complement)
bitwise complement = 11101101

+1
_

11101110 = − 18

−18 = 11101110 (twos complement)
bitwise complement = 00010001

+1
_

00010010 = + 18

an − 1an − 2 … a1a0

A = − 2
n − 1

an − 1 + n − 2∑
i = 0

2iai

¯an − 1an − 2 … ā0,

B = − 2
n − 1

¯an − 1 + 1 + n − 2∑
i = 0

2i āi

A = − B A + B = 0

A + B =

− (an − 1 + ¯an − 1) 2
n − 1

+ 1 +

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

n − 2∑
i = 0

2i (ai + āi)

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
= ⎜⎜⎜⎜

⎟⎟⎟⎟

⎛

⎝

⎞

⎠
⎛ ⎞

The preceding derivation assumes that we can first treat the bitwise complement of A as an unsigned
integer for the purpose of adding 1, and then treat the result as a twos complement integer. There are
two special cases to consider. First, consider . In that case, for an 8-bit representation:

There is a carry out of the most significant bit position, which is ignored. The result is that the negation
of 0 is 0, as it should be.

The second special case is more of a problem. If we take the negation of the bit pattern of 1 followed
by zeros, we get back the same number. For example, for 8-bit words,

Some such anomaly is unavoidable. The number of different bit patterns in an n-bit word is 2n, which
is an even number. We wish to represent positive and negative integers and 0. If an equal number of
positive and negative integers are represented (sign magnitude), then there are two representations
for 0. If there is only one representation of 0 (twos complement), then there must be an unequal
number of negative and positive numbers represented. In the case of twos complement, for an n-bit
length, there is a representation for but not for .

Addition and Subtraction

Addition in twos complement is illustrated in Figure 11.3. Addition proceeds as if the two numbers
were unsigned integers. The first four examples illustrate successful operations. If the result of the
operation is positive, we get a positive number in twos complement form, which is the same as in
unsigned-integer form. If the result of the operation is negative, we get a negative number in twos
complement form. Note that, in some instances, there is a carry bit beyond the end of the word
(indicated by shading), which is ignored.

−2
n − 1

+ 1 +
⎜⎜⎜⎜⎜⎜⎜⎜⎜

n − 2∑
i = 0

2i ⎟⎟⎟⎟⎟⎟⎟⎟⎟
=

−2
n − 1

+ 1 + (2
n − 1

− 1)
=

−2
n − 1

+ 2
n − 1

= 0

⎝ ⎠

A = 0

0 = 00000000 (twos complement)
bitwise complement = 11111111

+1
_

100000000 =0

n − 1

+128 = 10000000 (twos complement)
bitwise complement = 01111111

+1
_

10000000 = − 128

−2
n − 1

+2
n − 1

Figure 11.3 Addition of Numbers in Twos Complement Representation

On any addition, the result may be larger than can be held in the word size being used. This condition
is called overflow. When overflow occurs, the ALU must signal this fact so that no attempt is made to
use the result. To detect overflow, the following rule is observed:

OVERFLOW RULE:

If two numbers are added, and they are both positive or both negative, then overflow occurs if
and only if the result has the opposite sign.

Figures 11.3e and f show examples of overflow. Note that overflow can occur whether or not there is
a carry.

Subtraction is easily handled with the following rule:

SUBTRACTION RULE:

To subtract one number (subtrahend) from another (minuend), take the twos complement
(negation) of the subtrahend and add it to the minuend.

Thus, subtraction is achieved using addition, as illustrated in Figure 11.4. The last two examples
demonstrate that the overflow rule still applies.

Figure 11.4 Subtraction of Numbers in Twos Complement Representation

Some insight into twos complement addition and subtraction can be gained by looking at a geometric
depiction [BENH92], as shown in Figure 11.5. The circle in the upper half of each part of the figure is
formed by selecting the appropriate segment of the number line and joining the endpoints. Note that
when the numbers are laid out on a circle, the twos complement of any number is horizontally
opposite that number (indicated by dashed horizontal lines). Starting at any number on the circle, we
can add positive k (or subtract negative k) to that number by moving k positions clockwise, and we
can subtract positive k (or add negative k) from that number by moving k positions counterclockwise. If
an arithmetic operation results in traversal of the point where the endpoints are joined, an incorrect
answer is given (overflow).

(M − S)

Figure 11.5 Geometric Depiction of Twos Complement Integers

ALL OF the examples of Figures 11.3 and 11.4 are easily traced in the circle of Figure 11.5.

Figure 11.6 suggests the data paths and hardware elements needed to accomplish addition and
subtraction. The central element is a binary adder, which is presented two numbers for addition and
produces a sum and an overflow indication. The binary adder treats the two numbers as unsigned
integers. (A logic implementation of an adder is given in Chapter 12.) For addition, the two numbers
are presented to the adder from two registers, designated in this case as A and B registers. The result
may be stored in one of these registers or in a third. The overflow indication is stored in a 1-bit
overflow flag . For subtraction, the subtrahend (B register) is passed
through a twos complementer so that its twos complement is presented to the adder. Note that Figure
11.6 only shows the data paths. Control signals are needed to control whether or not the
complementer is used, depending on whether the operation is addition or subtraction.

(0 = no overflow ; 1 = overflow)

Figure 11.6 Block Diagram of Hardware for Addition and Subtraction

Multiplication

Compared with addition and subtraction, multiplication is a complex operation, whether performed in
hardware or software. A wide variety of algorithms have been used in various computers. The purpose
of this subsection is to give the reader some feel for the type of approach typically taken. We begin
with the simpler problem of multiplying two unsigned (nonnegative) integers, and then we look at one
of the most common techniques for multiplication of numbers in twos complement representation.

UNSIGNED INTEGERS

Figure 11.7 illustrates the multiplication of unsigned binary integers, as might be carried out using
paper and pencil. Several important observations can be made:

Figure 11.7 Multiplication of Unsigned Binary Integers

1. Multiplication involves the generation of partial products, one for each digit in the multiplier.

These partial products are then summed to produce the final product.
2. The partial products are easily defined. When the multiplier bit is 0, the partial product is 0.

When the multiplier is 1, the partial product is the multiplicand.
3. The total product is produced by summing the partial products. For this operation, each

successive partial product is shifted one position to the left relative to the preceding partial
product.

4. The multiplication of two n-bit binary integers results in a product of up to 2n bits in length (e.g.,
).

Compared with the pencil-and-paper approach, there are several things we can do to make
computerized multiplication more efficient. First, we can perform a running addition on the partial
products rather than waiting until the end. This eliminates the need for storage of all the partial
products; fewer registers are needed. Second, we can save some time on the generation of partial
products. For each 1 on the multiplier, an add and a shift operation are required; but for each 0, only a
shift is required.

Figure 11.8a shows a possible implementation employing these measures. The multiplier and
multiplicand are loaded into two registers (Q and M). A third register, the A register, is also needed
and is initially set to 0. There is also a 1-bit C register, initialized to 0, which holds a potential carry bit
resulting from addition.

11 × 11 = 1001

Figure 11.8 Hardware Implementation of Unsigned Binary Multiplication

The operation of the multiplier is as follows. Control logic reads the bits of the multiplier one at a time.
If is 1, then the multiplicand is added to the A register and the result is stored in the A register, with
the C bit used for overflow. Then all of the bits of the C, A, and Q registers are shifted to the right one
bit, so that the C bit goes into goes into , and is lost. If is 0, then no addition is
performed, just the shift. This process is repeated for each bit of the original multiplier. The resulting
2n-bit product is contained in the A and Q registers. A flowchart of the operation is shown in Figure
11.9, and an example is given in Figure 11.8b. Note that on the second cycle, when the multiplier bit
is 0, there is no add operation.

Q0

An − 1 , A0 Qn − 1 Q0 Q0

Figure 11.9 Flowchart for Unsigned Binary Multiplication

TWOS COMPLEMENT MULTIPLICATION

We have seen that addition and subtraction can be performed on numbers in twos complement
notation by treating them as unsigned integers. Consider

If these numbers are considered to be unsigned integers, then we are adding 9 (1001) plus 3 (0011)
to get 12 (1100). As twos complement integers, we are adding to 3 (0011) to get .

Unfortunately, this simple scheme will not work for multiplication. To see this, consider again Figure
11.7. We multiplied 11 (1011) by 13 (1101) to get 143 (10001111). If we interpret these as twos
complement numbers, we have times (1101) equals . This example
demonstrates that straightforward multiplication will not work if both the multiplicand and multiplier are
negative. In fact, it will not work if either the multiplicand or the multiplier is negative. To justify this
statement, we need to go back to Figure 11.7 and explain what is being done in terms of operations
with powers of 2. Recall that any unsigned binary number can be expressed as a sum of powers of 2.
Thus,

1001
+0011

_
1100

−7(1001) −4(1100)

−5(1011) −3 −113(10001111)

Further, the multiplication of a binary number by is accomplished by shifting that number to the left
n bits. With this in mind, Figure 11.10 recasts Figure 11.7 to make the generation of partial products
by multiplication explicit. The only difference in Figure 11.10 is that it recognizes that the partial
products should be viewed as 2n-bit numbers generated from the n-bit multiplicand.

Figure 11.10 Multiplication of Two Unsigned 4-Bit Integers Yielding an 8-Bit Result

Thus, as an unsigned integer, the 4-bit multiplicand 1011 is stored in an 8-bit word as 00001011. Each
partial product (other than that for) consists of this number shifted to the left, with the unoccupied
positions on the right filled with zeros (e.g., a shift to the left of two places yields 00101100).

Now we can demonstrate that straightforward multiplication will not work if the multiplicand is negative.
The problem is that each contribution of the negative multiplicand as a partial product must be a
negative number on a 2n-bit field; the sign bits of the partial products must line up. This is
demonstrated in Figure 11.11, which shows that multiplication of 1001 by 0011. If these are treated as
unsigned integers, the multiplication of proceeds simply. However, if 1001 is interpreted as
the twos complement value then each partial product must be a negative twos complement
number of 2n (8) bits, as shown in Figure 11.11b. Note that this is accomplished by padding out each
partial product to the left with binary 1s.

Figure 11.11 Comparison of Multiplication of Unsigned and Twos Complement Integers

If the multiplier is negative, straightforward multiplication also will not work. The reason is that the bits
of the multiplier no longer correspond to the shifts or multiplications that must take place. For example,
the 4-bit decimal number is written 1101 in twos complement. If we simply took partial products
based on each bit position, we would have the following correspondence:

1101 = 1 × 23 + 1 × 22 + 0 × 21 + 1 × 20 = 23 + 22 + 20

2n

20

9 × 3 = 27
−7,

−3

1101 ↔ − (1 × 23 + 1 × 22 + 0 × 21 + 1 × 20) = − (23 + 22 + 20)

1 0

In fact, what is desired is . So this multiplier cannot be used directly in the manner we have
been describing.

There are a number of ways out of this dilemma. One would be to convert both multiplier and
multiplicand to positive numbers, perform the multiplication, and then take the twos complement of the
result if and only if the sign of the two original numbers differed. Implementers have preferred to use
techniques that do not require this final transformation step. One of the most common of these is
Booth’s algorithm [BOOT51]. This algorithm also has the benefit of speeding up the multiplication
process, relative to a more straightforward approach.

Booth’s algorithm is depicted in Figure 11.12 and can be described as follows. As before, the
multiplier and multiplicand are placed in the Q and M registers, respectively. There is also a 1-bit
register placed logically to the right of the least significant bit of the Q register and designated

; its use is explained shortly. The results of the multiplication will appear in the A and Q registers.
A and are initialized to 0. As before, control logic scans the bits of the multiplier one at a time.
Now, as each bit is examined, the bit to its right is also examined. If the two bits are the same (1–1 or
0–0), then all of the bits of the A, Q, and registers are shifted to the right 1 bit. If the two bits
differ, then the multiplicand is added to or subtracted from the A register, depending on whether the
two bits are 0–1 or 1–0. Following the addition or subtraction, the right shift occurs. In either case, the
right shift is such that the leftmost bit of A, namely , not only is shifted into , but also
remains in . This is required to preserve the sign of the number in A and Q. It is known as an
arithmetic shift, because it preserves the sign bit.

− (2 + 2)

(Q0)

Q− 1

Q− 1

Q− 1

An − 1 An − 2

An − 1

Figure 11.12 Booth’s Algorithm for Twos Complement Multiplication

Figure 11.13 shows the sequence of events in Booth’s algorithm for the multiplication of 7 by 3. More
compactly, the same operation is depicted in Figure 11.14a. The rest of Figure 11.14 gives other
examples of the algorithm. As can be seen, it works with any combination of positive and negative
numbers. Note also the efficiency of the algorithm. Blocks of 1s or 0s are skipped over, with an
average of only one addition or subtraction per block.

Figure 11.13 Example of Booth’s Algorithm

Figure 11.14 Examples Using Booth’s Algorithm

Why does Booth’s algorithm work? Consider first the case of a positive multiplier. In particular,
consider a positive multiplier consisting of one block of 1s surrounded by 0s (e.g., 00011110). As we
know, multiplication can be achieved by adding appropriately shifted copies of the multiplicand:

The number of such operations can be reduced to two if we observe that

So the product can be generated by one addition and one subtraction of the multiplicand. This scheme
extends to any number of blocks of 1s in a multiplier, including the case in which a single 1 is treated
as a block.

Booth’s algorithm conforms to this scheme by performing a subtraction when the first 1 of the block is
encountered (1–0) and an addition when the end of the block is encountered (0–1).

(7 × 3)

M × (00011110) = M × (24 + 23 + 22 + 21)
= M × (16 + 8 + 4 + 2)
= M × 30

2n + 2
n − 1

+ … + 2
n − K

= 2
n + 1

− 2
n − K

(11.3)

M × (00011110) = M × (25 − 21)
= M × (32 − 2)
= M × 30

M × (01111010) = M × (26 + 25 + 24 + 23 + 21)
= M × (27 − 23 + 22 − 21)

To show that the same scheme works for a negative multiplier, we need to observe the following. Let
X be a negative number in twos complement notation:

Then the value of X can be expressed as follows:

The reader can verify this by applying the algorithm to the numbers in Table 11.2.

The leftmost bit of X is 1, because X is negative. Assume that the leftmost 0 is in the kth position.
Thus, X is of the form

Then the value of X is

From Equation (11.3), we can say that

Rearranging

Substituting Equation (11.7) into Equation (11.6), we have

At last we can return to Booth’s algorithm. Remembering the representation of X [Equation (11.5)], it
is clear that all of the bits from up to the leftmost 0 are handled properly because they produce all
of the terms in Equation (11.8) but , and thus are in the proper form. As the algorithm scans
over the leftmost 0 and encounters the next 1 , a 1–0 transition occurs and a subtraction takes
place . This is the remaining term in Equation (11.8).

As an example, consider the multiplication of some multiplicand by . In twos complement
representation, using an 8-bit word, is represented as 11111010. By Equation (11.4), we
know that

which the reader can easily verify. Thus,

Representation of X = {1xn − 2xn − … x1x0}

X = − 2
n − 1

+ (xn − 2 × 2
n − 2

) + (xn − 3 × 2
n − 3

) + … (x1 × 21) + (x0 × 20) (11.4)

Representation of X = { 111 … 10xk − 1xk − 2 … x1x0}
(11.5)

X = − 2
n − 1

+ 2
n − 2

+ … + 2
k + 1

+ (xk − 1 × 2
k − 1

) + … + (x0 × 20) (11.6)

2
n − 2

+ 2
n − 3

+ … + 2
k − 1

= 2
n − 1

− 2
k − 1

−2
n − 1

+ 2
n − 2

+ 2
n −

+ … + 2
k + 1

= − 2
k + 1

(11.7)

X = − 2
k + 1

+ (xk − 1 × 2
k − 1

) + … + (x0 × 20) (11.8)

x0

(− 2
k + 1

)
(2

k + 1
)

(− 2
k + 1

)

(− 6)
(− 6)

−6 = − 27 + 26 + 25 + 24 + 23 + 21

M × (11111010) = M × (−27 + 26 + 25 + 24 + 23 + 21)

Using Equation (11.7),

which the reader can verify is still Finally, following our earlier line of reasoning,

We can see that Booth’s algorithm conforms to this scheme. It performs a subtraction when the first 1
is encountered (10), an addition when (01) is encountered, and finally another subtraction when the
first 1 of the next block of 1s is encountered. Thus, Booth’s algorithm performs fewer additions and
subtractions than a more straightforward algorithm.

Division

Division is somewhat more complex than multiplication, but is based on the same general principles.
As before, the basis for the algorithm is the paper-and-pencil approach, and the operation involves
repetitive shifting and addition or subtraction.

Figure 11.15 shows an example of the long division of unsigned binary integers. It is instructive to
describe the process in detail. First, the bits of the dividend are examined from left to right, until the
set of bits examined represents a number greater than or equal to the divisor; this is referred to as
the divisor being able to divide the number. Until this event occurs, 0s are placed in the quotient from
left to right. When the event occurs, a 1 is placed in the quotient and the divisor is subtracted from the
partial dividend. The result is referred to as a partial remainder.

Figure 11.15 Example of Division of Unsigned Binary Integers

From this point on, the division follows a cyclic pattern. At each cycle, additional bits from the dividend
are appended to the partial remainder until the result is greater than or equal to the divisor. As before,
the divisor is subtracted from this number to produce a new partial remainder. The process continues
until all the bits of the dividend are exhausted.

Figure 11.16 shows a machine algorithm that corresponds to the long division process. The divisor is
placed in the M register, the dividend in the Q register. At each step, the A and Q registers together
are shifted to the left 1 bit. M is subtracted from A to determine whether A divides the partial
remainder. If it does, then gets a 1 bit. Otherwise, gets a 0 bit and M must be added back to A
to restore the previous value. The count is then decremented, and the process continues for n steps.
At the end, the quotient is in the Q register and the remainder is in the A register.

M × (11111010) = M × (−23 + 21)

M × (− 6) .

M × (11111010) = M × (− 23 + 22 − 21)

3 Q0 Q0

 This is subtraction of unsigned integers. A result that requires a borrow out of the most significant bit is a negative

result.

Figure 11.16 Flowchart for Unsigned Binary Division

This process can, with some difficulty, be extended to negative numbers. We give here one approach
for twos complement numbers. An example of this approach is shown in Figure 11.17.

3

Figure 11.17 Example of Restoring Twos Complement Division (7/3)

The algorithm assumes that the divisor V and the dividend D are positive and that If
 then the quotient and the remainder . If then and . The

algorithm can be summarized as follows:

1. Load the twos complement of the divisor into the M register; that is, the M register contains the
negative of the divisor. Load the dividend into the A, Q registers. The dividend must be
expressed as a 2n-bit positive number. Thus, for example, the 4-bit 0111 becomes 00000111.

2. Shift A, Q left 1 bit position.
3. Perform . This operation subtracts the divisor from the contents of A.

4.
a. a.  If the result is nonnegative (most significant bit of), then set

b. b.  If the result is negative (most significant bit of), then set and restore the

previous value of A.

5. Repeat steps 2 through 4 as many times as there are bit positions in Q.
6. The remainder is in A and the quotient is in Q.

To deal with negative numbers, we recognize that the remainder is defined by

That is, the remainder is the value of R needed for the preceding equation to be valid. Consider the
following examples of integer division with all possible combinations of signs of D and V:

|V | < | D | .
|V | = | D | , Q = 1 R = 0 |V | > | D | , Q = 0 R = D

A ← A − M

A = 0 Q0 ← 1.

A = 1 Q0 ← 0.

D = Q × V + R

D = 7 V = 3 ⇒ Q = 2 R = 1
D = 7 V = − 3 ⇒ Q = − 2 R = 1

D = − 7 V = 3 ⇒ Q = − 2 R = − 1
D = − 7 V = − 3 ⇒ Q = 2 R = − 1

The reader will note from Figure 11.17 that and produce different remainders.
We see that the magnitudes of Q and R are unaffected by the input signs and that the signs of Q and
R are easily derivable from the signs of D and V. Specifically, and

. Hence, one way to do twos complement division is to convert the
operands into unsigned values and, at the end, to account for the signs by complementation where
needed. This is the method of choice for the restoring division algorithm [PARH10].

(− 7) / (3) (7) / (− 3)

sign(R) = sign(D)

sign(Q) = sign(D) × sign(V)

11.4 Floating-Point Representation

Principles

With a fixed-point notation (e.g., twos complement) it is possible to represent a range of positive and
negative integers centered on or near 0. By assuming a fixed binary or radix point, this format allows
the representation of numbers with a fractional component as well.

This approach has limitations. Very large numbers cannot be represented, nor can very small
fractions. Furthermore, the fractional part of the quotient in a division of two large numbers could be
lost.

For decimal numbers, we get around this limitation by using scientific notation. Thus,
976,000,000,000,000 can be represented as and 0.0000000000000976 can be
represented as What we have done, in effect, is dynamically to slide the decimal point to
a convenient location and use the exponent of 10 to keep track of that decimal point. This allows a
range of very large and very small numbers to be represented with only a few digits.

This same approach can be taken with binary numbers. We can represent a number in the form

This number can be stored in a binary word with three fields:

Sign: plus or minus
Significand S
Exponent E

The base B is implicit and need not be stored because it is the same for all numbers. Typically, it is
assumed that the radix point is to the right of the leftmost, or most significant, bit of the significand.
That is, there is one bit to the left of the radix point.

The principles used in representing binary floating-point numbers are best explained with an example.
Figure 11.18a shows a typical 32-bit floating-point format. The leftmost bit stores the sign of the
number . The exponent value is stored in the next 8 bits. The representation
used is known as a biased representation. A fixed value, called the bias, is subtracted from the field
to get the true exponent value. Typically, the bias equals where k is the number of bits in
the binary exponent. In this case, the 8-bit field yields the numbers 0 through 255. With a bias of 127

, the true exponent values are in the range to . In this example, the base is
assumed to be 2.

9.76 × 1014,
9.76 × 10

− 14
,

±S × B
± E

(0 = positive,1 = negative)

(2
k − 1

− 1),

(27 − 1) −127 +128

Figure 11.18 Typical 32-Bit Floating-Point Format

Table 11.2 shows the biased representation for 4-bit integers. Note that when the bits of a biased
representation are treated as unsigned integers, the relative magnitudes of the numbers do not
change. For example, in both biased and unsigned representations, the largest number is 1111 and
the smallest number is 0000. This is not true of sign-magnitude or twos complement representation.
An advantage of biased representation is that nonnegative floating-point numbers can be treated as
integers for comparison purposes.

The final portion of the word (23 bits in this case) is the significand.

 The term mantissa, sometimes used instead of significand, is considered obsolete. Mantissa also means “the

fractional part of a logarithm,” so is best avoided in this context.

Any floating-point number can be expressed in many ways.

The following are equivalent, where the significand is expressed in binary form:

To simplify operations on floating-point numbers, it is typically required that they be normalized. A
normal number is one in which the most significant digit of the significand is nonzero. For base 2
representation, a normal number is therefore one in which the most significant bit of the significand is
one. As was mentioned, the typical convention is that there is one bit to the left of the radix point.
Thus, a normal nonzero number is one in the form

where b is either binary digit (0 or 1). Because the most significant bit is always one, it is unnecessary
to store this bit; rather, it is implicit. Thus, the 23-bit field is used to store a 24-bit significand with a
value in the half open interval [1, 2). Given a number that is not normal, the number may be
normalized by shifting the radix point to the right of the leftmost 1 bit and adjusting the exponent

4

4

0.110 × 25

110 × 22

0.0110 × 26

±1.bbb … b × 2
± E

accordingly.

Figure 11.18b gives some examples of numbers stored in this format. For each example, on the left is
the binary number; in the center is the corresponding bit pattern; on the right is the decimal value.
Note the following features:

The sign is stored in the first bit of the word.
The first bit of the true significand is always 1 and need not be stored in the significand field.
The value 127 is added to the true exponent to be stored in the exponent field.
The base is 2.

For comparison, Figure 11.19 indicates the range of numbers that can be represented in a 32-bit
word. Using twos complement integer representation, all of the integers from to can be
represented, for a total of different numbers. With the example floating-point format of Figure
11.18, the following ranges of numbers are possible:

Figure 11.19 Expressible Numbers in Typical 32-Bit Formats

Negative numbers between and

Positive numbers between and

Five regions on the number line are not included in these ranges:

Negative numbers less than , called negative overflow
Negative numbers greater than , called negative underflow
Zero
Positive numbers less than , called positive underflow
Positive numbers greater than , called positive overflow

The representation as presented will not accommodate a value of 0. However, as we shall see, actual
floating-point representations include a special bit pattern to designate zero. Overflow occurs when an
arithmetic operation results in an absolute value greater than can be expressed with an exponent of
128 (e.g.,). Underflow occurs when the fractional magnitude is too small (e.g.,

−231 231 − 1
232

− ⎜⎜⎜⎜⎜2 − 2
− 23⎟⎟⎟⎟⎟ × 2128⎛

⎝
⎞
⎠ −2

− 127

2
− 127 ⎜⎜⎜⎜⎜2 − 2

− 23⎟⎟⎟⎟⎟ × 2128⎛
⎝

⎞
⎠

− (2 − 2
− 23

) × 2128

2
− 127

2
− 127

(2 − 2
− 23

) × 2128

2120 × 2100 = 2220

− 120 − 100 − 220

). Underflow is a less serious problem because the result can generally be
satisfactorily approximated by 0.

It is important to note that we are not representing more individual values with floating-point notation.
The maximum number of different values that can be represented with 32 bits is still . What we
have done is to spread those numbers out in two ranges, one positive and one negative. In practice,
most floating-point numbers that one would wish to represent are represented only approximately.
However, for moderate sized integers, the representation is exact.

Also, note that the numbers represented in floating-point notation are not spaced evenly along the
number line, as are fixed-point numbers. The possible values get closer together near the origin and
farther apart as you move away, as shown in Figure 11.20. This is one of the trade-offs of floating-
point math: Many calculations produce results that are not exact and have to be rounded to the
nearest value that the notation can represent.

Figure 11.20 Density of Floating-Point Numbers

In the type of format depicted in Figure 11.18, there is a trade-off between range and precision. The
example shows 8 bits devoted to the exponent and 23 to the significand. If we increase the number of
bits in the exponent, we expand the range of expressible numbers. But because only a fixed number
of different values can be expressed, we have reduced the density of those numbers and therefore the
precision. The only way to increase both range and precision is to use more bits. Thus, most
computers offer, at least, single-precision numbers and double-precision numbers. For example, a
processor could support a single-precision format of 64 bits, and a double-precision format of 128 bits.

So there is a trade-off between the number of bits in the exponent and the number of bits in the
significand. But it is even more complicated than that. The implied base of the exponent need not be
2. The IBM S/390 architecture, for example, uses a base of 16 [ANDE67b]. The format consists of a 7-
bit exponent and a 24-bit significand.

In the IBM base-16 format,

and the exponent is stored to represent 5 rather than 20.

The advantage of using a larger exponent is that a greater range can be achieved for the same
number of exponent bits. But remember, we have not increased the number of different values that
can be represented. Thus, for a fixed format, a larger exponent base gives a greater range at the
expense of less precision.

IEEE Standard for Binary Floating-Point Representation

The most important floating-point representation is defined in IEEE Standard 754, adopted in 1985
and revised in 2008. This standard was developed to facilitate the portability of programs from one
processor to another and to encourage the development of sophisticated, numerically oriented
programs. The standard has been widely adopted and is used on virtually all contemporary

2 × 2 = 2

232

0.11010001 × 210100 = 0.11010001 × 16101

processors and arithmetic coprocessors. IEEE 754-2008 covers both binary and decimal floating-point
representations. In this chapter, we deal only with binary representations.

IEEE 754-2008 defines the following different types of floating-point formats:

Arithmetic format: All the mandatory operations defined by the standard are supported by the
format. The format may be used to represent floating-point operands or results for the operations
described in the standard.
Basic format: This format covers five floating-point representations, three binary and two decimal,
whose encodings are specified by the standard, and which can be used for arithmetic. At least one
of the basic formats is implemented in any conforming implementation.
Interchange format: A fully specified, fixed-length binary encoding that allows data interchange
between different platforms and that can be used for storage.

The three basic binary formats have bit lengths of 32, 64, and 128 bits, with exponents of 8, 11, and
15 bits, respectively (Figure 11.21). Table 11.3 summarizes the characteristics of the three formats.
The two basic decimal formats have bit lengths of 64 and 128 bits. All of the basic formats are also
arithmetic format types (can be used for arithmetic operations) and interchange format types (platform
independent).

Figure 11.21 IEEE 754 Formats

Table 11.3 IEEE 754 Format Parameters

Parameter Format

Binary32 Binary64 Binary128

Storage width (bits) 32 64 128

Exponent width (bits) 8 11 15

Exponent bias 127 1023 16383

Maximum exponent 127 1023 16383

Minimum exponent

Approx normal number range (base 10)

Trailing significand width (bits)* 23 52 112

Number of exponents 254 2046 32766

Number of fractions

Number of values

Smallest positive normal number

Largest positive normal number

Smallest subnormal magnitude

Note: * Not including implied bit and not including sign bit.

Several other formats are specified in the standard. The binary16 format is only an interchange format
and is intended for storage of values when higher precision is not required. The binary{k} format and
the decimal{k} format are interchange formats with total length k bits and with defined lengths for the
significand and exponent. The format must be a multiple of 32 bits; thus formats are defined for

 and so on. These two families of formats are also arithmetic formats.

In addition, the standard defines extended precision formats, which extend a supported basic format
by providing additional bits in the exponent (extended range) and in the significand (extended
precision). The exact format is implementation dependent, but the standard places certain constraints
on the length of the exponent and significand. These formats are arithmetic format types but not
interchange format types. The extended formats are to be used for intermediate calculations. With
their greater precision, the extended formats lessen the chance of a final result that has been
contaminated by excessive roundoff error; with their greater range, they also lessen the chance of an
intermediate overflow aborting a computation whose final result would have been representable in a
basic format. An additional motivation for the extended format is that it affords some of the benefits of
a larger basic format without incurring the time penalty usually associated with higher precision.

Finally, IEEE 754-2008 defines an extendable precision format as a format with a precision and
range that are defined under user control. Again, these formats may be used for intermediate
calculations, but the standard places no constraint on format or length.

−126 −1022 −16382

10
−38

, 10
+38

10
− 308

, 10
+ 308

10
−4932

, 10
+4932

223 252 2112

1.98 × 231 1.99 × 263 1.99 × 2128

2
− 126

2
−1022

2
− 16362

2128 − 2104 21024 − 2971 216384 − 216271

2
− 149

2
−1074

2
− 16494

k = 160 , 192,

Table 11.4 shows the relationship between defined formats and format types.

Table 11.4 IEEE Formats

Format Format Type

Arithmetic Format Basic Format Interchange Format

binary16 X

binary32 X X X

binary64 X X X

binary128 X X X

binary{k} X X

decimal64 X X X

decimal128 X X X

decimal{k} X X

extended precision X

extendable precision X

Not all bit patterns in the IEEE formats are interpreted in the usual way; instead, some bit patterns are
used to represent special values. Table 11.5 indicates the values assigned to various bit patterns. The
exponent values of all zeros (0 bits) and all ones (1 bits) define special values. The following classes
of numbers are represented:

Table 11.5 Interpretation of IEEE 754 Floating-Point Numbers

(a) binary32 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0

plus infinity 0 all 1s 0

minus infinity 1 all 1s 0

(k = n × 32for n > 4)

(k = n × 32for n > 4)

−0

∞

− ∞

quiet NaN 0 or 1 all 1s qNaN

signaling NaN 0 or 1 all 1s sNaN

positive normal nonzero 0 f

negative normal nonzero 1 f

positive subnormal 0 0

negative subnormal 1 0

(b) binary64 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0

plus infinity 0 all 1s 0

minus infinity 1 all 1s 0

quiet NaN 0 or 1 all 1s qNaN

signaling NaN 0 or 1 all 1s sNaN

positive normal nonzero 0 f

negative normal nonzero 1 f

positive subnormal 0 0

negative subnormal 1 0

(c) binary128 format

Sign Biased Exponent Fraction Value

positive zero 0 0 0 0

negative zero 1 0 0

≠0 ; firstbit = 1

≠0 ; firstbit = 0

0 < e < 225
2

e − 127
(1 . f)

0 < e < 225
−2

e − 127
(1 . f)

f ≠0
2

e − 126
(0 . f)

f ≠0
−2

e − 126
(0 . f)

−0

∞

− ∞

≠0 ; firstbit = 1

≠0 ; firstbit = 0

0 < e < 2047
2

e − 1023
(1 . f)

0 < e < 2047
−2

e − 1023
(1 . f)

f ≠0
2

e − 1022
(0 . f)

f ≠0
−2

e − 1022
(0 . f)

−0

∞

plus infinity 0 all 1s 0

minus infinity 1 all 1s 0

quiet NaN 0 or 1 all 1s qNaN

signaling NaN 0 or 1 all 1s sNaN

positive normal nonzero 0 all 1s f

negative normal nonzero 1 all 1s f

positive subnormal 0 0

negative subnormal 1 0

For exponent values in the range of 1 through 254 for 32-bit format, 1 through 2046 for 64-bit
format, and 1 through 16382, normal nonzero floating-point numbers are represented. The
exponent is biased, so that the range of exponents is through for 32-bit format, and so
on. A normal number requires a 1 bit to the left of the binary point; this bit is implied, giving an
effective 24-bit, 53-bit, or 113-bit significand. Because one of the bits is implied, the corresponding
field in the binary format is referred to as the trailing significand field.
An exponent of zero together with a fraction of zero represents positive or negative zero,
depending on the sign bit. As was mentioned, it is useful to have an exact value of 0 represented.
An exponent of all ones together with a fraction of zero represents positive or negative infinity,
depending on the sign bit. It is also useful to have a representation of infinity. This leaves it up to
the user to decide whether to treat overflow as an error condition or to carry the value and

proceed with whatever program is being executed.
An exponent of zero together with a nonzero fraction represents a subnormal number. In this case,
the bit to the left of the binary point is zero and the true exponent is or . The number is
positive or negative depending on the sign bit.
An exponent of all ones together with a nonzero fraction is given the value NaN, which means Not
a Number, and is used to signal various exception conditions.

The significance of subnormal numbers and NaNs is discussed in Section 11.5.

− ∞

≠0 ; firstbit = 1

≠0 ; firstbit = 0

2
e − 16383

(1 . f)

−2
e − 16383

(1 . f)

f ≠0
2

e − 16383
(0 . f)

f ≠0
−2

e − 16383
(0 . f)

−126 +127

∞

−126 −1022

11.5 Floating-Point Arithmetic
Table 11.6 summarizes the basic operations for floating-point arithmetic. For addition and subtraction,
it is necessary to ensure that both operands have the same exponent value. This may require shifting
the radix point on one of the operands to achieve alignment. Multiplication and division are more
straightforward.

Table 11.6 Floating-Point Numbers and Arithmetic Operations

Floating-Point Numbers Arithmetic Operations

A floating-point operation may produce one of these conditions:

Exponent overflow: A positive exponent exceeds the maximum possible exponent value. In some
systems, this may be designated as or

Exponent underflow: A negative exponent is less than the minimum possible exponent value
(e.g., is less than). This means that the number is too small to be represented, and it
may be reported as 0.

Examples:

Significand underflow: In the process of aligning significands, digits may flow off the right end of
the significand. As we will discuss, some form of rounding is required.
Significand overflow: The addition of two significands of the same sign may result in a carry out
of the most significant bit. This can be fixed by realignment, as we will explain.

Addition and Subtraction

In floating-point arithmetic, addition and subtraction are more complex than multiplication and division.

X = XS × B
XE

Y = YS × B
YE

X + Y =
⎜⎜⎜⎜⎜XS × B

XE − YE + YS
⎟⎟⎟⎟⎟ × B

YE

X − Y =
⎜⎜⎜⎜⎜XS × B

XE − YE − YS
⎟⎟⎟⎟⎟ × B

YE

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪

XE ≤ YE
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎫

⎬

⎭

X × Y = (XS × YS) × B
XE + YE

X
Y =

⎜⎜⎜⎜⎜⎜⎜

XS
YS

⎟⎟⎟⎟⎟⎟⎟ × B
XE − YE⎛

⎝

⎞

⎠

+ ∞ − ∞ .

−200 −127

X = 0.3 × 102 = 30
Y = 0.2 × 103 = 200

X + Y = (0.3 × 10
2−

+ 0.2) × 103 = 0.23 × 103 = 230

X − Y = (0.3 × 10
2−

− 0.2) × 103 = (−0.17) × 103 = − 170

X × Y = (0.3 × 0.2) × 10
2+

= 0.06 × 105 = 6000

X ÷ Y = (0.3 ÷ 0.2) × 10
2−

= 1.5 × 10
− 1

= 0.15

This is because of the need for alignment. There are four basic phases of the algorithm for addition
and subtraction:

1. Check for zeros.
2. Align the significands.
3. Add or subtract the significands.
4. Normalize the result.

A typical flowchart is shown in Figure 11.22. A step-by-step narrative highlights the main functions
required for floating-point addition and subtraction. We assume a format similar to those of Figure
11.21. For the addition or subtraction operation, the two operands must be transferred to registers that
will be used by the ALU. If the floating-point format includes an implicit significand bit, that bit must be
made explicit for the operation.

Figure 11.22 Floating-Point Addition and Subtraction (Z ← X ± Y)

Phase 1. Zero check: Because addition and subtraction are identical except for a sign change, the
process begins by changing the sign of the subtrahend if it is a subtract operation. Next, if either
operand is 0, the other is reported as the result.

Phase 2. Significand alignment: The next phase is to manipulate the numbers so that the two
exponents are equal.

To see the need for aligning exponents, consider the following decimal addition:

Clearly, we cannot just add the significands. The digits must first be set into equivalent positions,
that is, the 4 of the second number must be aligned with the 3 of the first. Under these conditions,
the two exponents will be equal, which is the mathematical condition under which two numbers in
this form can be added. Thus,

Alignment may be achieved by shifting either the smaller number to the right (increasing its exponent)
or shifting the larger number to the left. Because either operation may result in the loss of digits, it is
the smaller number that is shifted; any digits that are lost are therefore of relatively small significance.
The alignment is achieved by repeatedly shifting the magnitude portion of the significand right 1 digit
and incrementing the exponent until the two exponents are equal. (Note that if the implied base is 16,
a shift of 1 digit is a shift of 4 bits.) If this process results in a 0 value for the significand, then the other
number is reported as the result. Thus, if two numbers have exponents that differ significantly, the
lesser number is lost.

Phase 3. Addition: Next, the two significands are added together, taking into account their signs.
Because the signs may differ, the result may be 0. There is also the possibility of significand overflow
by 1 digit. If so, the significand of the result is shifted right and the exponent is incremented. An
exponent overflow could occur as a result; this would be reported and the operation halted.

Phase 4. Normalization: The final phase normalizes the result. Normalization consists of shifting
significand digits left until the most significant digit (bit, or 4 bits for base-16 exponent) is nonzero.
Each shift causes a decrement of the exponent and thus could cause an exponent underflow. Finally,
the result must be rounded off and then reported. We defer a discussion of rounding until after a
discussion of multiplication and division.

Multiplication and Division

Floating-point multiplication and division are much simpler processes than addition and subtraction, as
the following discussion indicates.

We first consider multiplication, illustrated in Figure 11.23. First, if either operand is 0, 0 is reported as
the result. The next step is to add the exponents. If the exponents are stored in biased form, the
exponent sum would have doubled the bias. Thus, the bias value must be subtracted from the sum.
The result could be either an exponent overflow or underflow, which would be reported, ending the
algorithm.

(123 × 100) + (456 × 10
− 2

)

(123 × 100) + (456 × 10
− 2

) = (123 × 100) + (4.56 × 100) = 127.56 × 100

Figure 11.23 Floating-Point Multiplication

If the exponent of the product is within the proper range, the next step is to multiply the significands,
taking into account their signs. The multiplication is performed in the same way as for integers. In this
case, we are dealing with a signmagnitude representation, but the details are similar to those for twos
complement representation. The product will be double the length of the multiplier and multiplicand.
The extra bits will be lost during rounding.

After the product is calculated, the result is then normalized and rounded, as was done for addition
and subtraction. Note that normalization could result in exponent underflow.

Finally, let us consider the flowchart for division depicted in Figure 11.24. Again, the first step is
testing for 0. If the divisor is 0, an error report is issued, or the result is set to infinity, depending on the
implementation. A dividend of 0 results in 0. Next, the divisor exponent is subtracted from the dividend
exponent. This removes the bias, which must be added back in. Tests are then made for exponent

(Z ← X ± Y)

underflow or overflow.

Figure 11.24 Floating-Point Division

The next step is to divide the significands. This is followed with the usual normalization and rounding.

Precision Considerations

GUARD BITS

We mentioned that, prior to a floating-point operation, the exponent and significand of each operand
are loaded into ALU registers. In the case of the significand, the length of the register is almost always
greater than the length of the significand plus an implied bit. The register contains additional bits,
called guard bits, which are used to pad out the right end of the significand with 0s.

(Z ← X / Y)

The reason for the use of guard bits is illustrated in Figure 11.25. Consider numbers in the IEEE
format, which has a 24-bit significand, including an implied 1 bit to the left of the binary point. Two
numbers that are very close in value are and . If the smaller

number is to be subtracted from the larger, it must be shifted right 1 bit to align the exponents.
This is shown in Figure 11.25a. In the process, y loses 1 bit of significance; the result is .
The same operation is repeated in part (b) with the addition of guard bits. Now the least
significant bit is not lost due to alignment, and the result is , a difference of a factor of 2 from
the previous answer. When the radix is 16, the loss of precision can be greater. As Figures
11.25c and (d) show, the difference can be a factor of 16.

Figure 11.25 The Use of Guard Bits

ROUNDING

Another detail that affects the precision of the result is the rounding policy. The result of any operation
on the significands is generally stored in a longer register. When the result is put back into the floating-
point format, the extra bits must be eliminated in such a way as to produce a result that is close to the
exact result. This process is called rounding .

A number of techniques have been explored for performing rounding. In fact, the IEEE standard lists
four alternative approaches:

Round to nearest: The result is rounded to the nearest representable number.
Round toward : The result is rounded up toward plus infinity.
Round toward : The result is rounded down toward negative infinity.
Round toward 0: The result is rounded toward zero.

Let us consider each of these policies in turn. Round to nearest is the default rounding mode listed in
the standard and is defined as follows: The representable value nearest to the infinitely precise result
shall be delivered.

If the extra bits, beyond the 23 bits that can be stored, are 10010, then the extra bits amount to
more than one-half of the last representable bit position. In this case, the correct answer is to add
binary 1 to the last representable bit, rounding up to the next representable number. Now
consider that the extra bits are 01111. In this case, the extra bits amount to less than one-half of

x = 1.00 ⋯ 00 × 21 y = 1.11 ⋯ 11 × 20

2
− 22

2
− 23

+∞
−∞

the last representable bit position. The correct answer is simply to drop the extra bits (truncate),
which has the effect of rounding down to the next representable number.

The standard also addresses the special case of extra bits of the form 10000.… Here the result is
exactly halfway between the two possible representable values. One possible technique here would
be to always truncate, as this would be the simplest operation. However, the difficulty with this simple
approach is that it introduces a small but cumulative bias into a sequence of computations. What is
required is an unbiased method of rounding. One possible approach would be to round up or down on
the basis of a random number so that, on average, the result would be unbiased. The argument
against this approach is that it does not produce predictable, deterministic results. The approach taken
by the IEEE standard is to force the result to be even: If the result of a computation is exactly midway
between two representable numbers, the value is rounded up if the last representable bit is currently 1
and not rounded up if it is currently 0.

The next two options, rounding to plus and minus infinity, are useful in implementing a technique
known as interval arithmetic. Interval arithmetic provides an efficient method for monitoring and
controlling errors in floating-point computations by producing two values for each result. The two
values correspond to the lower and upper endpoints of an interval that contains the true result. The
width of the interval, which is the difference between the upper and lower endpoints, indicates the
accuracy of the result. If the endpoints of an interval are not representable, then the interval endpoints
are rounded down and up, respectively. Although the width of the interval may vary according to
implementation, many algorithms have been designed to produce narrow intervals. If the range
between the upper and lower bounds is sufficiently narrow, then a sufficiently accurate result has been
obtained. If not, at least we know this and can perform additional analysis.

The final technique specified in the standard is round toward zero. This is, in fact, simple truncation:
The extra bits are ignored. This is certainly the simplest technique. However, the result is that the
magnitude of the truncated value is always less than or equal to the more precise original value,
introducing a consistent bias toward zero in the operation. This is a serious bias because it affects
every operation for which there are nonzero extra bits.

IEEE Standard for Binary Floating-Point Arithmetic

IEEE 754 goes beyond the simple definition of a format to lay down specific practices and procedures
so that floating-point arithmetic produces uniform, predictable results independent of the hardware
platform. One aspect of this has already been discussed, namely rounding. This subsection looks at
three other topics: infinity, NaNs, and subnormal numbers.

INFINITY

Infinity arithmetic is treated as the limiting case of real arithmetic, with the infinity values given the
following interpretation:

With the exception of the special cases discussed subsequently, any arithmetic operation involving
infinity yields the obvious result.

For example:

−∞ < (every finite number) < +∞

5 + (+ ∞) = +∞ 5 ÷ (+ ∞) = +0
5 − (+ ∞) = −∞ (+ ∞) + (+ ∞) = +∞
5 + (− ∞) = −∞ (− ∞) + (− ∞) = −∞
5 − (− ∞) = +∞ (− ∞) − (+ ∞) = −∞

QUIET AND SIGNALING NANS

A NaN is a symbolic entity encoded in floating-point format, of which there are two types: signaling
and quiet. A signaling NaN signals an invalid operation exception whenever it appears as an operand.
Signaling NaNs afford values for uninitialized variables and arithmetic-like enhancements that are not
the subject of the standard. A quiet NaN propagates through almost every arithmetic operation without
signaling an exception. Table 11.7 indicates operations that will produce a quiet NaN.

Table 11.7 Operations that Produce a Quiet NaN

Operation Quiet NaN Produced By

Any Any operation on a signaling NaN

Add or subtract Magnitude subtraction of infinities:

Multiply

Division or

Remainder x REM 0 or REM y

Square root where

Note that both types of NaNs have the same general format (Table 11.4): an exponent of all ones and
a nonzero fraction. The actual bit pattern of the nonzero fraction is implementation dependent; the
fraction values can be used to distinguish quiet NaNs from signaling NaNs and to specify particular
exception conditions.

SUBNORMAL NUMBERS

Subnormal numbers are included in IEEE 754 to handle cases of exponent underflow. When the
exponent of the result becomes too small (a negative exponent with too large a magnitude), the result
is subnormalized by right shifting the fraction and incrementing the exponent for each shift until the
exponent is within a representable range.

Figure 11.26 illustrates the effect of including subnormal numbers. The representable numbers can
be grouped into intervals of the form . Within each such interval, the exponent portion of the

number remains constant while the fraction varies, producing a uniform spacing of representable
numbers within the interval. As we get closer to zero, each successive interval is half the width of the

5 × (+ ∞) = +∞ (+ ∞) − (− ∞) = +∞

(+∞) + (−∞)
(−∞) + (+∞)
(+∞) − (+∞)
(−∞) − (−∞)

0 × ∞

0
0

∞
∞

∞

x , x < 0

⎢⎢⎢⎢⎢2
n , 2

n + 1⎥⎥⎥⎥⎥
⎡
⎣

⎤
⎦

preceding interval, but contains the same number of representable numbers. Hence the density of
representable numbers increases as we approach zero. However, if only normal numbers are used,
there is a gap between the smallest normal number and 0. In the case of the 32-bit IEEE 754 format,
there are representable numbers in each interval, and the smallest representable positive number
is . With the addition of subnormal numbers, an additional numbers are uniformly added
between 0 and .

Figure 11.26 The Effect of IEEE 754 Subnormal Numbers

The use of subnormal numbers is referred to as gradual underflow [COON81]. Without subnormal
numbers, the gap between the smallest representable nonzero number and zero is much wider than
the gap between the smallest representable nonzero number and the next larger number. Gradual
underflow fills in that gap and reduces the impact of exponent underflow to a level comparable with
roundoff among the normal numbers.

223

2
− 126

223 − 1
2

− 126

11.6 Key Terms, Review Questions, and Problems

Key Terms

arithmetic and logic unit (ALU)

arithmetic shift

base

biased representation

dividend

divisor

exponent

exponent overflow

exponent underflow

fixed-point representation

floating-point representation

guard bits

mantissa

minuend

multiplicand

multiplier

negative overflow

negative underflow

normal number

ones complement representation

overflow

partial product

positive overflow

positive underflow

product

quotient

radix point

range extension

remainder

rounding

sign bit

sign-magnitude representation

significand

significand overflow

significand underflow

subnormal number

subtrahend

twos complement representation

Review Questions

Problems

11.1 Briefly explain the following representations: sign magnitude, twos complement, biased.
11.2 Explain how to determine if a number is negative in the following representations: sign
magnitude, twos complement, biased.
11.3 What is the sign-extension rule for twos complement numbers?
11.4 How can you form the negation of an integer in twos complement representation?
11.5 In general terms, when does the twos complement operation on an n-bit integer produce
the same integer?
11.6 What is the difference between the twos complement representation of a number and the
twos complement of a number?
11.7 If we treat two twos complement numbers as unsigned integers for purposes of addition,
the result is correct if interpreted as a twos complement number. This is not true for
multiplication. Why?
11.8 What are the four essential elements of a number in floating-point notation?
11.9 What is the benefit of using biased representation for the exponent portion of a floating-
point number?
11.10 What are the differences among positive overflow, exponent overflow, and significand
overflow?
11.11 What are the basic elements of floating-point addition and subtraction?
11.12 Give a reason for the use of guard bits.
11.13 List four alternative methods of rounding the result of a floating-point operation.

11.1 Represent the following decimal numbers in both binary sign/magnitude and twos
complement using 16 bits:
11.2 Represent the following twos complement values in decimal: 1101011; 0101101.
11.3 Another representation of binary integers that is sometimes encountered is ones
complement . Positive integers are represented in the same way as sign magnitude. A
negative integer is represented by taking the Boolean complement of each bit of the
corresponding positive number.

a. Provide a definition of ones complement numbers using a weighted sum of bits, similar to
Equations (11.1) and (11.2).

b. What is the range of numbers that can be represented in ones complement?
c. Define an algorithm for performing addition in ones complement arithmetic.

+512 ; − 29.

Note: Ones complement arithmetic disappeared from hardware in the 1960s, but still
survives checksum calculations for the Internet Protocol (IP) and the Transmission
Control Protocol (TCP).

11.4 Add columns to Table 11.1 for sign magnitude and ones complement.
11.5 Consider the following operation on a binary word. Start with the least significant bit. Copy
all bits that are 0 until the first bit is reached and copy that bit, too. Then take the complement of
each bit thereafter. What is the result?
11.6 In Section 11.3 , the twos complement operation is defined as follows. To find the twos
complement of X, take the Boolean complement of each bit of X, and then add 1.

a. Show that the following is an equivalent definition. For an n-bit integer X, the twos
complement of X is formed by treating X as an unsigned integer and calculating .

b. Demonstrate that Figure 11.5 can be used to support graphically the claim in part (a), by
showing how a clockwise movement is used to achieve subtraction.

11.7 The r’s complement of an n-digit number N in base r is defined as for and 0
for . Find the tens complement of the decimal number 13,250.
11.8 Calculate using tens complement arithmetic. Assume rules similar to
those for twos complement arithmetic.
11.9 Consider the twos complement addition of two n-bit numbers:

Assume that bitwise addition is performed with a carry bit generated by the addition of
and . Let v be a binary variable indicating overflow when . Fill in the values in the
table.

Input 0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

Output

n

11.10 Assume numbers are represented in 8-bit twos complement representation. Show the
calculation of the following:

a.
b.
c.
d.

11.11 Find the following differences using twos complement arithmetic:
a.

b.

(2n − X)

rn − N N ≠ 0
N = 0

(72 , 530 − 13 , 250)

zn − 1zn − 2 … z0 = xn − 1xn − 2 … x0 + yn − 1yn − 2 … y0

ci xi , yi ,
ci − 1 ν = 1

xn − 1

yn − 1

cn − 2

zn − 1

6 + 13
−6 + 13
6 − 13
−6 − 13

111000
−110011
11001100
−101110
111100001111

c.

d.

11.12 Is the following a valid alternative definition of overflow in twos complement arithmetic?
If the exclusive-OR of the carry bits into and out of the leftmost column is 1, then there is an
overflow condition. Otherwise, there is not.
11.13 Compare Figures 11.9 and 11.12. Why is the C bit not used in the latter?
11.14 Given and in twos complement notation (i.e.,), compute
the product with Booth’s algorithm.
11.15 Use the Booth algorithm to multiply 23 (multiplicand) by 29 (multiplier), where each
number is represented using 6 bits.
11.16 Prove that the multiplication of two n-digit numbers in base B gives a product of no more
than 2n digits.
11.17 Verify the validity of the unsigned binary division algorithm of Figure 11.16 by showing
the steps involved in calculating the division depicted in Figure 11.15 . Use a presentation
similar to that of Figure 11.17 .
11.18 The twos complement integer division algorithm described in Section 11.3 is known as
the restoring method because the value in the A register must be restored following
unsuccessful subtraction. A slightly more complex approach, known as nonrestoring, avoids the
unnecessary subtraction and addition. Propose an algorithm for this latter approach.
11.19 Under computer integer arithmetic, the quotient J/K of two integers J and K is less than or
equal to the usual quotient. True or false?
11.20 Divide by 13 in binary twos complement notation, using 12-bit words. Use the
algorithm described in Section 11.3 .
11.21

a. Consider a fixed-point representation using decimal digits, in which the implied radix point
can be in any position (to the right of the least significant digit, to the right of the most
significant digit, and so on). How many decimal digits are needed to represent the
approximations of both Planck’s constant and Avogadro’s number

? The implied radix point must be in the same position for both numbers.
b. Now consider a decimal floating-point format with the exponent stored in a biased

representation with a bias of 50. A normalized representation is assumed. How many
decimal digits are needed to represent these constants in this floating-point format?

11.22 Assume that the exponent e is constrained to lie in the range with a bias of q,
that the base is b, and that the significand is p digits in length.

a. What are the largest and smallest positive values that can be written?
b. What are the largest and smallest positive values that can be written as normalized

floating-point numbers?

11.23 Express the following numbers in IEEE 32-bit floating-point format:
a.
b.
c.
d. 384
e.
f.

−110011110011
11000011

−11101000

x = 0101 y = 1010 x = 5 , y = − 6
p = x × y

−145

⎜⎜⎜⎜⎜6.63 × 10
− 27⎟⎟⎟⎟⎟

⎛
⎝

⎞
⎠

(6.02 × 1023)

0 ≤ e ≤ X ,

−5
−6
−1.5

1/16
−1/32

11.24 The following numbers use the IEEE 32-bit floating-point format. What is the equivalent
decimal value?

a. 1 10000011 11000000000000000000000
b. 0 01111110 10100000000000000000000
c. 0 10000000 00000000000000000000000

11.25 Consider a reduced 7-bit IEEE floating-point format, with 3 bits for the exponent and 3
bits for the significand. List all 127 values.
11.26 Express the following numbers in IBM’s 32-bit floating-point format, which uses a 7-bit
exponent with an implied base of 16 and an exponent bias of 64 (40 hexadecimal). A
normalized floating-point number requires that the leftmost hexadecimal digit be nonzero; the
implied radix point is to the left of that digit.

a. 1.0
b. 0.5
c.
d. 0.0
e.
f.
g.
h. 65,535

11.27 Let 5BCA0000 be a floating-point number in IBM format, expressed in hexadecimal. What
is the decimal value of the number?
11.28 What would be the bias value for

a. A base-2 exponent in a 6-bit field?
b. A base-8 exponent in a 7-bit field?

11.29 Draw a number line similar to that in Figure 11.19b for the floating-point format of Figure
11.21b .
11.30 Consider a floating-point format with 8 bits for the biased exponent and 23 bits for the
significand. Show the bit pattern for the following numbers in this format:

a.
b. 0.645

11.31 The text mentions that a 32-bit format can represent a maximum of different numbers.
How many different numbers can be represented in the IEEE 32-bit format? Explain.
11.32 Any floating-point representation used in a computer can represent only certain real
numbers exactly; all others must be approximated. If is the stored value approximating the
real value A, then the relative error, r, is expressed as

Represent the decimal quantity in the following floating-point format: exponent:
biased, 4 bits; significand, 7 bits. What is the relative error?
11.33 If , find the relative error if A is truncated to 1.42 and if it is rounded to 1.43.
11.34 When people speak about inaccuracy in floating-point arithmetic, they often ascribe errors
to cancellation that occurs during the subtraction of nearly equal quantities. But when X and Y
are approximately equal, the difference is obtained exactly, with no error. What do these

1/64

−15.0
5.4 × 10

− 79

7.2 × 1075

(B = 2)
(B = 8)

−720

232

A ′

r =
A − A ′

A

+0.4 base = 2;

A = 1.427

X − Y

people really mean?
11.35 Numerical values A and B are stored in the computer as approximations and
Neglecting any further truncation or roundoff errors, show that the relative error of the product is
approximately the sum of the relative errors in the factors.
11.36 One of the most serious errors in computer calculations occurs when two nearly equal
numbers are subtracted. Consider and . The computer truncates all
values to four decimal digits. Thus and .

a. What are the relative errors for and ?
b. What is the relative error for ?

11.37 To get some feel for the effects of denormalization and gradual underflow, consider a
decimal system that provides 6 decimal digits for the significand and for which the smallest
normalized number is . A normalized number has one nonzero decimal digit to the left of
the decimal point. Perform the following calculations and denormalize the results. Comment on
the results.

a.

b.

c.

11.38 Show how the following floating-point additions are performed (where significands are
truncated to 4 decimal digits). Show the results in normalized form.

a.
b.

11.39 Show how the following floating-point subtractions are performed (where significands are
truncated to 4 decimal digits). Show the results in normalized form.

a.
b.

11.40 Show how the following floating-point calculations are performed (where significands are
truncated to 4 decimal digits). Show the results in normalized form.

a.
b.

A ′ B ′

A = 0.22288 B = 0.22211
A ′ = 0.2228 B ′ = 0.2221

A ′ B ′
C ′ = A ′ − B ′

10
− 99

⎜⎜⎜⎜⎜2.50000 × 10
− 60⎟⎟⎟⎟⎟ × ⎜⎜⎜⎜⎜3.50000 × 10

− 43⎟⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎜⎜⎜⎜⎜2.50000 × 10
− 60⎟⎟⎟⎟⎟ × ⎜⎜⎜⎜⎜3.50000 × 10

− 60⎟⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎜⎜⎜⎜⎜5.67834 × 10
− 97⎟⎟⎟⎟⎟ − ⎜⎜⎜⎜⎜5.67812 × 10

− 97⎟⎟⎟⎟⎟
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

5.566 × 102 + 7.777 × 102

3.344 × 101 + 8.877 × 10
− 2

7.744 × 10
−

− 6.666 × 10
− 3

8.844 × 10
−

− 2.233 × 10
− 1

(2.255 × 101) × (1.234 × 100)
(8.833 × 102) ÷ (5.555 × 104)

Chapter 12 Digital Logic

12.6 Key Terms and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the basic operations of Boolean algebra.
Distinguish among the different types of flip-​flops.
Use a Karnaugh map to simplify a Boolean expression.
Present an overview of programmable logic devices.

The operation of the digital computer is based on the storage and processing of
binary data. Throughout this book, we have assumed the existence of storage
elements that can exist in one of two stable states, and of circuits than can operate
on binary data under the control of control signals to implement the various
computer functions. In this chapter, we suggest how these storage elements and
circuits can be implemented in digital logic, specifically with combinational and
sequential circuits. The chapter begins with a brief review of Boolean algebra,
which is the mathematical foundation of digital logic. Next, the concept of a gate is
introduced. Finally, combinational and sequential circuits, which are constructed
from gates , are described.

12.1 Boolean Algebra
12.2 Gates
12.3 Combinational Circuits

Implementation of Boolean Functions
Multiplexers
Decoders
Read-​Only Memory
Adders

12.4 Sequential Circuits
Flip-​Flops
Registers
Counters

12.5 Programmable Logic Devices
Programmable Logic Array
Field-​Programmable Gate Array

12.1 Boolean Algebra
The digital circuitry in digital computers and other digital systems is designed, and its behavior is
analyzed, with the use of a mathematical discipline known as Boolean algebra. The name is in honor
of English mathematician George Boole, who proposed the basic principles of this algebra in 1854 in
his treatise, An Investigation of the Laws of Thought on Which to Found the Mathematical Theories of
Logic and Probabilities. In 1938, Claude Shannon, a research assistant in the Electrical Engineering
Department at M.I.T., suggested that Boolean algebra could be used to solve problems in
relay-​switching circuit design [SHAN38]. Shannon’s techniques were subsequently used in the
analysis and design of electronic digital circuits. Boolean algebra turns out to be a convenient tool in
two areas:

 The paper is available at box.com/COA11e.

Analysis: It is an economical way of describing the function of digital circuitry.
Design: Given a desired function, Boolean algebra can be applied to develop a simplified
implementation of that function.

As with any algebra, Boolean algebra makes use of variables and operations. In this case, the
variables and operations are logical variables and operations. Thus, a variable may take on the value
1 (TRUE) or 0 (FALSE). The basic logical operations are AND, OR, and NOT, which are symbolically
represented by dot, plus sign, and overbar:

 Logical NOT is often indicated by an apostrophe: NOT .

The operation AND yields true (binary value 1) if and only if both of its operands are true. The
operation OR yields true if either or both of its operands are true. The unary operation NOT inverts the
value of its operand. For example, consider the equation

D is equal to 1 if A is 1 or if both and Otherwise D is equal to 0.

Several points concerning the notation are needed. In the absence of parentheses, the AND operation
takes precedence over the OR operation. Also, when no ambiguity will occur, the AND operation is
represented by simple concatenation instead of the dot operator. Thus,

all mean: Take the AND of B and C; then take the OR of the result and A.

Table 12.1a defines the basic logical operations in a form known as a truth table, which lists the value
of an operation for every possible combination of values of operands. The table also lists three other
useful operators: XOR, NAND, and NOR. The exclusive-​or (XOR) of two logical operands is 1 if and

1

1

2

2 A = A′

A AND B=A ⋅ B

A OR B=A+B

NOT A=Ā

D = A + (B̄ ⋅ C)

B = 0 C = 1.

A + B ⋅ C = A + (B ⋅ C) = A + BC

only if exactly one of the operands has the value 1. The NAND function is the complement (NOT) of
the AND function, and the NOR is the complement of OR:

Table 12.1 Boolean Operators

(a) Boolean Operators of Two Input Variables

A B NOT A A AND B A OR B A NAND B A NOR B A XOR B

0 0 1 0 0 1 1 0

0 1 1 0 1 1 0 1

1 0 0 0 1 1 0 1

1 1 0 1 1 0 0 0

(b) Boolean Operators Extended to More than Two Inputs (A, B, …)

Operation Expression

AND All of the set {A, B, …} are 1.

OR Any of the set {A, B, …} are 1.

NAND Any of the set {A, B, …} are 0.

NOR All of the set {A, B, …} are 0.

XOR The set {A, B, …} contains an odd number of ones.

As we shall see, these three new operations can be useful in implementing certain digital circuits.

The logical operations, with the exception of NOT, can be generalized to more than two variables, as
shown in Table 12.1b.

The Algebra of Sets

It can be helpful for visualizing Boolean operations to illustrate corresponding operations on sets. We
can define a set as a collection of elements S, together with a rule that determines what elements
belong to S. For example, the set of positive integers less than 5 is {1, 2, 3, 4}.

A NAND B = NOT (A AND B) = ĀB
A NOR B = NOT (A OR B) = ¯A + B

(Ā) (A ⋅ B) (A + B) (¯A ⋅ B) (¯A + B) (A ⊕ B)

Output = 1if

A ⋅ B ⋅ …

A + B + …

¯A ⋅ B ⋅ …

¯A + B + …

A ⊕ B ⊕ …

Logical operations can be performed on sets in much the same way as on Boolean variables.
Corresponding to the basic Boolean operations of AND, OR, and NOT are the logical set operations of
intersection, union, and complement; these are shown in Table 12.2.

Table 12.2 Correspondence Between Boolean Algebra and Operations on Sets

Boolean Sets

Function Description Function Description

A AND
B

1 if and only if A and B are 1 Set of elements that belong to both A
and B (intersection)

A OR B 1 if A or B or both are 1; 0 if both A
and B are 0

Set of elements that belong to A or B or
both (union)

A OR B 1 if and only if A is 0 Set of elements not in A (complement
of A)

The intersection of two sets A and B is the set of all elements that belong to both A and B. This
operation is designated with the operator For example, if A is the set of positive integers less than
5 and B is the set of even positive integers less than 10, then Intersection corresponds
to the Boolean operator AND.

The union of two sets A and B is the set of all elements that belong to A or B or both. This operation
is designated with the operator For A and B defined in the preceding paragraph,

 Union corresponds to the Boolean operator OR.

The complement of a set A depends on the context. Generally, attention is confined to subsets of
some given set X, which is considered as the universal set for this context. The complement of a set
S, designated by an , consists of all the elements in the universal set not found in S. For example, if
X is the set of all positive integers, then for A and B defined above, is the set of all integers greater
than 4, and is the set consisting of all odd positive integers plus all even positive integers greater
than 9. Complement corresponds to the Boolean operator NOT.

With these definitions in mind, we can visualize the Boolean operators defined in Table 12.1a using
Figure 12.1. The Boolean variables are represented by circles, which can also be viewed as sets
depicted in a Venn diagram. From the perspective of Boolean algebra, the surrounding rectangle,
including the circles, represents all possible combinations of values of A and B. From a set
perspective, the surrounding rectangle represents the universal set.

A ∩ B

A ∪ B

Ā

∩ .
A ∩ B = {2 , 4} .

∪ .
A ∪ B = { 1 , 2 , 3 , 4 , 6 , 8 } .

S̄
Ā

B̄

Figure 12.1 Basic Boolean Functions of Two Variables

Figure 12.2 depicts Venn diagrams corresponding to three Boolean variables. The three-bit numbers
give the Boolean values for ABC in the different regions.

Figure 12.2 Venn Diagram for Three Boolean Variables

Table 12.3 summarizes key identities of Boolean algebra. The equations have been arranged in two
columns to show the complementary, or dual, nature of the AND and OR operations. There are two
classes of identities: basic rules (or postulates), which are stated without proof, and other identities
that can be derived from the basic postulates. The postulates define the way in which Boolean
expressions are interpreted. One of the two distributive laws is worth noting because it differs from
what we would find in ordinary algebra:

Table 12.3 Basic Identities of Boolean Algebra

Basic Postulates

Commutative Laws

Distributive Laws

Identity Elements

A + (B ⋅ C) = (A + B) ⋅ (A + C)

A ⋅ B = B ⋅ A A + B = B + A

A ⋅ (B + C) = (A ⋅ B) + (A ⋅ C) A + (B ⋅ C) = (A + B) ⋅ (A + C)

1 ⋅ A = A 0 + A = A

A ⋅ Ā = 0 A + Ā = 1

Inverse Elements

Other Identities

Associative Laws

DeMorgan’s Theorem

The two bottom-most expressions are referred to as DeMorgan’s theorem. We can restate them as
follows:

The reader is invited to verify the expressions in Table 12.3 by substituting actual values (1s and 0s)
for the variables A, B, and C.

Boolean Identities

We now give three examples of simplifying Boolean expressions using the identities of Table 12.3.

Example 1:

The second component is negated and we must use DeMorgan’s theorem: We
can now write

From the Inverse Elements Postulate: therefore,

From the Identity Elements Postulate, therefore,

The final result is which means that the expression is true and independent of variables A
and B.

Example 2:

We have the identity The terms are redundant because if then both these terms
are 0, and if then

0 ⋅ A = 0 1 + A = 1

A ⋅ A = A A + A = A

A ⋅ (B ⋅ C) = (A ⋅ B) ⋅ C A + (B + C) = (A + B) + C

¯A ⋅ B = Ā + B̄ ¯A + B = Ā ⋅ B̄

A NOR B = Ā AND B̄
A NAND B = Ā OR B̄

F = A + B̄A

¯BA ĀB = A + B.

F = A + ¯BA = A + B̄ + Ā

A + Ā = 1; F = A + Ā + B̄ = 1 + B̄

1 + B̄ = 1; F = 1.

F = 1,

F = (A + B) • (A + C)
F = A • A + A • C + A • B + B • C

A • A = A. A = 0
A = 1,

A • A + A • C + A • B = 1 + C + B = 1

Consequently, we are left with:

Example 3:

We can use DeMorgan’s theorem repeatedly to simplify the last term:

Using the distributed law repeatedly:

The final simplification eliminates the redundant middle terms, similar to what was done in
Example 2. Plugging this result into the original equation:

Again, the first term is redundant and was eliminated.

In all three examples, the original Boolean expression is simplified. This is important because Boolean
expressions are used to define digital functions used in processor and memory circuitry. Thus,
whereas an original expression may clearly define a desired function, simplifying the expression can
lead to simpler circuits. Section 12.3 explores systematic techniques for simplifying expressions.

F = A + B × C

F = Ā • B̄ • C + ¯(A • B + A • C)

¯(A • B + A • C) = (A • B) • (¯A • B) = (Ā + B̄) • (Ā + C̄)

(Ā + B̄) • (Ā + C̄) = ((Ā + B̄) • Ā)) + ((Ā + B̄) • C̄))
= ĀĀ + B̄Ā + ĀC̄ + B̄C̄
= Ā + B̄Ā + ĀC̄ + B̄C̄ = Ā + B̄C̄

F = Ā • B̄ • C + Ā + B̄C̄ = Ā + B̄C̄

12.2 Gates
The fundamental building block of all digital logic circuits is the gate. Logical functions are
implemented by the interconnection of gates.

A gate is an electronic circuit that produces an output signal that is a simple Boolean operation on its
input signals. The basic gates used in digital logic are AND, OR, NOT, NAND, NOR, and XOR. Figure
12.3 depicts these six gates. Each gate is defined in three ways: graphic symbol, algebraic notation,
and truth table. The symbology used in this chapter is from the IEEE standard, IEEE Std 91. Note that
the inversion (NOT) operation is indicated by a circle.

Figure 12.3 Basic Logic Gates

Each gate shown in Figure 12.3 has one or two inputs and one output. However, as indicated in
Table 12.1b, all of the gates except NOT can have more than two inputs. Thus, can be
implemented with a single OR gate with three inputs. When one or more of the values at the input are
changed, the correct output signal appears almost instantaneously, delayed only by the propagation

(X + Y + Z)

time of signals through the gate (known as the gate delay). The significance of this delay is discussed
in Section 12.3. In some cases, a gate is implemented with two outputs, one output being the
negation of the other output.

Here we introduce a common term: we say that to assert a signal is to cause a signal line to make a
transition from its logically false (0) state to its logically true (1) state. The true (1) state is either a high
or low voltage state, depending on the type of electronic circuitry.

Typically, not all gate types are used in implementation. Design and fabrication are simpler if only one
or two types of gates are used. Thus, it is important to identify functionally complete sets of gates. This
means that any Boolean function can be implemented using only the gates in the set. The following
are functionally complete sets:

AND, OR, NOT
AND, NOT
OR, NOT
NAND
NOR

It should be clear that AND, OR, and NOT gates constitute a functionally complete set, because they
represent the three operations of Boolean algebra. For the AND and NOT gates to form a functionally
complete set, there must be a way to synthesize the OR operation from the AND and NOT operations.
This can be done by applying DeMorgan’s theorem:

Similarly, the OR and NOT operations are functionally complete because they can be used to
synthesize the AND operation.

Figure 12.4 shows how the AND, OR, and NOT functions can be implemented solely with NAND
gates, and Figure 12.5 shows the same thing for NOR gates. For this reason, digital circuits can be,
and frequently are, implemented solely with NAND gates or solely with NOR gates.

A + B = ¯Ā ⋅ B̄
A OR B = NOT ((NOT A) AND (NOT B))

Figure 12.4 Some Uses of NAND Gates

Figure 12.5 Some Uses of NOR Gates

With gates, we have reached the most primitive circuit level of computer hardware. An examination of
the transistor combinations used to construct gates departs from that realm and enters the realm of
electrical engineering. For our purposes, however, we are content to describe how gates can be used
as building blocks to implement the essential logical circuits of a digital computer.

	12.3 Combinational Circuits
A combinational circuit is an interconnected set of gates whose output at any time is a function
only of the input at that time. As with a single gate, the appearance of the input is followed almost
immediately by the appearance of the output, with only gate delays.

In general terms, a combinational circuit consists of n binary inputs and m binary outputs. As with a
gate, a combinational circuit can be defined in three ways:

Truth table: For each of the possible combinations of input signals, the binary value of each of
the m output signals is listed.
Graphical symbols: The interconnected layout of gates is depicted.
Boolean equations: Each output signal is expressed as a Boolean function of its input signals.

Implementation of Boolean Functions

Any Boolean function can be implemented in electronic form as a network of gates. For any given
function, there are a number of alternative realizations. Consider the Boolean function represented by
the truth table in Table 12.4. We can express this function by simply itemizing the combinations of
values of A, B, and C that cause F to be 1:

Table 12.4 A Boolean Function of Three Variables

A B C F

0 0 0 0

0 0 1 0

0 1 0 1

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 0

There are three combinations of input values that cause F to be 1, and if any one of these
combinations occurs, the result is 1. This form of expression, for self- ​evident reasons, is known as the
sum of products (SOP) form. Figure 12.6 shows a straightforward implementation with AND, OR,
and NOT gates.

2n

F = ĀBC̄ + ĀBC + ABC̄ (12.1)

Figure 12.6 Sum-​of-​Products Implementation of Table 12.4

Another form can also be derived from the truth table. The SOP form expresses that the output is 1 if
any of the input combinations that produce 1 is true. We can also say that the output is 1 if none of the
input combinations that produce 0 is true. Thus,

This can be rewritten using a generalization of DeMorgan’s theorem:

Thus,

This is in the product of sums (POS) form, which is illustrated in Figure 12.7. For clarity, NOT gates
are not shown. Rather, it is assumed that each input signal and its complement are available. This
simplifies the logic diagram and makes the inputs to the gates more readily apparent.

F = ¯(ĀB̄C̄) ⋅ ¯(ĀB̄C) ⋅ ¯(AB̄C̄) ⋅ ¯(AB̄C) ⋅ ¯(ABC)

¯(X ⋅ Y ⋅ Z) = X̄ + Ȳ + Z̄

F = (¯̄A + ¯̄B + ¯̄C) ⋅ (¯̄A + ¯̄B + C̄) ⋅ (Ā + ¯̄B + ¯̄C) ⋅ (Ā + ¯̄B + C̄) ⋅ (Ā + B̄ + C̄)
= (A + B + C) ⋅ (A + B + C̄) ⋅ (Ā + B + C) ⋅ (Ā + B + C̄) ⋅ (Ā + B̄ + C̄)

(12.2)

Figure 12.7 Product-​of-​Sums Implementation of Table 12.4

 Thus, a Boolean function can be realized in either SOP or POS form. At this point, it would seem that
the choice would depend on whether the truth table contains more 1s or 0s for the output function:
The SOP has one term for each 1, and the POS has one term for each 0. However, there are other
considerations:

It is often possible to derive a simpler Boolean expression from the truth table than either SOP or
POS.
It may be preferable to implement the function with a single gate type (NAND or NOR).

The significance of the first point is that, with a simpler Boolean expression, fewer gates will be
needed to implement the function. Three methods that can be used to achieve simplification are

Algebraic simplification
Karnaugh maps
Quine– ​McCluskey tables

ALGEBRAIC SIMPLIFICATION

Algebraic simplification involves the application of the identities of Table 12.3 to reduce the Boolean
expression to one with fewer elements. For example, consider again Equation (12.1). Some thought
should convince the reader that an equivalent expression is

Or, even simpler,

F = ĀB + BC̄ (12.3)

This expression can be implemented as shown in Figure 12.8. The simplification of Equation (12.1)
was done essentially by observation. For more complex expressions, a more systematic approach is
needed.

Figure 12.8 Simplified Implementation of Table 12.4

KARNAUGH MAPS

For purposes of simplification, the Karnaugh map is a convenient way of representing a Boolean
function of a small number (up to four) of variables. The map is an array of squares, representing
all possible combinations of values of n binary variables. Figure 12.9a shows the map of four squares
for a function of two variables. It is essential for later purposes to list the combinations in the order 00,
01, 11, 10. Because the squares corresponding to the combinations are to be used for recording
information, the combinations are customarily written above the squares. In the case of three
variables, the representation is an arrangement of eight squares (Figure 12.9b), with the values for
one of the variables to the left and for the other two variables above the squares. For four variables,
16 squares are needed, with the arrangement indicated in Figure 12.9c.

F = B(Ā + C̄)

2n

Figure 12.9 The Use of Karnaugh Maps to Represent Boolean Functions

The map can be used to represent any Boolean function in the following way. Each square
corresponds to a unique product in the sum- ​of-​products form, with a 1 value corresponding to the
variable and a 0 value corresponding to the NOT of that variable. Thus, the product corresponds
to the fourth square in Figure 12.9a. For each such product in the function, 1 is placed in the
corresponding square. Thus, for the two- ​variable example, the map corresponds to Given
the truth table of a Boolean function, it is an easy matter to construct the map: for each combination of
values of variables that produce a result of 1 in the truth table, fill in the corresponding square of the
map with 1. Figure 12.9b shows the result for the truth table of Table 12.4. To convert from a Boolean
expression to a map, it is first necessary to put the expression into what is referred to as canonical
form: each term in the expression must contain each variable. So, for example, if we have Equation
(12.3), we must first expand it into the full form of Equation (12.1) and then convert this to a map.

The labeling used in Figure 12.9d emphasizes the relationship between variables and the rows and
columns of the map. Here the two rows embraced by the symbol A are those in which the variable A
has the value 1; the rows not embraced by the symbol A are those in which A is 0; similarly for B, C,
and D.

Once the map of a function is created, we can often write a simple algebraic expression for it by noting
the arrangement of the 1s on the map. The principle is as follows. Any two squares that are adjacent
differ in only one of the variables. If two adjacent squares both have an entry of one, then the
corresponding product terms differ in only one variable. In such a case, the two terms can be merged
by eliminating that variable. For example, in Figure 12.10a, the two adjacent squares correspond to
the two terms and Thus, the function expressed is

AB̄

AB̄ + ĀB.

ĀBC̄D ĀBCD.

ĀBC̄D + ĀBCD = ĀBD

This process can be extended in several ways. First, the concept of adjacency can be extended to
include wrapping around the edge of the map. Thus, the top square of a column is adjacent to the
bottom square, and the leftmost square of a row is adjacent to the rightmost square. These conditions
are illustrated in Figures 12.10b and c. Second, we can group not just 2 squares but adjacent
squares (i.e., 2, 4, 8, etc.). The next three examples in Figure 12.10 show groupings of 4 squares.
Note that in this case, two of the variables can be eliminated. The last three examples show groupings
of 8 squares, which allows three variables to be eliminated.

Figure 12.10 The Use of Karnaugh Maps

We can summarize the rules for simplification as follows:

2n

1. Among the marked squares (squares with a 1), find those that belong to a unique largest block
of 1, 2, 4, or 8 and circle those blocks.

2. Select additional blocks of marked squares that are as large as possible and as few in number
as possible, but include every marked square at least once. The results may not be unique in
some cases. For example, if a marked square combines with exactly two other squares, and
there is no fourth marked square to complete a larger group, then there is a choice to be made
as to which of the two groupings to choose. When you are circling groups, you are allowed to
use the same 1 value more than once.

3. Continue to draw loops around single marked squares, or pairs of adjacent marked squares, or
groups of four, eight, and so on in such a way that every marked square belongs to at least one
loop; then use as few of these blocks as possible to include all marked squares.

Figure 12.11a, based on Table 12.4, illustrates the simplification process. If any isolated 1s remain
after the groupings, then each of these is circled as a group of 1s. Finally, before going from the map
to a simplified Boolean expression, any group of 1s that is completely overlapped by other groups can
be eliminated. This is shown in Figure 12.11b. In this case, the horizontal group is redundant and may
be ignored in creating the Boolean expression.

Figure 12.11 Overlapping Groups

One additional feature of Karnaugh maps needs to be mentioned. In some cases, certain
combinations of values of variables never occur, and therefore the corresponding output never occurs.
These are referred to as “don’t care” conditions. For each such condition, the letter “d” is entered into
the corresponding square of the map. In doing the grouping and simplification, each “d” can be treated
as a 1 or 0, whichever leads to the simplest expression.

An example, presented in [HAYE98], illustrates the points we have been discussing. We would like to
develop the Boolean expressions for a circuit that adds 1 to a packed decimal digit. For packed

decimal, each decimal digit is represented by a 4-bit code, in the obvious way. Thus,
 and The remaining 4-bit values, from 1010 to 1111, are not

used. This code is also referred to as Binary Coded Decimal (BCD).

Table 12.5 shows the truth table for producing a 4-bit result that is one more than a 4-bit BCD input.
The addition is modulo 10. Thus, Also, note that six of the input codes produce “don’t care”
results, because those are not valid BCD inputs. Figure 12.12 shows the resulting Karnaugh maps for
each of the output variables. The d squares are used to achieve the best possible groupings.

Table 12.5 Truth Table for the One-​Digit Packed Decimal Incrementer

Input Output

Number A B C D Number W X Y Z

0 0 0 0 0 1 0 0 0 1

1 0 0 0 1 2 0 0 1 0

2 0 0 1 0 3 0 0 1 1

3 0 0 1 1 4 0 1 0 0

4 0 1 0 0 5 0 1 0 1

5 0 1 0 1 6 0 1 1 0

6 0 1 1 0 7 0 1 1 1

7 0 1 1 1 8 1 0 0 0

8 1 0 0 0 9 1 0 0 1

9 1 0 0 1 0 0 0 0 0

Don ' t
care

condition
⎪⎪⎪⎪⎪⎪

1 0 1 0 d d d d

1 0 1 1 d d d d

1 1 0 0 d d d d

1 1 0 1 d d d d

1 1 1 0 d d d d

1 1 1 1 d d d d

0 = 0000 , 1 = 0001 , … , 8 = 1000, 9 = 1001.

9 + 1 = 0.

⎧
⎨
⎩

Figure 12.12 Karnaugh Maps for the Incrementer

THE QUINE-MCCLUSKEY METHOD

For more than four variables, the Karnaugh map method becomes increasingly cumbersome. With
five variables, two maps are needed, with one map considered to be on top of the other in
three dimensions to achieve adjacency. Six variables require the use of four tables in four
dimensions! An alternative approach is a tabular technique, referred to as the Quine– ​McCluskey
method. The method is suitable for programming on a computer to give an automatic tool for
producing minimized Boolean expressions.

The method is best explained by means of an example. Consider the following expression:

Let us assume that this expression was derived from a truth table. We would like to produce a minimal
expression suitable for implementation with gates.

The first step is to construct a table in which each row corresponds to one of the product terms of the
expression. The terms are grouped according to the number of complemented variables. That is, we
start with the term with no complements, if it exists, then all terms with one complement, and so on.
Table 12.6 shows the list for our example expression, with horizontal lines used to indicate the
grouping. For clarity, each term is represented by a 1 for each uncomplemented variable and a 0 for
each complemented variable. Thus, we group terms according to the number of 1s they contain. The
index column is simply the decimal equivalent and is useful in what follows.

Table 12.6 First Stage of Quine–​McCluskey Method

16 × 16
16 × 16

ABCD + ABC̄D + ABC̄D̄ + AB̄CD + ĀBCD + ĀBCD̄ + ĀBC̄D + ĀB̄C̄D

(forF = ABCD + ABC̄D + ABC̄D̄ + AB̄CD + ĀBCD + ĀBCD̄ + ĀBC̄D + ĀB̄C̄D)

Product Term Index A B C D

 1 0 0 0 1

 5 0 1 0 1

 6 0 1 1 0

12 1 1 0 0

 7 0 1 1 1

11 1 0 1 1

13 1 1 0 1

ABCD 15 1 1 1 1

The next step is to find all pairs of terms that differ in only one variable, that is, all pairs of terms that
are the same except that one variable is 0 in one of the terms and 1 in the other. Because of the way
in which we have grouped the terms, we can do this by starting with the first group and comparing
each term of the first group with every term of the second group. Then compare each term of the
second group with all of the terms of the third group, and so on. Whenever a match is found, place a
check next to each term, combine the pair by eliminating the variable that differs in the two terms, and
add that to a new list. Thus, for example, the terms and are combined to produce ABC.
This process continues until the entire original table has been examined. The result is a new table with
the following entries:

The new table is organized into groups, as indicated, in the same fashion as the first table. The
second table is then processed in the same manner as the first. That is, terms that differ in only one
variable are checked and a new term produced for a third table. In this example, the third table that is
produced contains only one term: BD.

In general, the process would proceed through successive tables until a table with no matches was
produced. In this case, this has involved three tables.

Once the process just described is completed, we have eliminated many of the possible terms of the
expression. Those terms that have not been eliminated are used to construct a matrix, as illustrated in
Table 12.7. Each row of the matrix corresponds to one of the terms that have not been eliminated
(has no check) in any of the tables used so far. Each column corresponds to one of the terms in the
original expression. An X is placed at each intersection of a row and a column, such that the row
element is “compatible” with the column element. That is, the variables present in the row element
have the same value as the variables present in the column element. Next, circle each X that is alone

ĀB̄C̄D

ĀBC̄D

ĀBCD̄

ABC̄D̄

ĀBCD

AB̄CD

ABC̄D

ĀBCD̄ ĀBCD

ĀC̄D ABC̄ ABD√

BC̄D√ ACD

ĀBC BCD√

ĀBD√

in a column. Then place a square around each X in any row in which there is a circled X. If every
column now has either a squared or a circled X, then we are done, and those row elements whose Xs
have been marked constitute the minimal expression. Thus, in our example, the final expression is

Table 12.7 Last Stage of Quine–​McCluskey Method

ABCD

BD X X X X

ACD

In cases in which some columns have neither a circle nor a square, additional processing is required.
Essentially, we keep adding row elements until all columns are covered.

Let us summarize the Quine– ​McCluskey method to try to justify intuitively why it works. The first
phase of the operation is reasonably straightforward. The process eliminates unneeded variables in
product terms. Thus, the expression is equivalent to AB, because

After the elimination of variables, we are left with an expression that is clearly equivalent to the original
expression. However, there may be redundant terms in this expression, just as we found redundant
groupings in Karnaugh maps. The matrix layout assures that each term in the original expression is
covered, and does so in a way that minimizes the number of terms in the final expression.

NAND AND NOR IMPLEMENTATIONS

Another consideration in the implementation of Boolean functions concerns the types of gates used. It
is sometimes desirable to implement a Boolean function solely with NAND gates or solely with NOR
gates. Although this may not be the minimum- ​gate implementation, it has the advantage of regularity,
which can simplify the manufacturing process. Consider again Equation (12.3):

Because the complement of the complement of a value is just the original value,

Applying DeMorgan’s theorem,

(for F = ABCD + ABC̄D + ABC̄D̄ + AB̄CD + ĀBCD + ĀBCD̄ + ĀBC̄D + ĀB̄C̄D)

ABC̄D ABC̄D AB̄CD ĀBCD ĀBCD̄ ĀBC̄D ĀB̄C̄D

¯A CD X ⊗

ĀBC X ⊗

ABC̄ X ⊗

X ⊗

ABC̄ + ACD + ĀBC + ĀC̄D

ABC + ABC̄

ABC + ABC̄ = AB(C + C̄) = AB

F = B(Ā + C̄)

F = B(Ā + C̄) =
¯̄

(ĀB + (BC̄)

F =
¯¯(ĀB) • ¯(BC̄)

which has three NAND forms, as illustrated in Figure 12.13.

Figure 12.13 NAND Implementation of Table 12.4

Multiplexers

The multiplexer connects multiple inputs to a single output. At any time, one of the inputs is
selected to be passed to the output. A general block diagram representation is shown in Figure 12.14.
This represents a 4-to- ​1 multiplexer. There are four input lines, labeled D0, D1, D2, and D3. One of
these lines is selected to provide the output signal F. To select one of the four possible inputs, a 2-bit
selection code is needed, and this is implemented as two select lines labeled S1 and S2.

Figure 12.14 4-to-​1 Multiplexer Representation

An example 4-to- ​1 multiplexer is defined by the truth table in Table 12.8. This is a simplified form of a
truth table. Instead of showing all possible combinations of input variables, it shows the output as data
from line D0, D1, D2, or D3. Figure 12.15 shows an implementation using AND, OR, and NOT gates.
S1 and S2 are connected to the AND gates in such a way that, for any combination of S1 and S2,
three of the AND gates will output 0. The fourth AND gate will output the value of the selected line,
which is either 0 or 1. Thus, three of the inputs to the OR gate are always 0, and the output of the OR
gate will equal the value of the selected input gate. Using this regular organization, it is easy to
construct multiplexers of size 8-to- ​1, 16-to-​1, and so on.

Table 12.8 4-to-​1 Multiplexer Truth Table

S2 S1 F

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Figure 12.15 Multiplexer Implementation

Multiplexers are used in digital circuits to control signal and data routing. An example is the loading of
the program counter (PC). The value to be loaded into the program counter may come from one of
several different sources:

A binary counter, if the PC is to be incremented for the next instruction.
The instruction register , if a branch instruction using a direct address has just been executed.
The output of the ALU, if the branch instruction specifies the address using a displacement mode.

These various inputs could be connected to the input lines of a multiplexer, with the PC connected to
the output line. The select lines determine which value is loaded into the PC. Because the PC
contains multiple bits, multiple multiplexers are used, one per bit. Figure 12.16 illustrates this for 16-
bit addresses.

Figure 12.16 Multiplexer Input to Program Counter

Decoders

A decoder is a combinational circuit with a number of output lines, only one of which is asserted at
any time. Which output line is asserted depends on the pattern of input lines. In general, a decoder
has n inputs and outputs. Figure 12.17 shows a decoder with three inputs and eight outputs.

Figure 12.17 Decoder with 3 Inputs and Outputs

2n

23 = 8

Decoders find many uses in digital computers. One example is address decoding. Suppose we wish
to construct a 1K-​byte memory using four RAM chips. We want a single unified address
space, which can be broken down as follows:

  Address Chip

0000–00FF 0

0100–01FF 1

0200–02FF 2

0300–03FF 3

Each chip requires 8 address lines, and these are supplied by the lower- ​order 8 bits of the address.
The higher- ​order 2 bits of the 10-bit address are used to select one of the four RAM chips. For this
purpose, a 2-to- ​4 decoder is used whose output enables one of the four chips, as shown in Figure
12.18.

Figure 12.18 Address Decoding

With an additional input line, a decoder can be used as a demultiplexer. The demultiplexer performs
the inverse function of a multiplexer; it connects a single input to one of several outputs. This is shown
in Figure 12.19. As before, n inputs are decoded to produce a single one of outputs. All of the
output lines are ANDed with a data input line. Thus, the n inputs act as an address to select a
particular output line, and the value on the data input line (0 or 1) is routed to that output line.

256 × 8-bit

2n 2n

Figure 12.19 Implementation of a Demultiplexer Using a Decoder

The configuration in Figure 12.19 can be viewed in another way. Change the label on the new line
from Data Input to Enable. This allows for the control of the timing of the decoder. The decoded output
appears only when the encoded input is present and the enable line has a value of 1.

Read- ​Only Memory

Combinational circuits are often referred to as “memoryless” circuits, because their output depends
only on their current input and no history of prior inputs is retained. However, there is one sort of
memory that is implemented with combinational circuits, namely read-​only memory (ROM) .

Recall that a ROM is a memory unit that performs only the read operation. This implies that the binary
information stored in a ROM is permanent and was created during the fabrication process. Thus, a
given input to the ROM (address lines) always produces the same output (data lines). Because the
outputs are a function only of the present inputs, the ROM is in fact a combinational circuit.

A ROM can be implemented with a decoder and a set of OR gates. As an example, consider Table
12.9. This can be viewed as a truth table with four inputs and four outputs. For each of the 16 possible
input values, the corresponding set of values of the outputs is shown. It can also be viewed as
defining the contents of a 64-bit ROM consisting of 16 words of 4 bits each. The four inputs specify an
address, and the four outputs specify the contents of the location specified by the address. Figure
12.20 shows how this memory could be implemented using a 4-to- ​16 decoder and four OR gates. As
with the PLA, a regular organization is used, and the interconnections are made to reflect the desired
result.

Table 12.9 Truth Table for a ROM

Input Output

0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 1

0 0 1 0 0 0 1 1

0 0 1 1 0 0 1 0

X1 X2 X3 X4 Z1 Z2 Z3 Z4

0 1 0 0 0 1 1 0

0 1 0 1 0 1 1 1

0 1 1 0 0 1 0 1

0 1 1 1 0 1 0 0

1 0 0 0 1 1 0 0

1 0 0 1 1 1 0 1

1 0 1 0 1 1 1 1

1 0 1 1 1 1 1 0

1 1 0 0 1 0 1 0

1 1 0 1 1 0 1 1

1 1 1 0 1 0 0 1

1 1 1 1 1 0 0 0

Figure 12.20 A 64-Bit ROM

Adders

So far, we have seen how interconnected gates can be used to implement such functions as the
routing of signals, decoding, and ROM. One essential area not yet addressed is that of arithmetic. In
this brief overview, we will content ourselves with looking at the addition function.

Binary addition differs from Boolean algebra in that the result includes a carry term. Thus for binary
addition: . However, addition can still be dealt with in Boolean
terms. In Table 12.10a, we show the logic for adding two input bits to produce a 1-bit sum and a carry
bit. This truth table could easily be implemented in digital logic. However, we are not interested in
performing addition on just a single pair of bits. Rather, we wish to add two n ﻿-​bit numbers. This can be
done by putting together a set of adders so that the carry from one adder is provided as input to the
next. A 4-bit adder is depicted in Figure 12.21.

Table 12.10 Binary Addition Truth Tables

(a) Single- ​Bit Addition

A B Sum Carry

0 0 0 0

0 + 0 = 0 ; 0 + 1 = 1 ; 1 + 0 = 1 ; 1 + 1 = 10

0 1 1 0

1 0 1 0

1 1 0 1

(b) Addition with Carry Input

A B Sum

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Figure 12.21 4-Bit Adder

For a multiple- ​bit adder to work, each of the single- ​bit adders must have three inputs, including the
carry from the next-​lower- ​order adder. The revised truth table appears in Table 12.10b. The two
outputs can be expressed:

Cin Cout

Sum = ĀB̄C + ĀBC̄ + ABC + AB̄C
Carry = AB + AC + BC

Figure 12.22 is an implementation using AND, OR, and NOT gates.

Figure 12.22 Implementation of an Adder

Thus we have the necessary logic to implement a multiple- ​bit adder such as shown in Figure 12.23.
Note that because the output from each adder depends on the carry from the previous adder, there is
an increasing delay from the least significant to the most significant bit. Each single- ​bit adder
experiences a certain amount of gate delay, and this gate delay accumulates. For larger adders, the
accumulated delay can become unacceptably high.

Figure 12.23 Construction of a 32-Bit Adder Using 8-Bit Adders

If the carry values could be determined without having to ripple through all the previous stages, then
each single- ​bit adder could function independently, and delay would not accumulate. This can be
achieved with an approach known as carry lookahead. Let us look again at the 4-bit adder to explain

this approach.

We would like to come up with an expression that specifies the carry input to any stage of the adder
without reference to previous carry values. We have

Following the same procedure, we get

This process can be repeated for arbitrarily long adders. Each carry term can be expressed in SOP
form as a function only of the original inputs, with no dependence on the carries. Thus, only two levels
of gate delay occur regardless of the length of the adder.

For long numbers, this approach becomes excessively complicated. Evaluating the expression for the
most significant bit of an n ﻿-​bit adder requires an OR gate with inputs and AND gates with
from 2 to inputs. Accordingly, full carry lookahead is typically done only 4 to 8 bits at a time.
Figure 12.23 shows how a 32-bit adder can be constructed out of four 8-bit adders. In this case, the
carry must ripple through the four 8-bit adders, but this will be substantially quicker than a ripple
through thirty-​two 1-bit adders.

C0 = A0B0 (12.4)
C1 = A1B1 + A1A0B0 + B1A0B0 (12.5)

C2 = A2B2 + A2A1B1 + A2A1A0B0 + A2B1A0B0 + B2A1B1
+B2A1A0B0 + B2B1A0B0

2n − 1 2n − 1
n + 1

12.4 Sequential Circuits
Combinational circuits implement the essential functions of a digital computer. However, except for the
special case of ROM, they provide no memory or state information, elements also essential to the
operation of a digital computer. For the latter purposes, a more complex form of digital logic circuit is
used: the sequential circuit . The current output of a sequential circuit depends not only on the
current input, but also on the past history of inputs. Another and generally more useful way to view it is
that the current output of a sequential circuit depends on the current input and the current state of that
circuit.

In this section, we examine some simple but useful examples of sequential circuits. As will be seen,
the sequential circuit makes use of combinational circuits.

Flip-​Flops

The simplest form of sequential circuit is the flip-​flop . There are a variety of flip-​flops, all of which
share two properties:

The flip-​flop is a bistable device. It exists in one of two states and, in the absence of input, remains
in that state. Thus, the flip-​flop can function as a 1-bit memory.
The flip-​flop has two outputs, which are always the complements of each other. These are
generally labeled Q and .

The S—R LATCH

Figure 12.24 shows a common configuration known as the S–​R flip-​flop or S–​R latch. The circuit has
two inputs, S (Set) and R (Reset), and two outputs, Q and , and consists of two NOR gates
connected in a feedback arrangement.

Figure 12.24 The S–​R Latch Implemented with NOR Gates

First, let us show that the circuit is bistable. Assume that both S and R are 0 and that Q is 0. The
inputs to the lower NOR gate are and Thus, the output means that the inputs to the
upper NOR gate are and which has the output Thus, the state of the circuit is

Q̄

Q̄

Q = 0 S = 0. Q̄ = 1
Q̄ = 1 R = 0, Q = 0.

internally consistent and remains stable as long as A similar line of reasoning shows that
the state is also stable for .

Thus, this circuit can function as a 1-bit memory. We can view the output Q as the “value” of the bit.
The inputs S and R serve to write the values 1 and 0, respectively, into memory. To see this, consider
the state Suppose that S changes to the value 1. Now the inputs to the
lower NOR gate are After some time delay the output of the lower NOR gate will be

 (see Figure 12.25). So, at this point in time, the inputs to the upper NOR gate become
 After another gate delay of the output Q becomes 1. This is again a stable state. The

inputs to the lower gate are now which maintain the output As long as and
 the outputs will remain Furthermore, if S returns to 0, the outputs will remain

unchanged.

Figure 12.25 NOR S–​R Latch Timing Diagram

The R output performs the opposite function. When R goes to 1, it forces regardless of
the previous state of Q and . Again, a time delay of occurs before the final state is established
(Figure 12.25).

The S–​R latch can be defined with a table similar to a truth table, called a characteristic table, which
shows the next state or states of a sequential circuit as a function of current states and inputs. In the
case of the S–​R latch, the state can be defined by the value of Q. Table 12.12a shows the resulting
characteristic table. Observe that the inputs are not allowed, because these would

S = R = 0.

Q = 1 , Q̄ = 0 R = S = 0

Q = 0 , Q̄ = 1 , S = 0 , R = 0.

S = 1 , Q = 0. Δ t ,

Q̄ = 0
R = 0 , Q̄ = 0. Δ t

S = 1 , Q = 1, Q̄ = 0. S = 1
R = 0, Q = 1 , Q̄ = 0.

Q = 0 , Q̄ = 1
Q̄ 2Δ t

S = 1 , R = 1

produce an inconsistent output (both Q and equal 0). The table can be expressed more compactly,
as in Table 12.10b. An illustration of the behavior of the S– ​R latch is shown in Table 12.12c.

Table 12.12 The S–​R Latch

(a) Characteristic Table

Current Inputs Current State Next State

SR

00 0 0

00 1 1

01 0 0

01 1 0

10 0 1

10 1 1

11 0 —

11 1 —

(b) Simplified Characteristic Table

S R

0 0

0 1 0

1 0 1

1 1 —

(c) Response to Series of Inputs

t 0 1 2 3 4 5 6 7 8 9

S 1 0 0 0 0 0 0 0 1 0

Q̄

Qn Qn + 1

Qn + 1

Qn

R 0 0 0 1 0 0 1 0 0 0

1 1 1 0 0 0 0 0 1 1

CLOCKED S-R FLIP-FLOP

The output of the S–​R latch changes, after a brief time delay, in response to a change in the input.
This is referred to as asynchronous operation. More typically, events in the digital computer are
synchronized to a clock pulse, so that changes occur only when a clock pulse occurs. Figure 12.26
shows this arrangement. This device is referred to as a clocked S–​R flip- ​flop. Note that the R and S
inputs are passed to the NOR gates only during the clock pulse.

Figure 12.26 Clocked S–​R Flip-​Flop

D FLIP-FLOP

One problem with S– ​R flip-​flop is that the condition must be avoided. One way to do this is
to allow just a single input. The D flip-​flop accomplishes this. Figure 12.27 shows a gate
implementation of the D flip- ​flop. By using an inverter, the nonclock inputs to the two AND gates are
guaranteed to be the opposite of each other.

Figure 12.27 D Flip-​Flop

The D flip-​flop is sometimes referred to as the data flip- ​flop because it is, in effect, storage for one bit
of data. The output of the D flip-​flop is always equal to the most recent value applied to the input.
Hence, it remembers and produces the last input. It is also referred to as the delay flip- ​flop, because it
delays a 0 or 1 applied to its input for a single clock pulse. We can capture the logic of the D flip- ​flop in

Qn + 1

R = 1 , S = 1

the following truth table:

D

0 0

1 1

J-K FLIP-FLOP

Another useful flip- ​flop is the J–​K flip-​flop. Like the S–​R flip-​flop, it has two inputs. However, in this
case all possible combinations of input values are valid. Figure 12.28 shows a gate implementation of
the J–​K flip-​flop, and Figure 12.29 shows its characteristic table (along with those for the S– ​R and D
flip-​flops). Note that the first three combinations are the same as for the S– ​R flip-​flop. With no input
asserted, the output is stable. If only the J input is asserted, the result is a set function, causing the
output to be 1; if only the K input is asserted, the result is a reset function, causing the output to be 0.
When both J and K are 1, the function performed is referred to as the toggle function: the output is
reversed. Thus, if Q is 1 and 1 is applied to J and K, then Q becomes 0. The reader should verify that
the implementation of Figure 12.28 produces this characteristic function.

Figure 12.28 J–​K Flip-​Flop

Qn + 1

Figure 12.29 Basic Flip-​Flops

Registers

As an example of the use of flip- ​flops, let us first examine one of the essential elements of the CPU:
the register. As we know, a register is a digital circuit used within the CPU to store one or more bits of
data. Two basic types of registers are commonly used: parallel registers and shift registers.

PARALLEL REGISTERS

A parallel register consists of a set of 1-bit memories that can be read or written simultaneously. It is
used to store data. The registers that we have discussed throughout this book
text are parallel
registers.

The 8-bit register of Figure 12.30 illustrates the operation of a parallel register using D flip- ​flops. A
control signal, labeled load, controls writing into the register from signal lines, D11 through D18. These
lines might be the output of multiplexers, so that data from a variety of sources can be loaded into the
register.

Figure 12.30 8-Bit Parallel Register

SHIFT REGISTER

A shift register accepts and/or transfers information serially. Consider, for example, Figure 12.31,
which shows a 5-bit shift register constructed from clocked D flip- ​flops. Data are input only to the
leftmost flip-​flop. With each clock pulse, data are shifted to the right one position, and the rightmost bit
is transferred out.

Figure 12.31 5-Bit Shift Register

Shift registers can be used to interface to serial I/O devices. In addition, they can be used within the
ALU to perform logical shift and rotate functions. In this latter capacity, they need to be equipped with
parallel read/write circuitry as well as serial.

Counters

Another useful category of sequential circuit is the counter. A counter is a register whose value is
easily incremented by 1 modulo the capacity of the register; that is, after the maximum value is
achieved the next increment sets the counter value to 0. Thus, a register made up of n flip-​flops can
count up to An example of a counter in the CPU is the program counter.

Counters can be designated as asynchronous or synchronous, depending on the way in which they
operate. Asynchronous counters are relatively slow because the output of one flip- ​flop triggers a

2n − 1.

change in the status of the next flip- ​flop. In a synchronous counter, all of the flip-​flops change state
at the same time. Because the latter type is much faster, it is the kind used in CPUs. However, it is
useful to begin the discussion with a description of an asynchronous counter.

RIPPLE COUNTER

An asynchronous counter is also referred to as a ripple counter, because the change that occurs to
increment the counter starts at one end and “ripples” through to the other end. Figure 12.32 shows an
implementation of a 4-bit counter using J– ​K flip-​flops, together with a timing diagram that illustrates its
behavior. The timing diagram is idealized in that it does not show the propagation delay that occurs as
the signals move down the series of flip- ​flops. The output of the leftmost flip-​flop is the least
significant bit. The design could clearly be extended to an arbitrary number of bits by cascading more
flip-​flops.

Figure 12.32 Ripple Counter

In the illustrated implementation, the counter is incremented with each clock pulse. The J and K inputs
to each flip-​flop are held at a constant 1. This means that, when there is a clock pulse, the output at Q
will be inverted (1 to 0; 0 to 1). Note that the change in state is shown as occurring with the falling
edge of the clock pulse; this is known as an edge- ​triggered flip- ​flop. Using flip- ​flops that respond to the
transition in a clock pulse rather than the pulse itself provides better timing control in complex circuits.
If one looks at patterns of output for this counter, it can be seen that it cycles through 0000, 0001, …,
1110, 1111, 0000, and so on.

SYNCHRONOUS COUNTERS

(Q0)

The ripple counter has the disadvantage of the delay involved in changing value, which is proportional
to the length of the counter. To overcome this disadvantage, CPUs make use of synchronous
counters, in which all of the flip- ​flops of the counter change at the same time. In this subsection, we
present a design for a 3-bit synchronous counter. In doing so, we illustrate some basic concepts in the
design of a synchronous circuit.

For a 3-bit counter, three flip-​flops will be needed. Let us use J– ​K flip-​flops. Label the
uncomplemented output of the three flip- ​flops C, B, and A, respectively, with C representing the most
significant bit. The first step is to construct a truth table that relates the J–​K inputs and outputs, to
allow us to design the overall circuit. Such a truth table is shown in Figure 12.33a. The first three
columns show the possible combinations of outputs C, B, and A. They are listed in the order that they
will appear as the counter is incremented. Each row lists the current value of C, B, and A and the
inputs to the three flip-​flops that will be required to reach the next value of C, B, and A.

Figure 12.33 Design of a Synchronous Counter

To understand the way in which the truth table of Figure 12.33a is constructed, it may be helpful to
recast the characteristic table for the J– ​K flip-​flop. Recall that this table was presented as follows:

J K

0 0

0 1 0

1 0 1

1 1

In this form, the table shows the effect that the J and K inputs have on the output. Now consider the
following organization of the same information:

J K

0 0 d 0

0 1 d 1

1 d 1 0

1 d 0 1

In this form, the table provides the value of the next output when the inputs and the present output are
known. This is exactly the information needed to design the counter or, indeed, any sequential circuit.
In this form, the table is referred to as an excitation table.

Let us return to Figure 12.33a. Consider the first row. We want the value of C to remain 0, the value
of B to remain 0, and the value of A to go from 0 to 1 with the next application of a clock pulse. The
excitation table shows that to maintain an output of 0, we must have inputs of and don’t care for
K. To effect a transition from 0 to 1, the inputs must be and These values are shown in the
first row of the table. By similar reasoning, the remainder of the table can be filled in.

Having constructed the truth table of Figure 12.33a, we see that the table shows the required values
of all of the J and K inputs as functions of the current values of C, B, and A. With the aid of Karnaugh
maps, we can develop Boolean expressions for these six functions. This is shown in part b of the
figure. For example, the Karnaugh map for the variable Ja (the J input to the flip- ​flop that produces the
A output) yields the expression When all six expressions are derived, it is a straightforward
matter to design the actual circuit, as shown in part c of the figure.

Qn + 1

Qn

¯Qn + 1

Qn Qn + 1

J = 0
J = 1 K = d.

Ja = BC.

12.5 Programmable Logic Devices
Thus far, we have treated individual gates as building blocks, from which arbitrary functions can be
realized. The designer could pursue a strategy of minimizing the number of gates to be used by
manipulating the corresponding Boolean expressions.

As the level of integration provided by integrated circuits increases, other considerations apply. Early
integrated circuits, using small- ​scale integration (SSI), provided from one to ten gates on a chip. Each
gate is treated independently, in the building- ​block approach described so far. To construct a logic
function, a number of these chips are laid out on a printed circuit board and the appropriate pin
interconnections are made.

Increasing levels of integration made it possible to put more gates on a chip and to make gate
interconnections on the chip as well. This yields the advantages of decreased cost, decreased size,
and increased speed (because on- ​chip delays are of shorter duration than off- ​chip delays). A design
problem arises, however. For each particular logic function or set of functions, the layout of gates and
interconnections on the chip must be designed. The cost and time involved in such custom chip
design is high. Thus, it becomes attractive to develop a general- ​purpose chip that can be readily
adapted to specific purposes. This is the intent of the programmable logic device (PLD).

There are a number of different types of PLDs in commercial use. Table 12.13 lists some of the key
terms and defines some of the most important types. In this section, we first look at one of the
simplest such devices, the programmable logic array (PLA) and then introduce perhaps the most
important and widely used type of PLD, the field- ​programmable gate array (FPGA).

Table 12.13 PLD Terminology

Programmable Logic Device (PLD)

A general term that refers to any type of integrated circuit used for implementing digital hardware,
where the chip can be configured by the end user to realize different designs. Programming of such
a device often involves placing the chip into a special programming unit, but some chips can also
be configured “in- ​system.” Also referred to as a field-​programmable device (FPD).

Programmable Logic Array (PLA)

A relatively small PLD that contains two levels of logic, an AND- ​plane and an OR- ​plane, where both
levels are programmable.

Programmable Array Logic (PAL)

A relatively small PLD that has a programmable AND- ​plane followed by a fixed OR- ​plane.

Simple PLD (SPLD)

A PLA or PAL.

Complex PLD (CPLD)

A more complex PLD that consists of an arrangement of multiple SPLD- ​like blocks on a single chip.

Field-Programmable Gate Array (FPGA)

A PLD featuring a general structure that allows very high logic capacity. Whereas CPLDs feature
logic resources with a wide number of inputs (AND planes), FPGAs offer more narrow logic
resources. FPGAs also offer a higher ratio of flip- ​flops to logic resources than do CPLDs.

Logic Block

A relatively small circuit block that is replicated in an array in an FPD. When a circuit is
implemented in an FPD, it is first decomposed into smaller subcircuits that can each be mapped
into a logic block. The term logic block is mostly used in the context of FPGAs, but it could also
refer to a block of circuitry in a CPLD.

Programmable Logic Array

The PLA is based on the fact that any Boolean function (truth table) can be expressed in a
sum-​of-​products (SOP) form, as we have seen. The PLA consists of a regular arrangement of NOT,
AND, and OR gates on a chip. Each chip input is passed through a NOT gate so that each input and
its complement are available to each AND gate. The output of each AND gate is available to each OR
gate, and the output of each OR gate is a chip output. By making the appropriate connections,
arbitrary SOP expressions can be implemented.

Figure 12.34a shows a PLA with three inputs, eight gates, and two outputs. On the left is a
programmable AND array. The AND array is programmed by establishing a connection between any
PLA input or its negation and any AND gate input by connecting the corresponding lines at their point
of intersection. On the right is a programmable OR array, which involves connecting AND gate outputs
to OR gate inputs. Most larger PLAs contain several hundred gates, 15 to 25 inputs, and 5 to 15
outputs. The connections from the inputs to the AND gates, and from the AND gates to the OR gates,
are not specified until programming time.

Figure 12.34 An Example of a Programmable Logic Array (PLA)

PLAs are manufactured in two different ways to allow easy programming (making of connections). In
the first, every possible connection is made through a fuse at every intersection point. The undesired
connections can then be removed by blowing the fuses. This type of PLA is referred to as a
field-​programmable logic array (FPLA). Alternatively, the proper connections can be made during chip
fabrication by using an appropriate mask supplied for a particular interconnection pattern. In either
case, the PLA provides a flexible, inexpensive way of implementing digital logic functions.

Figure 12.34b shows a programmed PLA that realizes two Boolean expressions.

Field-​Programmable Gate Array

The PLA is an example of a simple PLD (SPLD). The difficulty with increasing capacity of a strict

SPLD architecture is that the structure of the programmable logic- ​planes grows too quickly in size as
the number of inputs is increased. The only feasible way to provide large capacity devices based on
SPLD architectures is to integrate multiple SPLDs onto a single chip, and provide interconnect to
programmably connect the SPLD blocks together. Many commercial PLD products exist on the market
today with this basic structure, and are collectively referred to as Complex PLDs (CPLDs). The most
important type of CPLD is the FPGA.

 An FPGA consists of an array of uncommitted circuit elements, called logic blocks, and interconnect
resources. An illustration of a typical FPGA architecture is shown in Figure 12.35. The key
components of an FPGA are:

Logic block: The configurable logic blocks are where the computation of the user’s circuit takes
place.
I/O block: The I/O blocks connect I/O pins to the circuitry on the chip.
Interconnect: These are signal paths available for establishing connections among I/O blocks and
logic blocks.

Figure 12.35 Structure of an FPGA

The logic block can be either a combinational circuit or a sequential circuit. In essence, the
programming of a logic block is done by downloading the contents of a truth table for a logic function.
Figure 12.36 shows an example of a simple logic block consisting of a D flip- ​flop, a 2-to-​1 multiplexer,
and a 16-bit lookup table. The lookup table is a memory consisting of 16 1-bit elements, so that 4
input lines are required to select one of the 16 bits. Larger logic blocks have larger lookup tables and
multiple interconnected lookup tables. The combinational logic realized by the lookup table can be
output directly or stored in the D flip- ​flop and output synchronously. A separate one- ​bit memory

controls the multiplexer to determine whether the output comes directly from the lookup table or from
the flip-​flop.

Figure 12.36 A Simple FPGA Logic Block

By interconnecting numerous logic blocks, very complex logic functions can be easily implemented.

12.6 Key Terms and Problems

Key Terms

adder

AND gate

assert

Boolean algebra

clocked S–​R flip- ​flop

D flip-​flop

gates

graphical symbol

J–​K flip-​flop

Karnaugh map

logic block

lookup table

multiplexer

NAND gate

NOR

OR gate

parallel register

combinational circuit

complex PLD (CPLD)

counter

decoder

product of sums (POS)

programmable array logic (PAL)

programmable logic array (PLA)

programmable logic device (PLD)

Quine–​McCluskey method

read-​only memory (ROM)

register

excitation table

field-programmable gate array (FPGA)

flip-​flop

ripple counter

sequential circuit

shift register

simple PLD (SPLD)

sum of products (SOP)

synchronous counter

S–​R Latch

truth table

XOR gate

Problems

12.1 Construct a truth table for the following Boolean expressions:
a.

b.

c.

d.

	12.2 Simplify the following expressions according to the commutative law:
a.

b.

c.

d.

12.3 Apply DeMorgan’s theorem to the following equations:
a.

b.

12.4 Simplify the following expressions:
a.

b.

c.

d.

e.

f.

g.

ABC + ĀB̄C̄
ABC + AB̄C̄ + ĀB̄C̄
A(BC̄ + B̄C)

(A + B) (A + C) (Ā + B̄)

A ⋅ B̄ + B̄ ⋅ A + C ⋅ D ⋅ E + C̄ ⋅ D ⋅ E + E ⋅ C̄ ⋅ D
A ⋅ B + A ⋅ C + B ⋅ A
(L ⋅ M ⋅ N) (A ⋅ B) (C ⋅ D ⋅ E) (M ⋅ N ⋅ L)

F ⋅ (K + R) + S ⋅ V + W ⋅ X̄ + V ⋅ S + X̄ ⋅ W + (R + K) ⋅ F

F = ¯V + A + L
F = Ā + B̄ + C̄ + D̄

A = S ⋅ T + V ⋅ W + R ⋅ S ⋅ T

A = T ⋅ U ⋅ V + X ⋅ Y + Y
A = F ⋅ (E + F + G)

A = (P ⋅ Q + R + S ⋅ T)T ⋅ S
A= ¯D̄ ⋅ D̄ ⋅ E
A = Y ⋅ (W + X + ¯Ȳ + Z̄) ⋅ Z

A = (B ⋅ E + C + F) ⋅ C

12.5 Construct the operation XOR from the basic Boolean operations AND, OR, and NOT.
12.6 Given a NOR gate and NOT gates, draw a logic diagram that will perform the three- ​input
AND function.
12.7 Write the Boolean expression for a four- ​input NAND gate.
12.8 A combinational circuit is used to control a seven- ​segment display of decimal digits, as
shown in Figure 12.37 . The circuit has four inputs, which provide the four- ​bit code used in
packed decimal representation The seven outputs define which

segments will be activated to display a given decimal digit. Note that some combinations of
inputs and outputs are not needed.

Figure 12.37 Seven-​Segment LED Display Example

a. Develop a truth table for this circuit.
b. Express the truth table in SOP form.
c. Express the truth table in POS form.
d. Provide a simplified expression.

12.9 Design an 8-to- ​1 multiplexer.
	12.10 Add an additional line to Figure 12.17 so that it functions as a demultiplexer.
12.11 The Gray code is a binary code for integers. It differs from the ordinary binary
representation in that there is just a single bit change between the representations of any two
numbers. This is useful for applications such as counters or analog- ​to-​digital converters where a
sequence of numbers is generated. Because only one bit changes at a time, there is never any
ambiguity due to slight timing differences. The first eight elements of the code are

Binary Code Gray Code

000 000

001 001

(010 = 0000 , … , 910 = 1001) .

010 011

011 010

100 110

101 111

110 101

111 100

Design a circuit that converts from binary to Gray code.
12.12 Design a decoder using four decoders (with enable inputs) and one
decoder.
12.13 Implement the full adder of Figure 12.22 with just five gates. (Hint: Some of the gates are
XOR gates.)
12.14 Consider Figure 12.22 . Assume that each gate produces a delay of 10 ns. Thus, the
sum output is valid after 20 ns and the carry output after 20 ns. What is the total add time for a
32-bit adder

a. Implemented without carry lookahead, as in Figure 12.21 ?
b. Implemented with carry lookahead and using 8-bit adders, as in Figure 12.23 ?

12.15 An alternative form of the S–​R latch has the same structure as Figure 12.24 but uses
NAND gates instead of NOR gates.

a. Redo Table 12.11a and 12.11b for S–​R latch implemented with NAND gates.
b. Complete the following table, similar to Table 12.11c .

t 0 1 2 3 4 5 6 7 8 9

S 0 1 1 1 1 1 0 1 0 1

R 1 1 0 1 0 1 1 1 0 0

12.16 Consider the graphic symbol for the S– ​R flip-​flop in Figure 12.29 . Add additional lines to
depict a D flip- ​flop wired from the S– ​R flip-​flop.
12.17 Show the structure of a PLA with three inputs (C, B, A) and four outputs
with the outputs defined as follows:

	12.18 An interesting application of a PLA is conversion from the old, obsolete punched card
character codes to ASCII codes. The standard punched cards that were so popular with
computers in the past had 12 rows and 80 columns where holes could be punched. Each

5 × 32 3 × 8 2 × 4

(O0 , O1 , O2 , O3)

O0 = Ā B̄C + AB̄ + ABC̄
O1 = Ā B̄C + ABC̄

O2 = C
O3 = AB̄ + ABC̄

column corresponded to one character, so each character had a 12-bit code. However, only 96
characters were actually used. Consider an application that reads punched cards and converts
the character codes to ASCII.

a. Describe a PLA implementation of this application.
b. Can this problem be solved with a ROM? Explain.

Part Four Instruction Sets and Assembly Language

Chapter 13 Instruction Sets: Characteristics and Functions

13.6 Key Terms, Review Questions, and Problems
Appendix 13A Little-, Big-, and Bi-Endian

Learning Objectives

After studying this chapter, you should be able to:

Present an overview of essential characteristics of machine instructions.

13.1 Machine Instruction Characteristics
Elements of a Machine Instruction
Instruction Representation
Instruction Types
Number of Addresses
Instruction Set Design

13.2 Types of Operands
Numbers
Characters
Logical Data

13.3 Intel x86 and ARM Data Types
x86 Data Types
ARM Data Types

13.4 Types of Operations
Data Transfer
Arithmetic
Logical
Conversion
Input/Output
System Control
Transfer of Control

13.5 Intel x86 and ARM Operation Types
x86 Operation Types
ARM Operation Types

Describe the types of operands used in typical machine instruction sets.
Present an overview of x86 and ARM data types.
Describe the types of operands supported by typical machine instruction sets.
Present an overview of x86 and ARM operation types.
Understand the differences among big endian, little endian, and bi-endian.

Much of what is discussed in this booktext is not readily apparent to the user or
programmer of a computer. If a programmer is using a high-level language, such
as Pascal or Ada, very little of the architecture of the underlying machine is visible.

One boundary where the computer designer and the computer programmer can
view the same machine is the machine instruction set. From the designer’s point of
view, the machine instruction set provides the functional requirements for the
processor: implementing the processor is a task that in large part involves
implementing the machine instruction set. The user who chooses to program in
machine language (actually, in assembly language; see Chapter 15) becomes
aware of the register and memory structure, the types of data directly supported by
the machine, and the functioning of the ALU.

A description of a computer’s machine instruction set goes a long way toward
explaining the computer’s processor. Accordingly, we focus on machine
instructions in this chapter and the next.

13.1 Machine Instruction Characteristics
The operation of the processor is determined by the instructions it executes, referred to as machine
instructions or computer instructions. The collection of different instructions that the processor can
execute is referred to as the processor’s instruction set.

Elements of a Machine Instruction

Each instruction must contain the information required by the processor for execution. Figure 13.1,
which repeats Figure 3.6, shows the steps involved in instruction execution and, by implication,
defines the elements of a machine instruction. These elements are as follows:

Operation code: Specifies the operation to be performed (e.g., ADD, I/O). The operation is
specified by a binary code, known as the operation code, or opcode .
Source operand reference: The operation may involve one or more source operands, that is,
operands that are inputs for the operation.
Result operand reference: The operation may produce a result.
Next instruction reference: This tells the processor where to fetch the next instruction after the
execution of this instruction is complete.

Figure 13.1 Instruction Cycle State Diagram

The address of the next instruction to be fetched could be either a real address or a virtual address,
depending on the architecture. Generally, the distinction is transparent to the instruction set
architecture. In most cases, the next instruction to be fetched immediately follows the current
instruction. In those cases, there is no explicit reference to the next instruction. When an explicit
reference is needed, the main memory or virtual memory address must be supplied. The form in which
that address is supplied is discussed in Chapter 14.

Source and result operands can be in one of four areas:

Main or virtual memory: As with next instruction references, the main or virtual memory address

must be supplied.
Processor register: With rare exceptions, a processor contains one or more registers that may be
referenced by machine instructions. If only one register exists, reference to it may be implicit. If
more than one register exists, then each register is assigned a unique name or number, and the
instruction must contain the number of the desired register.
Immediate: The value of the operand is contained in a field in the instruction being executed.
I/O device: The instruction must specify the I/O module and device for the operation. If memory-
mapped I/O is used, this is just another main or virtual memory address.

Instruction Representation

Within the computer, each instruction is represented by a sequence of bits. The instruction is divided
into fields, corresponding to the constituent elements of the instruction. A simple example of an
instruction format is shown in Figure 13.2. As another example, the IAS instruction format is shown in
Figure 1.7. With most instruction sets, more than one format is used. During instruction execution, an
instruction is read into an instruction register (IR) in the processor. The processor must be able to
extract the data from the various instruction fields to perform the required operation.

Figure 13.2 A Simple Instruction Format

It is difficult for both the programmer and the reader of textbooks to deal with binary representations of
machine instructions. Thus, it has become common practice to use a symbolic representation of
machine instructions. An example of this was used for the IAS instruction set, in Table 1.1.

Opcodes are represented by abbreviations, called mnemonics, that indicate the operation. Common
examples include

ADD Add

SUB Subtract

MUL Multiply

DIV Divide

LOAD Load data from memory

STOR Store data to memory

Operands are also represented symbolically. For example, the instruction

may mean add the value contained in data location Y to the contents of register R. In this example, Y

ADD R, Y

refers to the address of a location in memory, and R refers to a particular register. Note that the
operation is performed on the contents of a location, not on its address.

Thus, it is possible to write a machine-language program in symbolic form. Each symbolic opcode has
a fixed binary representation, and the programmer specifies the location of each symbolic operand.
For example, the programmer might begin with a list of definitions:

and so on. A simple program would accept this symbolic input, convert opcodes and operand
references to binary form, and construct binary machine instructions.

Machine-language programmers are rare to the point of nonexistence. Most programs today are
written in a high-level language or, failing that, assembly language, which is discussed in Chapter 15.
However, symbolic machine language remains a useful tool for describing machine instructions, and
we will use it for that purpose.

Instruction Types

Consider a high-level language instruction that could be expressed in a language such as BASIC or
FORTRAN. For example,

This statement instructs the computer to add the value stored in Y to the value stored in X and put the
result in X. How might this be accomplished with machine instructions? Let us assume that the
variables X and Y correspond to locations 513 and 514. If we assume a simple set of machine
instructions, this operation could be accomplished with three instructions:

1. Load a register with the contents of memory location 513.
2. Add the contents of memory location 514 to the register.
3. Store the contents of the register in memory location 513.

As can be seen, the single BASIC instruction may require three machine instructions. This is typical of
the relationship between a high-level language and a machine language. A high-level language
expresses operations in a concise algebraic form, using variables. A machine language expresses
operations in a basic form involving the movement of data to or from registers.

With this simple example to guide us, let us consider the types of instructions that must be included in
a practical computer. A computer should have a set of instructions that allows the user to formulate
any data processing task. Another way to view it is to consider the capabilities of a high-level
programming language. Any program written in a high-level language must be translated into machine
language to be executed. Thus, the set of machine instructions must be sufficient to express any of
the instructions from a high-level language. With this in mind we can categorize instruction types as
follows:

Data processing: Arithmetic and logic instructions.
Data storage: Movement of data into or out of register and or memory locations.
Data movement: I/O instructions.
Control: Test and branch instructions.

Arithmetic instructions provide computational capabilities for processing numeric data. Logic (Boolean)
instructions operate on the bits of a word as bits rather than as numbers; thus, they provide

X = 513
Y = 514

X = X + Y

capabilities for processing any other type of data the user may wish to employ. These operations are
performed primarily on data in processor registers. Therefore, there must be memory instructions for
moving data between memory and the registers. I/O instructions are needed to transfer programs and
data into memory and the results of computations back out to the user. Test instructions are used to
test the value of a data word or the status of a computation. Branch instructions are then used to
branch to a different set of instructions depending on the decision made.

We will examine the various types of instructions in greater detail later in this chapter.

Number of Addresses

One of the traditional ways of describing processor architecture is in terms of the number of addresses
contained in each instruction. This dimension has become less significant with the increasing
complexity of processor design. Nevertheless, it is useful at this point to draw and analyze this
distinction.

What is the maximum number of addresses one might need in an instruction? Evidently, arithmetic
and logic instructions will require the most operands. Virtually all arithmetic and logic operations are
either unary (one source operand) or binary (two source operands). Thus, we would need a maximum
of two addresses to reference source operands. The result of an operation must be stored, suggesting
a third address, which defines a destination operand. Finally, after completion of an instruction, the
next instruction must be fetched, and its address is needed.

This line of reasoning suggests that an instruction could plausibly be required to contain four address
references: two source operands, one destination operand, and the address of the next instruction. In
most architectures, many instructions have one, two, or three operand addresses, with the address of
the next instruction being implicit (obtained from the program counter). Most architectures also have a
few special-purpose instructions with more operands. For example, the load and store multiple
instructions of the ARM architecture, described in Chapter 14, designate up to 17 register operands in
a single instruction.

Figure 13.3 compares typical one-, two-, and three-address instructions that could be used to
compute . With three addresses, each instruction specifies two source
operand locations and a destination operand location. Because we choose not to alter the value of
any of the operand locations, a temporary location, T, is used to store some intermediate results. Note
that there are four instructions and that the original expression had five operands.

Y = (A − B) / [C + (D × E)]

Figure 13.3 Programs to Execute

Three-address instruction formats are not common because they require a relatively long instruction
format to hold the three address references. With two-address instructions, and for binary operations,
one address must do double duty as both an operand and a result. Thus, the instruction SUB Y, B
carries out the calculation and stores the result in Y. The two-address format reduces the space
requirement but also introduces some awkwardness. To avoid altering the value of an operand, a
MOVE instruction is used to move one of the values to a result or temporary location before
performing the operation. Our sample program expands to six instructions.

Simpler yet is the one-address instruction. For this to work, a second address must be implicit. This
was common in earlier machines, with the implied address being a processor register known as the
accumulator (AC). The accumulator contains one of the operands and is used to store the result.
In our example, eight instructions are needed to accomplish the task.

It is, in fact, possible to make do with zero addresses for some instructions. Zero-address instructions
are applicable to a special memory organization called a stack. A stack is a last-in-first-out set of
locations. The stack is in a known location and, often, at least the top two elements are in processor
registers. Thus, zero-address instructions would reference the top two stack elements. Stacks are
described in Appendix E. Their use is explored further later in this chapter and in Chapter 14.

Table 13.1 summarizes the interpretations to be placed on instructions with zero, one, two, or three
addresses. In each case in the table, it is assumed that the address of the next instruction is implicit,
and that one operation with two source operands and one result operand is to be performed.

Table 13.1 Utilization of Instruction Addresses (Nonbranching Instructions)

Y =
A − B

C + (D × E)

Y − B

AC = accumulator
T = top of stack
(T − 1) = second element of stack

Number of Addresses Symbolic Representation Interpretation

3 OP A, B, C

2 OP A, B

1 OP A

0 OP

The number of addresses per instruction is a basic design decision. Fewer addresses per instruction
result in instructions that are more primitive, requiring a less complex processor. It also results in
instructions of shorter length. On the other hand, programs contain more total instructions, which in
general results in longer execution times and longer, more complex programs. Also, there is an
important threshold between one-address and multiple-address instructions. With one-address
instructions, the programmer generally has available only one general-purpose register, the
accumulator. With multiple-address instructions, it is common to have multiple general-purpose
registers. This allows some operations to be performed solely on registers. Because register
references are faster than memory references, this speeds up execution. For reasons of flexibility and
ability to use multiple registers, most contemporary machines employ a mixture of two- and three-
address instructions.

The design trade-offs involved in choosing the number of addresses per instruction are complicated
by other factors. There is the issue of whether an address references a memory location or a register.
Because there are fewer registers, fewer bits are needed for a register reference. Also, as we will see
in Chapter 14, a machine may offer a variety of addressing modes, and the specification of mode
takes one or more bits. The result is that most processor designs involve a variety of instruction
formats.

Instruction Set Design

One of the most interesting, and most analyzed, aspects of computer design is instruction set design.
The design of an instruction set is very complex because it affects so many aspects of the computer
system. The instruction set defines many of the functions performed by the processor and thus has a
significant effect on the implementation of the processor. The instruction set is the programmer’s
means of controlling the processor. Thus, programmer requirements must be considered in designing
the instruction set.

It may surprise you to know that some of the most fundamental issues relating to the design of
instruction sets remain in dispute. Indeed, in recent years, the level of disagreement concerning these
fundamentals has actually grown. The most important of these fundamental design issues include the
following:

Operation repertoire: How many and which operations to provide, and how complex operations
should be.
Data types: The various types of data upon which operations are performed.
Instruction format: Instruction length (in bits), number of addresses, size of various fields, and so

A , B , C = memory or register locations

A ← B OP C

A ← A OP B

AC ← AC OP A

T ← (T − 1)OP T

on.
Registers: Number of processor registers that can be referenced by instructions, and their use.
Addressing: The mode or modes by which the address of an operand is specified.

These issues are highly interrelated and must be considered together in designing an instruction set.
This booktext, of course, must consider them in some sequence, but an attempt is made to show the
interrelationships.

Because of the importance of this topic, much of Part Three is devoted to instruction set design.
Following this overview section, this This chapter examines data types and operation repertoire.
Chapter 14 examines addressing modes (which includes a consideration of registers) and instruction
formats. Chapter 17 examines the reduced instruction set computer (RISC). RISC architecture calls
into question many of the instruction set design decisions traditionally made in commercial computers.

13.2 Types of Operands
Machine instructions operate on data. The most important general categories of data are

Addresses
Numbers
Characters
Logical data

We shall see, in discussing addressing modes in Chapter 14, that addresses are, in fact, a form of
data. In many cases, some calculation must be performed on the operand reference in an instruction
to determine the main or virtual memory address. In this context, addresses can be considered to be
unsigned integers.

Other common data types are numbers, characters, and logical data, and each of these is briefly
examined in this section. Beyond that, some machines define specialized data types or data
structures. For example, there may be machine operations that operate directly on a list or a string of
characters.

Numbers

All machine languages include numeric data types. Even in nonnumeric data processing, there is a
need for numbers to act as counters, field widths, and so forth. An important distinction between
numbers used in ordinary mathematics and numbers stored in a computer is that the latter are limited.
This is true in two senses. First, there is a limit to the magnitude of numbers representable on a
machine and second, in the case of floating-point numbers, a limit to their precision. Thus, the
programmer is faced with understanding the consequences of rounding, overflow, and underflow.

Three types of numerical data are common in computers:

Binary integer or binary fixed point
Binary floating point
Decimal

We examined the first two in some detail in Chapter 10. It remains to say a few words about decimal
numbers.

Although all internal computer operations are binary in nature, the human users of the system deal
with decimal numbers. Thus, there is a necessity to convert from decimal to binary on input and from
binary to decimal on output. For applications in which there is a great deal of I/O and comparatively
little, comparatively simple computation, it is preferable to store and operate on the numbers in
decimal form. The most common representation for this purpose is packed decimal.

 Textbooks often refer to this as binary coded decimal (BCD). Strictly speaking, BCD refers to the encoding of each

decimal digit by a unique 4-bit sequence. Packed decimal refers to the storage of BCD-encoded digits using one
byte for each two digits.

With packed decimal, each decimal digit is represented by a 4-bit code, in the obvious way, with two
digits stored per byte. Thus, and . Note that this is a rather

inefficient code because only 10 of 16 possible 4-bit values are used. To form numbers, 4-bit codes
are strung together, usually in multiples of 8 bits. Thus, the code for 246 is 0000 0010 0100 0110. This

1

1

0 = 000 , 1 = 0001 , … , 8 = 1000, 9 = 1001

code is clearly less compact than a straight binary representation, but it avoids the conversion
overhead. Negative numbers can be represented by including a 4-bit sign digit at either the left or right
end of a string of packed decimal digits. Standard sign values are 1100 for positive and 1101 for
negative .

Many machines provide arithmetic instructions for performing operations directly on packed decimal
numbers. The algorithms are quite similar to those described in Section 10.3 but must take into
account the decimal carry operation.

Characters

A common form of data is text or character strings. While textual data are most convenient for human
beings, they cannot, in character form, be easily stored or transmitted by data processing and
communications systems. Such systems are designed for binary data. Thus, a number of codes have
been devised by which characters are represented by a sequence of bits. Perhaps the earliest
common example of this is the Morse code. Today, the most commonly used character code is the
International Reference Alphabet (IRA), referred to in the United States as the American Standard
Code for Information Interchange (ASCII; see Appendix D). Each character in this code is
represented by a unique 7-bit pattern; thus, 128 different characters can be represented. This is a
larger number than is necessary to represent printable characters, and some of the patterns represent
control characters. Some of these control characters have to do with controlling the printing of
characters on a page. Others are concerned with communications procedures. IRA-encoded
characters are almost always stored and transmitted using 8 bits per character. The eighth bit may be
set to 0 or used as a parity bit for error detection. In the latter case, the bit is set such that the total
number of binary 1s in each octet is always odd (odd parity) or always even (even parity).

Note in Table D.1 (Appendix D) that forFor the IRA bit pattern 011XXXX, the digits 0 through 9 are
represented by their binary equivalents, 0000 through 1001, in the rightmost 4 bits. This is the same
code as packed decimal. This facilitates conversion between 7-bit IRA and 4-bit packed decimal
representation.

Another code used to encode characters is the Extended Binary Coded Decimal Interchange Code
(EBCDIC). EBCDIC is used on IBM mainframes. It is an 8-bit code. As with IRA, EBCDIC is
compatible with packed decimal. In the case of EBCDIC, the codes 11110000 through 11111001
represent the digits 0 through 9.

Logical Data

Normally, each word or other addressable unit (byte, halfword, and so on) is treated as a single unit of
data. It is sometimes useful, however, to consider an n-bit unit as consisting of n 1-bit items of data,
each item having the value 0 or 1. When data are viewed this way, they are considered to be logical
data.

There are two advantages to the bit-oriented view. First, we may sometimes wish to store an array of
Boolean or binary data items, in which each item can take on only the values 1 (true) and 0 (false).
With logical data, memory can be used most efficiently for this storage. Second, there are occasions
when we wish to manipulate the bits of a data item. For example, if floating-point operations are
implemented in software, we need to be able to shift significant bits in some operations. Another
example: To convert from IRA to packed decimal, we need to extract the rightmost 4 bits of each byte.

Note that, in the preceding examples, the same data are treated sometimes as logical and other times

(+)
(−)

as numerical or text. The “type” of a unit of data is determined by the operation being performed on it.
While this is not normally the case in high-level languages, it is almost always the case with machine
language.

13.3 Intel x86 and ARM Data Types

x86 Data Types

The x86 can deal with data types of 8 (byte), 16 (word), 32 (doubleword), 64 (quadword), and 128
(double quadword) bits in length. To allow maximum flexibility in data structures and efficient memory
utilization, words need not be aligned at even-numbered addresses; doublewords need not be aligned
at addresses evenly divisible by 4; quadwords need not be aligned at addresses evenly divisible by 8;
and so on. However, when data are accessed across a 32-bit bus, data transfers take place in units of
doublewords, beginning at addresses divisible by 4. The processor converts the request for
misaligned values into a sequence of requests for the bus transfer. As with all of the Intel 80x86
machines, the x86 uses the little-endian style; that is, the least significant byte is stored in the lowest
address (see Appendix 13A for a discussion of endianness).

The byte, word, doubleword, quadword, and double quadword are referred to as general data types.
In addition, the x86 supports an impressive array of specific data types that are recognized and
operated on by particular instructions. Table 13.2 summarizes these types.

Table 13.2 x86 Data Types

Data Type Description

General Byte, word (16 bits), doubleword (32 bits), quadword (64 bits), and double
quadword (128 bits) locations with arbitrary binary contents.

Integer A signed binary value contained in a byte, word, or doubleword, using twos
complement representation.

Ordinal An unsigned integer contained in a byte, word, or doubleword.

Unpacked
binary coded
decimal
(BCD)

A representation of a BCD digit in the range 0 through 9, with one digit in each
byte.

Packed BCD Packed byte representation of two BCD digits; value in the range 0 to 99.

Near pointer A 16-bit, 32-bit, or 64-bit effective address that represents the offset within a
segment. Used for all pointers in a nonsegmented memory and for references
within a segment in a segmented memory.

Far pointer A logical address consisting of a 16-bit segment selector and an offset of 16, 32,
or 64 bits. Far pointers are used for memory references in a segmented memory
model where the identity of a segment being accessed must be specified explicitly.

Bit field A contiguous sequence of bits in which the position of each bit is considered as an

independent unit. A bit string can begin at any bit position of any byte and can
contain up to 32 bits.

Bit string A contiguous sequence of bits, containing from zero to bits.

Byte string A contiguous sequence of bytes, words, or doublewords, containing from zero to
 bytes.

Floating point See Figure 13.4.

Packed SIMD
(single
instruction,
multiple data)

Packed 64-bit and 128-bit data types.

Figure 13.4 illustrates the x86 numerical data types. The signed integers are in twos complement
representation and may be 16, 32, or 64 bits long. The floating-point type actually refers to a set of
types that are used by the floating-point unit and operated on by floating-point instructions. The
floating-point representations conform to the IEEE 754 standard.

223 − 1

223 − 1

Figure 13.4 x86 Numeric Data Formats

The packed SIMD (single-instruction-multiple-data) data types were introduced to the x86 architecture
as part of the extensions of the instruction set to optimize performance of multimedia applications.
These extensions include MMX (multimedia extensions) and SSE (streaming SIMD extensions). The
basic concept is that multiple operands are packed into a single referenced memory item and that
these multiple operands are operated on in parallel. The data types are as follows:

Packed byte and packed byte integer: Bytes packed into a 64-bit quadword or 128-bit double
quadword, interpreted as a bit field or as an integer.
Packed word and packed word integer: 16-bit words packed into a 64-bit quadword or 128-bit
double quadword, interpreted as a bit field or as an integer.
Packed doubleword and packed doubleword integer: 32-bit doublewords packed into a 64-bit
quadword or 128-bit double quadword, interpreted as a bit field or as an integer.
Packed quadword and packed quadword integer: Two 64-bit quadwords packed into a 128-bit

double quadword, interpreted as a bit field or as an integer.
Packed single-precision floating-point and packed double-precision floatingpoint: Four 32-
bit floating-point or two 64-bit floating-point values packed into a 128-bit double quadword.

ARM Data Types

ARM processors support data types of 8 (byte), 16 (halfword), and 32 (word) bits in length. Normally,
halfword access should be halfword aligned and word accesses should be word aligned. For
nonaligned access attempts, the architecture supports three alternatives.

Default case:
– The address is treated as truncated, with address bits[1:0] treated as zero for word accesses,
and address bit[0] treated as zero for halfword accesses.

– Load single word ARM instructions are architecturally defined to rotate right the word-aligned
data transferred by a non word-aligned address one, two, or three bytes depending on the value of
the two least significant address bits.

Alignment checking: When the appropriate control bit is set, a data abort signal indicates an
alignment fault for attempting unaligned access.
Unaligned access: When this option is enabled, the processor uses one or more memory
accesses to generate the required transfer of adjacent bytes transparently to the programmer.

For all three data types (byte, halfword, and word) an unsigned interpretation is supported, in which
the value represents an unsigned, nonnegative integer. All three data types can also be used for twos
complement signed integers.

The majority of ARM processor implementations do not provide floating-point hardware, which saves
power and area. If floating-point arithmetic is required in such processors, it must be implemented in
software. ARM does support an optional floating-point coprocessor that supports the single- and
double-precision floating point data types defined in IEEE 754.

ENDIAN SUPPORT

A state bit (E-bit) in the system control register is set and cleared under program control using the
SETEND instruction. The E-bit determines which endian mode is used to load and store data. Figure
13.5 illustrates the functionality associated with the E-bit for a word load or store operation. This
mechanism enables efficient dynamic data load/store for system designers who know they need to
access data structures in the opposite endianness to their OS/environment. Note that the address of
each data byte is fixed in memory. However, the byte lane in a register is different.

Figure 13.5 ARM Endian Support—Word Load/Store with E-Bit

13.4 Types of Operations
The number of different opcodes varies widely from machine to machine. However, the same general
types of operations are found on all machines. A useful and typical categorization is the following:

Data transfer
Arithmetic
Logical
Conversion
I/O
System control
Transfer of control

Table 13.3 lists common instruction types in each category. This section provides a brief survey of
these various types of operations, together with a brief discussion of the actions taken by the
processor to execute a particular type of operation (summarized in Table 13.4). The latter topic is
examined in more detail in Chapter 16.

Table 13.3 Common x86 Instruction Set Operations

(a) Data Transfer

Operation
Name

Description

MOV
Dest,
Source

Move data between registers or between register and memory or immediate to register.

XCHG
Op1, Op2

Swap contents between two registers or register and memory.

PUSH
Source

Decrements stack pointer (ESP register), then copies the source operand to the top of
stack.

POP
Dest

Copies top of stack to destination and increments ESP.

(b) Arithmetic

ADD
Dest,
Source

Adds the destination and the source operand and stores the result in the destination.
Destination can be register or memory. Source can be register, memory, or immediate.

SUB
Dest,
Source

Subtracts the source from the destination and stores the result in the destination.

MUL Op Unsigned integer multiplication of the operand by the AL, AX, or EAX register and
stores in the register. Opcode indicates size of register.

IMUL Op Signed integer multiplication.

DIV Op Divides unsigned the value in the AX, DX:AX, EDX:EAX, or RDX:RAX registers
(dividend) by the source operand (divisor) and stores the result in the AX (AH:AL),
DX:AX, EDX:EAX, or RDX:RAX registers.

IDIV Op Signed integer division.

INC Op Adds 1 to the destination operand, while preserving the state of the CF flag.

DEC Op Subtracts 1 from the destination operand, while preserving the state of the CF flag.

NEG Op Replaces the value of operand with (0 – operand), using twos complement
representation.

CMP
Op1, Op2

Compares the two operands by subtracting the second operand from the first operand
and sets the status flags in the EFLAGS register according to the results.

(c) Shift and Rotate

SAL Op,
Quantity

Shifts the source operand left by from 1 to 31 bit positions. Empty bit positions are
cleared. The CF flag is loaded with the last bit shifted out of the operand.

SAR Op,
Quantity

Shifts the source operand right by from 1 to 31 bit positions. Empty bit positions are
cleared if the operand is positive and set if the operand is negative. The CF flag is
loaded with the last bit shifted out of the operand.

SHR Op,
Quantity

Shifts the source operand right by from 1 to 31 bit positions. Empty bit positions are
cleared and the CF flag is loaded with the last bit shifted out of the operand.

ROL Op,
Quantity

Rotate bits to the left, with wraparound. The CF flag is loaded with the last bit shifted
out of the operand.

ROR Op,
Quantity

Rotate bits to the right, with wraparound. The CF flag is loaded with the last bit shifted
out of the operand.

RCL Op,
Quantity

Rotate bits to the left, including the CF flag, with wraparound. This instruction treats the
CF flag as a one-bit extension on the upper end of the operand.

RCR Op,
Quantity

Rotate bits to the right, including the CF flag, with wraparound. This instruction treats
the CF flag as a one-bit extension on the lower end of the operand.

(d) Logical

NOT Op Inverts each bit of the operand.

AND
Dest,
Source

Performs a bitwise AND operation on the destination and source operands and stores
the result in the destination operand.

OR Dest,
Source

Performs a bitwise OR operation on the destination and source operands and stores
the result in the destination operand.

XOR
Dest,
Source

Performs a bitwise XOR operation on the destination and source operands and stores
the result in the destination operand.

TEST
Op1, Op2

Performs a bitwise AND operation on the two operands and sets the S, Z, and P status
flags. The operands are unchanged.

(e) Transfer of Control

CALL
proc

Saves procedure linking information on the stack and branches to the called procedure
specified using the operand. The operand specifies the address of the first instruction
in the called procedure.

RET Transfers program control to a return address located on the top of the stack. The
return is made to the instruction that follows the CALL instruction.

JMP Dest Transfers program control to a different point in the instruction stream without recording
return information. The operand specifies the address of the instruction being jumped
to.

Jcc Dest Checks the state of one or more of the status flags in the EFLAGS register (CF, OF,
PF, SF, and ZF) and, if the flags are in the specified state (condition), performs a jump
to the target instruction specified by the destination operand. See Tables 13.8 and
13.9.

NOP This instruction performs no operation. It is a one-byte or multi-byte NOP that takes up
space in the instruction stream but does not impact machine context, except for the
EIP register.

HLT Stops instruction execution and places the processor in a HALT state. An enabled
interrupt, a debug exception, the BINIT# signal, the INIT# signal, or the RESET# signal
will resume execution.

WAIT Causes the processor to repeatedly check for and handle pending, unmasked, floating-
point exceptions before proceeding.

INT Nr Interrupts current program, runs specified interrupt program

(f) Input/Output

IN Dest,
Source

Copies the data from the I/O port specified by the source operand to the destination
operand, which is a register location.

INS Dest,
Source

Copies the data from the I/O port specified by the source operand to the destination
operand, which is a memory location.

OUT
Dest,
Source

Copies the byte, word, or doubleword value from the source register to the I/O port
specified by the destination operand.

OUTS
Dest,
Source

Copies byte, word, or doubleword from the source operand to the I/O port specified
with the destination operand. The source operand is a memory location.

Table 13.4 Processor Actions for Various Types of Operations

Data transfer Transfer data from one location to another

If memory is involved:

  Determine memory address

  Perform virtual-to-actual-memory address transformation

  Check cache

  Initiate memory read/write

Arithmetic May involve data transfer, before and/or after

Perform function in ALU

Set condition codes and flags

Logical Same as arithmetic

Conversion Similar to arithmetic and logical. May involve special logic to perform conversion

Transfer of
control

Update program counter. For subroutine call/return, manage parameter passing
and linkage

I/O Issue command to I/O module

If memory-mapped I/O, determine memory-mapped address

Data Transfer

The most fundamental type of machine instruction is the data transfer instruction. The data transfer
instruction must specify several things. First, the location of the source and destination operands must
be specified. Each location could be memory, a register, or the top of the stack. Second, the length of
data to be transferred must be indicated. Third, as with all instructions with operands, the mode of
addressing for each operand must be specified. This latter point is discussed in Chapter 14.

The choice of data transfer instructions to include in an instruction set exemplifies the kinds of trade-
offs the designer must make. For example, the general location (memory or register) of an operand
can be indicated in either the specification of the opcode or the operand. Table 13.5 shows examples
of the most common IBM EAS/390 data transfer instructions. Note that there are variants to indicate
the amount of data to be transferred (8, 16, 32, or 64 bits). Also, there are different instructions for
register to register, register to memory, memory to register, and memory to memory transfers. In
contrast, the VAX has a move (MOV) instruction with variants for different amounts of data to be
moved, but it specifies whether an operand is register or memory as part of the operand. The VAX
approach is somewhat easier for the programmer, who has fewer mnemonics to deal with. However, it
is also somewhat less compact than the IBM EAS/390 approach because the location (register versus
memory) of each operand must be specified separately in the instruction. We will return to this
distinction when we discuss instruction formats in Chapter 14.

Table 13.5 Examples of IBM EAS/390 Data Transfer Operations

Operation
Mnemonic

Name Number of Bits
Transferred

Description

L Load 32 Transfer from memory to register

LH Load
Halfword

16 Transfer from memory to register

LR Load 32 Transfer from register to register

LER Load
(short)

32 Transfer from floating-point register to
floating-point register

LE Load
(short)

32 Transfer from memory to floating-point
register

LDR Load (long) 64 Transfer from floating-point register to

floating-point register

LD Load (long) 64 Transfer from memory to floating-point
register

ST Store 32 Transfer from register to memory

STH Store
Halfword

16 Transfer from register to memory

STC Store
Character

8 Transfer from register to memory

STE Store
(short)

32 Transfer from floating-point register to
memory

STD Store
(long)

64 Transfer from floating-point register to
memory

In terms of processor action, data transfer operations are perhaps the simplest type. If both source
and destination are registers, then the processor simply causes data to be transferred from one
register to another; this is an operation internal to the processor. If one or both operands are in
memory, then the processor must perform some or all of the following actions:

1. Calculate the memory address, based on the address mode (discussed in Chapter 14).
2. If the address refers to virtual memory, translate from virtual to real memory address.
3. Determine whether the addressed item is in cache.
4. If not, issue a command to the memory module.

Arithmetic

Most machines provide the basic arithmetic operations of add, subtract, multiply, and divide. These
are invariably provided for signed integer (fixed-point) numbers. Often they are also provided for
floating-point and packed decimal numbers.

Other possible operations include a variety of single-operand instructions; for example,

Absolute: Take the absolute value of the operand.
Negate: Negate the operand.
Increment: Add 1 to the operand.
Decrement: Subtract 1 from the operand.

The execution of an arithmetic instruction may involve data transfer operations to position operands
for input to the ALU, and to deliver the output of the ALU. Figure 3.5 illustrates the movements
involved in both data transfer and arithmetic operations. In addition, of course, the ALU portion of the
processor performs the desired operation.

Logical

Most machines also provide a variety of operations for manipulating individual bits of a word or other
addressable units, often referred to as “bit twiddling.” They are based upon Boolean operations (see
Chapter 12).

Some of the basic logical operations that can be performed on Boolean or binary data are shown in
Table 13.5. The NOT operation inverts a bit. AND, OR, and Exclusive-OR (XOR) are the most
common logical functions with two operands. EQUAL is a useful binary test.

These logical operations can be applied bitwise to n-bit logical data units. Thus, if two registers
contain the data

then

Table 13.6 Basic Logical Operations

P Q NOT P P AND Q P OR Q P XOR Q

0 0 1 0 0 0 1

0 1 1 0 1 1 0

1 0 0 0 1 1 0

1 1 0 1 1 0 1

where the notation (X) means the contents of location X. Thus, the AND operation can be used as a
mask that selects certain bits in a word and zeros out the remaining bits. As another example, if two
registers contain

then

With one word set to all 1s, the XOR operation inverts all of the bits in the other word (ones
complement).

In addition to bitwise logical operations, most machines provide a variety of shifting and rotating
functions (e.g., Table 13.3c). The most basic operations are illustrated in Figure 13.6. With a logical
shift, the bits of a word are shifted left or right. On one end, the bit shifted out is lost. On the other
end, a 0 is shifted in. Logical shifts are useful primarily for isolating fields within a word. The 0s that
are shifted into a word displace unwanted information that is shifted off the other end.

(R1) = 10100101
(R2) = 00001111

(R1) AND (R2) = 00000101

P=Q

(R1) = 10100101
(R2) = 11111111

(R1) XOR (R2) = 01011010

Figure 13.6 Shift and Rotate Operations

As an example, suppose we wish to transmit characters of data to an I/O device 1 character at a time.
If each memory word is 16 bits in length and contains two characters, we must unpack the characters
before they can be sent. To send the two characters in a word;

1. Load the word into a register.
2. Shift to the right eight times. This shifts the remaining character to the right half of the register.
3. Perform I/O. The I/O module reads the lower-order 8 bits from the data bus.

The preceding steps result in sending the left-hand character. To send the right-hand character;

1. Load the word again into the register.
2. AND with 0000000011111111. This masks out the character on the left.
3. Perform I/O.

The arithmetic shift operation treats the data as a signed integer and does not shift the sign bit. On a
right arithmetic shift, the sign bit is replicated into the bit position to its right. On a left arithmetic shift, a
logical left shift is performed on all bits but the sign bit, which is retained. These operations can speed
up certain arithmetic operations. With numbers in twos complement notation, a right arithmetic shift
corresponds to a division by 2, with truncation for odd numbers. Both an arithmetic left shift and a
logical left shift correspond to a multiplication by 2 when there is no overflow. If overflow occurs,
arithmetic and logical left shift operations produce different results, but the arithmetic left shift retains
the sign of the number. Because of the potential for overflow, many processors do not include this
instruction, including PowerPC and Itanium. Others, such as the IBM EAS/390, do offer the
instruction. Curiously, the x86 architecture includes an arithmetic left shift but defines it to be identical
to a logical left shift.

Rotate, or cyclic shift, operations preserve all of the bits being operated on. One use of a rotate is to
bring each bit successively into the leftmost bit, where it can be identified by testing the sign of the
data (treated as a number).

As with arithmetic operations, logical operations involve ALU activity and may involve data transfer
operations. Table 13.7 gives examples of all of the shift and rotate operations discussed in this
subsection.

Table 13.7 Examples of Shift and Rotate Operations

Input Operation Result

10100110 Logical right shift (3 bits) 00010100

10100110 Logical left shift (3 bits) 00110000

10100110 Arithmetic right shift (3 bits) 11110100

10100110 Arithmetic left shift (3 bits) 10110000

10100110 Right rotate (3 bits) 11010100

10100110 Left rotate (3 bits) 00110101

Conversion

Conversion instructions are those that change the format or operate on the format of data. An
example is converting from decimal to binary. An example of a more complex editing instruction is the
EAS/390 Translate (TR) instruction. This instruction can be used to convert from one 8-bit code to
another, and it takes three operands:

The operand R2 contains the address of the start of a table of 8-bit codes. The L bytes starting at the
address specified in R1 are translated, each byte being replaced by the contents of a table entry
indexed by that byte. For example, to translate from EBCDIC to IRA, we first create a 256-byte table in
storage locations, say, 1000-10FF hexadecimal. The table contains the characters of the IRA code in

TR R1 (L) , R2

the sequence of the binary representation of the EBCDIC code; that is, the IRA code is placed in the
table at the relative location equal to the binary value of the EBCDIC code of the same character.
Thus, locations 10F0 through 10F9 will contain the values 30 through 39, because F0 is the EBCDIC
code for the digit 0, and 30 is the IRA code for the digit 0, and so on through digit 9. Now suppose we
have the EBCDIC for the digits 1984 starting at location 2100 and we wish to translate to IRA. Assume
the following:

Locations 2100–2103 contain F1 F9 F8 F4.
R1 contains 2100.
R2 contains 1000.

Then, if we execute

locations 2100–2103 will contain 31 39 38 34.

Input/Output

Input/output instructions were discussed in some detail in Chapter 8. As we saw, there are a variety of
approaches taken, including isolated programmed I/O, memory-mapped programmed I/O, DMA, and
the use of an I/O processor. Many implementations provide only a few I/O instructions, with the
specific actions specified by parameters, codes, or command words.

System Control

System control instructions are those that can be executed only while the processor is in a certain
privileged state or is executing a program in a special privileged area of memory. Typically, these
instructions are reserved for the use of the operating system.

Some examples of system control operations are as follows. A system control instruction may read or
alter a control register; we discuss control registers in Chapter 16. Another example is an instruction
to read or modify a storage protection key, such as is used in the EAS/390 memory system. Yet
another example is access to process control blocks in a multiprogramming system.

Transfer of Control

For all of the operation types discussed so far, the next instruction to be performed is the one that
immediately follows, in memory, the current instruction. However, a significant fraction of the
instructions in any program have as their function changing the sequence of instruction execution. For
these instructions, the operation performed by the processor is to update the program counter to
contain the address of some instruction in memory.

There are a number of reasons why transfer-of-control operations are required. Among the most
important are the following:

1. In the practical use of computers, it is essential to be able to execute each instruction more than
once and perhaps many thousands of times. It may require thousands or perhaps millions of
instructions to implement an application. This would be unthinkable if each instruction had to be
written out separately. If a table or a list of items is to be processed, a program loop is needed.
One sequence of instructions is executed repeatedly to process all the data.

2. Virtually all programs involve some decision making. We would like the computer to do one
thing if one condition holds, and another thing if another condition holds. For example, a

TR R1 (4) , R2

sequence of instructions computes the square root of a number. At the start of the sequence,
the sign of the number is tested. If the number is negative, the computation is not performed,
but an error condition is reported.

3. To compose correctly a large or even medium-size computer program is an exceedingly difficult
task. It helps if there are mechanisms for breaking the task up into smaller pieces that can be
worked on one at a time.

We now turn to a discussion of the most common transfer-of-control operations found in instruction
sets: branch, skip, and procedure call.

BRANCH INSTRUCTIONS

A branch instruction, also called a jump instruction, has as one of its operands the address of the next
instruction to be executed. Most often, the instruction is a conditional branch instruction. That is, the
branch is made (update program counter to equal address specified in operand) only if a certain
condition is met. Otherwise, the next instruction in sequence is executed (increment program counter
as usual). A branch instruction in which the branch is always taken is an unconditional branch.

There are two common ways of generating the condition to be tested in a conditional branch
instruction. First, most machines provide a 1-bit or multiple-bit condition code that is set as the result
of some operations. This code can be thought of as a short user-visible register. As an example, an
arithmetic operation (ADD, SUBTRACT, and so on) could set a 2-bit condition code with one of the
following four values: 0, positive, negative, overflow. On such a machine, there could be four different
conditional branch instructions:

BRP X Branch to location X if result is positive.

BRN X Branch to location X if result is negative.

BRZ X Branch to location X if result is zero.

BRO X Branch to location X if overflow occurs.

In all of these cases, the result referred to is the result of the most recent operation that set the
condition code.

Another approach that can be used with a three-address instruction format is to perform a comparison
and specify a branch in the same instruction. For example,

Figure 13.7 shows examples of these operations. Note that a branch can be either forward (an
instruction with a higher address) or backward (lower address). The example shows how an
unconditional and a conditional branch can be used to create a repeating loop of instructions. The
instructions in locations 202 through 210 will be executed repeatedly until the result of subtracting Y
from X is 0.

BRE R1 , R2 , X Branch to X if contents of R1 = contents of R2.

Figure 13.7 Branch Instructions

SKIP INSTRUCTIONS

Another form of transfer-of-control instruction is the skip instruction. The skip instruction includes an
implied address. Typically, the skip implies that one instruction be skipped; thus, the implied address
equals the address of the next instruction plus one instruction length. Because the skip instruction
does not require a destination address field, it is free to do other things. A typical example is the
increment-and-skip-if-zero (ISZ) instruction. Consider the following program fragment:

In this fragment, the two transfer-of-control instructions are used to implement an iterative loop. R1 is
set with the negative of the number of iterations to be performed. At the end of the loop, R1 is
incremented. If it is not 0, the program branches back to the beginning of the loop. Otherwise, the
branch is skipped, and the program continues with the next instruction after the end of the loop.

PROCEDURE CALL INSTRUCTIONS

Perhaps the most important innovation in the development of programming languages is the
procedure. A procedure is a self-contained computer program that is incorporated into a larger
program. At any point in the program the procedure may be invoked, or called. The processor is
instructed to go and execute the entire procedure and then return to the point from which the call took
place.

The two principal reasons for the use of procedures are economy and modularity. A procedure allows
the same piece of code to be used many times. This is important for economy in programming effort
and for making the most efficient use of storage space in the system (the program must be stored).
Procedures also allow large programming tasks to be subdivided into smaller units. This use of
modularity greatly eases the programming task.

301
⋮

309 ISZ R1
310 BR 301
311

The procedure mechanism involves two basic instructions: a call instruction that branches from the
present location to the procedure, and a return instruction that returns from the procedure to the place
from which it was called. Both of these are forms of branching instructions.

Figure 13.8a illustrates the use of procedures to construct a program. In this example, there is a main
program starting at location 4000. This program includes a call to procedure PROC1, starting at
location 4500. When this call instruction is encountered, the processor suspends execution of the
main program and begins execution of PROC1 by fetching the next instruction from location 4500.
Within PROC1, there are two calls to PROC2 at location 4800. In each case, the execution of PROC1
is suspended and PROC2 is executed. The RETURN statement causes the processor to go back to
the calling program and continue execution at the instruction after the corresponding CALL instruction.
This behavior is illustrated in Figure 13.8b.

Figure 13.8 Nested Procedures

Three points are worth noting:

1. A procedure can be called from more than one location.
2. A procedure call can appear in a procedure. This allows the nesting of procedures to an

arbitrary depth.
3. Each procedure call is matched by a return in the called program.

Because we would like to be able to call a procedure from a variety of points, the processor must
somehow save the return address so that the return can take place appropriately. There are three

common places for storing the return address:

Register
Start of called procedure
Top of stack

Consider a machine-language instruction CALL X, which stands for call procedure at location X. If the
register approach is used, CALL X causes the following actions:

where RN is a register that is always used for this purpose, PC is the program counter, and is the
instruction length. The called procedure can now save the contents of RN to be used for the later
return.

A second possibility is to store the return address at the start of the procedure. In this case, CALL X
causes

This is quite handy. The return address has been stored safely away.

Both of the preceding approaches work and have been used. The only limitation of these approaches
is that they complicate the use of reentrant procedures. A reentrant procedure is one in which it is
possible to have several calls open to it at the same time. A recursive procedure (one that calls itself)
is an example of the use of this feature (see Appendix F). If parameters are passed via registers or
memory for a reentrant procedure, some code must be responsible for saving the parameters so that
the registers or memory space are available for other procedure calls.

A more general and powerful approach is to use a stack (see Appendix E for a discussion of stacks).
When the processor executes a call, it places the return address on the stack. When it executes a
return, it uses the address on the stack. Figure 13.9 illustrates the use of the stack.

Figure 13.9 Use of Stack to Implement Nested Subroutines of Figure 13.8

In addition to providing a return address, it is also often necessary to pass parameters with a
procedure call. These can be passed in registers. Another possibility is to store the parameters in
memory just after the CALL instruction. In this case, the return must be to the location following the
parameters. Again, both of these approaches have drawbacks. If registers are used, the called

RN ← PC + Δ
PC ← X

Δ

X   ←  PC   +  Δ
PC  ←  X   +  1

program and the calling program must be written to assure that the registers are used properly. The
storing of parameters in memory makes it difficult to exchange a variable number of parameters. Both
approaches prevent the use of reentrant procedures.

A more flexible approach to parameter passing is the stack. When the processor executes a call, it not
only stacks the return address, it stacks parameters to be passed to the called procedure. The called
procedure can access the parameters from the stack. Upon return, return parameters can also be
placed on the stack. The entire set of parameters, including return address, that is stored for a
procedure invocation is referred to as a stack frame.

An example is provided in Figure 13.10. The example refers to procedure P in which the local
variables x1 and x2 are declared, and procedure Q, which P can call and in which the local variables
y1 and y2 are declared. In this figure, the return point for each procedure is the first item stored in the
corresponding stack frame. Next is stored a pointer to the beginning of the previous frame. This is
needed if the number or length of parameters to be stacked is variable.

Figure 13.10 Stack Frame Growth Using Sample Procedures P and Q

13.5 Intel x86 and ARM Operation Types

x86 Operation Types

The x86 provides a complex array of operation types, including a number of specialized instructions.
The intent was to provide tools for the compiler writer to produce optimized machine language
translation of high-level language programs. Most of these are the conventional instructions found in
most machine instruction sets, but several types of instructions are tailored to the x86 architecture and
are of particular interest. Appendix A of [CART06] lists the x86 instructions, together with the
operands for each and the effect of the instruction on the condition codes. Appendix B of the NASM
assembly language manual [NASM17] provides a more detailed description of each x86 instruction.
Both documents are available at box.com/COA11e.

CALL/RETURN INSTRUCTIONS

The x86 provides four instructions to support procedure call/return: CALL, ENTER, LEAVE, RETURN.
It will be instructive to look at the support provided by these instructions. Recall from Figure 13.10 that
a common means of implementing the procedure call/return mechanism is via the use of stack frames.
When a new procedure is called, the following must be performed upon entry to the new procedure:

Push the return point on the stack.
Push the current frame pointer on the stack.
Copy the stack pointer as the new value of the frame pointer.
Adjust the stack pointer to allocate a frame.

The CALL instruction pushes the current instruction pointer value onto the stack and causes a jump to
the entry point of the procedure by placing the address of the entry point in the instruction pointer. In
the 8088 and 8086 machines, the typical procedure began with the sequence

PUSH EBP

MOV EBP, ESP

SUB ESP, space_for_locals

where EBP is the frame pointer and ESP is the stack pointer. In the 80286 and later machines, the
ENTER instruction performs all the aforementioned operations in a single instruction.

The ENTER instruction was added to the instruction set to provide direct support for the compiler. The
instruction also includes a feature for support of what are called nested procedures in languages such
as Pascal, COBOL, and Ada (not found in C or FORTRAN). It turns out that there are better ways of
handling nested procedure calls for these languages. Furthermore, although the ENTER instruction
saves a few bytes of memory compared with the PUSH, MOV, SUB sequence (4 bytes versus 6
bytes), it actually takes longer to execute (10 clock cycles versus 6 clock cycles). Thus, although it
may have seemed a good idea to the instruction set designers to add this feature, it complicates the
implementation of the processor while providing little or no benefit. We will see that, in contrast, a
RISC approach to processor design would avoid complex instructions such as ENTER and might

produce a more efficient implementation with a sequence of simpler instructions.

MEMORY MANAGEMENT

Another set of specialized instructions deals with memory segmentation. These are privileged
instructions that can only be executed from the operating system. They allow local and global segment
tables (called descriptor tables) to be loaded and read, and for the privilege level of a segment to be
checked and altered.

The special instructions for dealing with the on-chip cache were discussed in Chapter 5.

STATUS FLAGS AND CONDITION CODES

Status flags are bits in special registers that may be set by certain operations and used in conditional
branch instructions. The term condition code refers to the settings of one or more status flags. In the
x86 and many other architectures, status flags are set by arithmetic and compare operations. The
compare operation in most languages subtracts two operands, as does a subtract operation. The
difference is that a compare operation only sets status flags, whereas a subtract operation also stores
the result of the subtraction in the destination operand. Some architectures also set status flags for
data transfer instructions.

Table 13.8 lists the status flags used on the x86. Each flag, or combinations of these flags, can be
tested for a conditional jump. Table 13.9 shows the condition codes (combinations of status flag
values) for which conditional jump opcodes have been defined.

Table 13.8 x86 Status Flags

Status
Bit

Name Description

C Carry Indicates carrying or borrowing out of the left-most bit position following an
arithmetic operation. Also modified by some of the shift and rotate operations.

P Parity Parity of the least-significant byte of the result of an arithmetic or logic
operation. 1 indicates even parity; 0 indicates odd parity.

A Auxiliary
Carry

Represents carrying or borrowing between half-bytes of an 8-bit arithmetic or
logic operation. Used in binary-coded decimal arithmetic.

Z Zero Indicates that the result of an arithmetic or logic operation is 0.

S Sign Indicates the sign of the result of an arithmetic or logic operation.

O Overflow Indicates an arithmetic overflow after an addition or subtraction for twos
complement arithmetic.

Table 13.9 x86 Condition Codes for Conditional Jump and SETcc Instructions

Symbol Condition Tested Comment

A, NBE Above; Not below or equal (greater
than, unsigned)

AE,
NB,
NC

Above or equal; Not below (greater
than or equal, unsigned); Not carry

B,
NAE, C

Below; Not above or equal (less
than, unsigned);
Carry set

BE, NA Below or equal; Not above (less
than or equal, unsigned)

E, Z Equal; Zero (signed or unsigned)

G, NLE Greater than; Not less than or
equal (signed)

GE, NL Greater than or equal; Not less
than (signed)

L, NGE Less than; Not greater than or
equal (signed)

LE, NG Less than or equal; Not greater
than (signed)

NE, NZ Not equal; Not zero (signed or
unsigned)

NO No overflow

NS Not sign (not negative)

NP,
PO

Not parity; Parity odd

O Overflow

P Parity; Parity even

S Sign (negative)

C = 0AND Z = 0

C = 0

C = 1

C = 1OR Z = 1

Z = 1

[(S = 1AND
O

= 1) OR (S = 0AND
O

= 0)] AND [Z = 0]

(S = 1AND O = 1) OR (S = 0AND O = 0)

(S = 1AND O = 0) OR (S = 0AND O = 0)

(S = 1AND
O

= 0) OR (S = 0AND
O

= 1) OR  (Z = 1)

Z = 0

O = 0

S = 0

P = 0

O = 1

P = 1

S = 1

Several interesting observations can be made about this list. First, we may wish to test two operands
to determine if one number is bigger than another. But this will depend on whether the numbers are
signed or unsigned. For example, the 8-bit number 11111111 is bigger than 00000000 if the two
numbers are interpreted as unsigned integers , but is less if they are considered as 8-bit
twos complement numbers . Many assembly languages therefore introduce two sets of terms
to distinguish the two cases: If we are comparing two numbers as signed integers, we use the terms
less than and greater than; if we are comparing them as unsigned integers, we use the terms below
and above.

A second observation concerns the complexity of comparing signed integers. A signed result is
greater than or equal to zero if (1) the sign bit is zero and there is no overflow , or (2)
the sign bit is one and there is an overflow. A study of Figure 11.4 should convince you that the
conditions tested for the various signed operations are appropriate.

X86 SIMD INSTRUCTIONS

In 1996, Intel introduced MMX technology into its Pentium product line. MMX is a set of highly
optimized instructions for multimedia tasks. There are 57 new instructions that treat data in a SIMD
(single-instruction, multiple-data) fashion, which makes it possible to perform the same operation,
such as addition or multiplication, on multiple data elements at once. Each instruction typically takes a
single clock cycle to execute. For the proper application, these fast parallel operations can yield a
speedup of two to eight times over comparable algorithms that do not use the MMX instructions
[ATKI96]. With the introduction of 64-bit x86 architecture, Intel has expanded this extension to include
double quadword (128 bits) operands and floating-point operations. In this subsection, we describe
the MMX features.

The focus of MMX is multimedia programming. Video and audio data are typically composed of large
arrays of small data types, such as 8 or 16 bits, whereas conventional instructions are tailored to
operate on 32- or 64-bit data. Here are some examples: In graphics and video, a single scene
consists of an array of pixels, and there are 8 bits for each pixel or 8 bits for each pixel color
component (red, green, blue). Typical audio samples are quantized using 16 bits. For some 3D
graphics algorithms, 32 bits are common for basic data types. To provide for parallel operation on
these data lengths, three new data types are defined in MMX. Each data type is 64 bits in length and
consists of multiple smaller data fields, each of which holds a fixed-point integer. The types are as
follows:

 A pixel, or picture element, is the smallest element of a digital image that can be assigned a gray level.

Equivalently, a pixel is an individual dot in a dot-matrix representation of a picture.

Packed byte: Eight bytes packed into one 64-bit quantity.
Packed word: Four 16-bit words packed into 64 bits.
Packed doubleword: Two 32-bit doublewords packed into 64 bits.

Table 13.10 lists the MMX instruction set. Most of the instructions involve parallel operation on bytes,
words, or doublewords. For example, the PSLLW instruction performs a left logical shift separately on
each of the four words in the packed word operand; the PADDB instruction takes packed byte
operands as input and performs parallel additions on each byte position independently to produce a
packed byte output.

Table 13.10 MMX Instruction Set
Note: If an instruction supports multiple data types [byte (B), word (W), doubleword (D), quadword

(255 > 0)
(− 1 < 0)

(S = 0AND O = 0)

2

2

(Q)], the data types are indicated in brackets.

Category Instruction Description

Arithmetic PADD [B, W,
D]

Parallel add of packed eight bytes, four 16-bit words, or two 32-bit
doublewords, with wraparound.

PADDS [B,
W]

Add with saturation.

PADDUS [B,
W]

Add unsigned with saturation.

PSUB [B, W,
D]

Subtract with wraparound.

PSUBS [B,
W]

Subtract with saturation.

PSUBUS [B,
W]

Subtract unsigned with saturation.

PMULHW Parallel multiply of four signed 16-bit words, with high-order 16 bits
of 32-bit result chosen.

PMULLW Parallel multiply of four signed 16-bit words, with low-order 16 bits of
32-bit result chosen.

PMADDWD Parallel multiply of four signed 16-bit words; add together adjacent
pairs of 32-bit results.

Comparison PCMPEQ [B,
W, D]

Parallel compare for equality; result is mask of 1s if true or 0s if
false.

PCMPGT [B,
W, D]

Parallel compare for greater than; result is mask of 1s if true or 0s if
false.

Conversion PACKUSWB Pack words into bytes with unsigned saturation.

PACKSS
[WB, DW]

Pack words into bytes, or doublewords into words, with signed
saturation.

PUNPCKH
[BW, WD,
DQ]

Parallel unpack (interleaved merge) high-order bytes, words, or
doublewords from MMX register.

PUNPCKL
[BW, WD,
DQ]

Parallel unpack (interleaved merge) low-order bytes, words, or
doublewords from MMX register.

Logical PAND 64-bit bitwise logical AND

PNDN 64-bit bitwise logical AND NOT

POR 64-bit bitwise logical OR

PXOR 64-bit bitwise logical XOR

Shift PSLL [W, D,
Q]

Parallel logical left shift of packed words, doublewords, or quadword
by amount specified in MMX register or immediate value.

PSRL [W, D,
Q]

Parallel logical right shift of packed words, doublewords, or
quadword.

PSRA [W, D] Parallel arithmetic right shift of packed words, doublewords, or
quadword.

Data
transfer

MOV [D, Q] Move doubleword or quadword to/from MMX register.

Statemgt EMMS Empty MMX state (empty FP registers tag bits).

One unusual feature of the new instruction set is the introduction of saturation arithmetic for byte
and 16-bit word operands. With ordinary unsigned arithmetic, when an operation overflows (i.e., a
carry out of the most significant bit), the extra bit is truncated. This is referred to as wraparound,
because the effect of the truncation can be, for example, to produce an addition result that is smaller
than the two input operands. Consider the addition of the two words, in hexadecimal, F000h and
3000h. The sum would be expressed as

If the two numbers represented image intensity, then the result of the addition is to make the
combination of two dark shades turn out to be lighter. This is typically not what is intended. With
saturation arithmetic, if addition results in overflow or subtraction results in underflow, the result is set
to the largest or smallest value representable. For the preceding example, with saturation arithmetic,
we have

F000h = 1111000000000000
+3000h = 0011000000000000

_
10010 0000 0000 0000=2000h

F0001 = 1111000000000000
+3000h = 0011000000000000

_
10010 0000 0000 0000
1111 1111 1111 1111=FFFFh

To provide a feel for the use of MMX instructions, we look at an example, taken from [PELE97]. A
common video application is the fade-out, fade-in effect, in which one scene gradually dissolves into
another. Two images are combined with a weighted average:

This calculation is performed on each pixel position in A and B. If a series of video frames is produced
while gradually changing the fade value from 1 to 0 (scaled appropriately for an 8-bit integer), the
result is to fade from image A to image B.

Figure 13.11 shows the sequence of steps required for one set of pixels. The 8-bit pixel components
are converted to 16-bit elements to accommodate the MMX 16-bit multiply capability. If these images
use resolution, and the dissolve technique uses all 255 possible values of the fade value,
then the total number of instructions executed using MMX is 535 million. The same calculation,
performed without the MMX instructions, requires 1.4 billion instruction executions [INTE98].

Result _ pixel = A _ pixel × fade + B _ pixel × (1 − fade)

640 × 480

Figure 13.11 Image Compositing on Color Plane Representation

ARM Operation Types

The ARM architecture provides a large collection of operation types. The following are the principal
categories:

Load and store instructions: In the ARM architecture, only load and store instructions access
memory locations; arithmetic and logical instructions are performed only on registers and
immediate values encoded in the instruction. This limitation is characteristic of RISC design and it
is explored further in Chapter 17. The ARM architecture supports two broad types of instruction
that load or store the value of a single register, or a pair of registers, from or to memory: (1) load or
store a 32-bit word or an 8-bit unsigned byte, and (2) load or store a 16-bit unsigned halfword, and
load and sign extend a 16-bit halfword or an 8-bit byte.
Branch instructions: ARM supports a branch instruction that allows a conditional branch forwards
or backwards up to 32 MB. A subroutine call can be performed by a variant of the standard branch
instruction. As well as allowing a branch forward or backward up to 32 MB, the Branch with Link
(BL) instruction preserves the address of the instruction after the branch (the return address) in the
LR (R14). Branches are determined by a 4-bit condition field in the instruction.
Data-processing instructions: This category includes logical instructions (AND, OR, XOR), add
and subtract instructions, and test and compare instructions.
Multiply instructions: The integer multiply instructions operate on word or halfword operands and
can produce normal or long results. For example, there is a multiply instruction that takes two 32-
bit operands and produces a 64-bit result.
Parallel addition and subtraction instructions: In addition to the normal data processing and
multiply instructions, there are a set of parallel addition and subtraction instructions, in which
portions of two operands are operated on in parallel. For example, ADD16 adds the top halfwords
of two registers to form the top halfword of the result and adds the bottom halfwords of the same
two registers to form the bottom halfword of the result. These instructions are useful in image
processing applications, similar to the x86 MMX instructions.
Extend instructions: There are several instructions for unpacking data by sign or zero extending
bytes to halfwords or words, and halfwords to words.
Status register access instructions: ARM provides the ability to read and also to write portions
of the status register.

CONDITION CODES

The ARM architecture defines four condition flags that are stored in the program status register: N, Z,
C, and V (Negative, Zero, Carry and oVerflow), with meanings essentially the same as the S, Z, C,
and V flags in the x86 architecture. These four flags constitute a condition code in ARM. Table 13.11
shows the combination of conditions for which conditional execution is defined.

Table 13.11 ARM Conditions for Conditional Instruction Execution

Code Symbol Condition Tested Comment

0000 EQ Equal

0001 NE Not equal

0010 CS/HS Carry set/unsigned higher or same

0011 CC/LO Carry clear/unsigned lower

0100 MI Minus/negative

0101 PL Plus/positive or zero

Z = 1

Z = 0

C = 1

C = 0

N = 1

N = 0

V = 1

0110 VS Overflow

0111 VC No overflow

1000 HI Unsigned higher

1001 LS Unsigned lower or same

1010 GE Signed greater than or equal

1011 LT Signed less than

1100 GT Signed greater than

1101 LE Signed less than or equal

1110 AL — Always (unconditional)

1111 — — This instruction can only be executed unconditionally

There are two unusual aspects to the use of condition codes in ARM:

1. All instructions, not just branch instructions, include a condition code field, which means that
virtually all instructions may be conditionally executed. Any combination of flag settings except
1110 or 1111 in an instruction’s condition code field signifies that the instruction will be executed
only if the condition is met.

2. All data processing instructions (arithmetic, logical) include an S bit that signifies whether the
instruction updates the condition flags.

The use of conditional execution and conditional setting of the condition flags helps in the design of
shorter programs that use less memory. On the other hand, all instructions include 4 bits for the
condition code, so there is a trade-off in that fewer bits in the 32-bit instruction are available for
opcode and operands. Because the ARM is a RISC design that relies heavily on register addressing,
this seems to be a reasonable trade-off.

V = 0

C = 1AND Z = 0

C = 0OR Z = 1

N = V
[(N = 1 AND V = 1)
OR (N = 0 AND V = 0)]

N ≠ V
[(N = 1 AND V = 0)
OR (N = 0 AND V = 1)]

(Z = 0) AND (N = V)

(Z = 1) OR (N ≠ V)

13.6 Key Terms, Review Questions, and Problems

Key Terms

accumulator

address

arithmetic shift

bi-endian

big endian

branch

conditional branch

instruction set

jump

little endian

logical shift

machine instruction

operand

operation

packed decimal

pop

procedure call

procedure return

push

reentrant procedure

rotate

skip

stack

Review Questions

13.1 What are the typical elements of a machine instruction?
13.2 What types of locations can hold source and destination operands?
13.3 If an instruction contains four addresses, what might be the purpose of each address?
13.4 List and briefly explain five important instruction set design issues.
13.5 What types of operands are typical in machine instruction sets?
13.6 What is the relationship between the IRA character code and the packed decimal
representation?

Problems

13.7 What is the difference between an arithmetic shift and a logical shift?
13.8 Why are transfer of control instructions needed?
13.9 List and briefly explain two common ways of generating the condition to be tested in a
conditional branch instruction.
13.10 What is meant by the term nesting of procedures?
13.11 List three possible places for storing the return address for a procedure return.
13.12 What is a reentrant procedure?
13.13 What is reverse Polish notation?
13.14 What is the difference between big endian and little endian?

13.1 Show in hex notation:
a. The packed decimal format for 23.
b. The ASCII characters 23.

13.2 For each of the following packed decimal numbers, show the decimal value:
a. 0111 0011 0000 1001
b. 0101 1000 0010
c. 0100 1010 0110

13.3 A given microprocessor has words of 1 byte. What is the smallest and largest integer that
can be represented in the following representations?

a. Unsigned.
b. Sign-magnitude.
c. Ones complement.
d. Twos complement.
e. Unsigned packed decimal.
f. Signed packed decimal.

13.4 Many processors provide logic for performing arithmetic on packed decimal numbers.
Although the rules for decimal arithmetic are similar to those for binary operations, the decimal
results may require some corrections to the individual digits if binary logic is used.
Consider the decimal addition of two unsigned numbers. If each number consists of N digits,
then there are 4N bits in each number. The two numbers are to be added using a binary adder.
Suggest a simple rule for correcting the result. Perform addition in this fashion on the numbers
1698 and 1786.
13.5 The tens complement of the decimal number X is defined to be , where N is the
number of decimal digits in the number. Describe the use of ten’s complement representation to
perform decimal subtraction. Illustrate the procedure by subtracting from .
13.6 Compare zero-, one-, two-, and three-address machines by writing programs to compute

for each of the four machines. The instructions available for use are as follows:

0 Address 1 Address 2 Address 3 Address

PUSH M LOAD M MOVE MOVE

POP M STORE M ADD ADD

10
N

− X

(0326)10 (0736)10

X = (A + B × C) / (D − E × F)

(X ← Y) (X ← Y)

(X ← X + Y) (X ← Y + Z)

ADD ADD M SUB SUB

SUB SUB M MUL MUL

MUL MUL M DIV DIV

DIV DIV M

13.7 Consider a hypothetical computer with an instruction set of only two n-bit instructions. The
first bit specifies the opcode, and the remaining bits specify one of the n-bit words of main
memory. The two instructions are as follows:

SUBS
X

Subtract the contents of location X from the accumulator, and store the result in
location X and the accumulator.

JUMP
X

Place address X in the program counter.

A word in main memory may contain either an instruction or a binary number in twos
complement notation. Demonstrate that this instruction repertoire is reasonably complete by
specifying how the following operations can be programmed:

a. Data transfer: Location X to accumulator, accumulator to location X.
b. Addition: Add contents of location X to accumulator.
c. Conditional branch.
d. Logical OR.
e. I/O Operations.

13.8 Many instruction sets contain the instruction NOOP, meaning no operation, which has no
effect on the processor state other than incrementing the program counter. Suggest some uses
of this instruction.
13.9 In Section 13.4 , it was stated that both an arithmetic left shift and a logical left shift
correspond to a multiplication by 2 when there is no overflow, and if overflow occurs, arithmetic
and logical left shift operations produce different results, but the arithmetic left shift retains the
sign of the number. Demonstrate that these statements are true for 5-bit twos complement
integers.
13.10 In what way are numbers rounded using arithmetic right shift (e.g., round toward ,

round toward , toward zero, away from 0)?

13.11 Suppose a stack is to be used by the processor to manage procedure calls and returns.
Can the program counter be eliminated by using the top of the stack as a program counter?
13.12 The x86 architecture includes an instruction called Decimal Adjust after Addition (DAA).
DAA performs the following sequence of instructions:

 if ((AL AND 0FH) >9) OR (AF = 1) then
 AL ← AL + 6;
 AF ← 1;
else

(X ← X − Y) (X ← Y − Z)

(X ← X × Y) (X ← Y × Z)

(X ← X / Y) (X ← Y / Z)

2
n − 1

+ ∞

− ∞

 AF d 0;
endif;
 if (AL > 9FH) OR (CF = 1) then
 AL ← AL + 60H;
 CF ← 1;
else
 CF ← 0;
endif.

“H” indicates hexadecimal. AL is an 8-bit register that holds the result of addition of two
unsigned 8-bit integers. AF is a flag set if there is a carry from bit 3 to bit 4 in the result of an
addition. CF is a flag set if there is a carry from bit 7 to bit 8. Explain the function performed by
the DAA instruction.
13.13 The x86 Compare instruction (CMP) subtracts the source operand from the destination
operand; it updates the status flags (C, P, A, Z, S, O) but does not alter either of the operands.
The CMP instruction can be used to determine if the destination operand is greater than, equal
to, or less than the source operand.

a. Suppose the two operands are treated as unsigned integers. Show which status flags are
relevant to determine the relative size of the two integers and what values of the flags
correspond to greater than, equal to, or less than.

b. Suppose the two operands are treated as twos complement signed integers. Show which
status flags are relevant to determine the relative size of the two integers and what values
of the flags correspond to greater than, equal to, or less than.

c. The CMP instruction may be followed by a conditional Jump (Jcc) or Set Condition
(SETcc) instruction, where cc refers to one of the 16 conditions listed in Table 13.11 .
Demonstrate that the conditions tested for a signed number comparison are correct.

13.14 Suppose we wished to apply the x86 CMP instruction to 32-bit operands that contained
numbers in a floating-point format. For correct results, what requirements have to be met in the
following areas?

a. The relative position of the significand, sign, and exponent fields.
b. The representation of the value zero.
c. The representation of the exponent.
d. Does the IEEE format meet these requirements? Explain.

13.15 Many microprocessor instruction sets include an instruction that tests a condition and sets
a destination operand if the condition is true. Examples include the SETcc on the x86, the Scc
on the Motorola MC68000, and the Scond on the National NS32000.

a. There are a few differences among these instructions:
SETcc and Scc operate only on a byte, whereas Scond operates on byte, word, and
doubleword operands.
SETcc and Scond set the operand to integer one if true and to zero if false. Scc sets
the byte to all binary ones if true and all zeros if false. What are the relative
advantages and disadvantages of these differences?

b. None of these instructions set any of the condition code flags, and thus an explicit test of
the result of the instruction is required to determine its value. Discuss whether condition
codes should be set as a result of this instruction.

c. A simple IF statement such as IF THEN can be implemented using a numerical
representation method, that is, making the Boolean value manifest, as opposed to a flow
of control method, which represents the value of a Boolean expression by a point
reached in the program. A compiler might implement IF THEN with the following

a > b

a > ssb

x86 code:

SUB CX, CX ;set register CX to 0

MOV AX, B ;move contents of location B to register AX

CMP AX, A ;compare contents of register AX and location A

JLE TEST ;jump if

INC CX ;add 1 to contents of register CX

TEST JCXZ OUT ;jump if contents of CX equal 0

THEN OUT

The result of is a Boolean value held in a register and available later on, outside
the context of the flow of code just shown. It is convenient to use register CX for this,
because many of the branch and loop opcodes have a built-in test for CX.
Show an alternative implementation using the SETcc instruction that saves memory and
execution time. (Hint: No additional new x86 instructions are needed, other than the
SETcc.)

d. Now consider the high-level language statement:

A compiler might generate the following code:

MOV EAX, B ;move contents of location B to register EAX

CMP EAX, C ;compare contents of register EAX and location C

MOV BL, 0 ;0 represents false

JLE N1 ;jump if

MOV BL, 1 ;1 represents false

N1 MOV EAX, D

CMP EAX, F

MOV BH, 0

JNE N2

MOV BH, 1

N2 OR BL, BH

A ≤ B

(A > B)

A : = (B > C) OR (D = F)

(B ≤ C)

Show an alternative implementation using the SETcc instruction that saves memory and
execution time.

13.16 Suppose that two registers contain the following hexadecimal values: AB0890C2,
4598EE50. What is the result of adding them using MMX instructions:

a. packed byte.
b. packed word.

Assume saturation arithmetic is not used.

13.17 Appendix E points out that thereThere are no stack-oriented instructions in an instruction
set if the stack is to be used only by the processor for such purposes as procedure handling.
How can the processor use a stack for any purpose without stack-oriented instructions?
13.18 Mathematical formulas are usually expressed in what is known as infix notation, in which
a binary operator appears between the operands. An alternative technique is known as reverse
Polish, or postfix, notation, in which the operator follows its two operands. See Appendix E for
more details. Convert the following formulas from reverse Polish to infix:

a.

b.

c.

d.

13.19 Convert the following formulas from infix to reverse Polish:
a.

b.

c.

d.

13.20 Convert the expression to postfix notation using Dijkstra’s algorithm. Show the
steps involved. Is the result equivalent to or ? Does it matter?
13.21 Using the algorithm for converting infix to postfix defined in Appendix E , show the steps
involved in converting the expression of Figure E.3 into postfix. Use a presentation similar to
Figure E.5 .
13.22 Show the calculation of the expression in Figure E.5 , using a presentation similar to
Figure E.4 .
13.23 Redraw the little-endian layout in Figure 13.13 so that the bytes appear as numbered in
the big-endian layout. That is, show memory in 64-bit rows, with the bytes listed left to right, top
to bottom.

AB + C + D×

AB / CD / +

ABCDE + × × /

ABCDE + F / + G − H / × +

A + B + C + D + E
(A + B) × (C + D) + E
(A × B) + (C × D) + E
(A − B) × (((C − D × E) / F) / G) × H

A + B − C
(A + B) − C A + (B − C)

Figure 13.13 Example C Data Structure and Its Endian Maps

13.24 For the following data structures, draw the big-endian and little-endian layouts, using the
format of Figure 13.13 , and comment on the results.

a. struct {
 double i; //0x1112131415161718
} s1;

b. struct {
 int i; //0x11121314
 int j; //0x15161718
} s2;

c. struct {
 short i; //0x1112
 short j; //0x1314
 short k; //0x1516
 short l; //0x1718
} s3;

13.25 The IBM Power architecture specification does not dictate how a processor should

implement little-endian mode. It specifies only the view of memory a processor must have when
operating in little-endian mode. When converting a data structure from big endian to little
endian, processors are free to implement a true byte-swapping mechanism or to use some sort
of an address modification mechanism. Current Power processors are all default big-endian
machines and use address modification to treat data as little-endian.
Consider the structure s defined in Figure 13.13 . The layout in the lower-right portion of the
figure shows the structure s as seen by the processor. In fact, if structures is compiled in little-
endian mode, its layout in memory is shown in Figure 13.13. Explain the mapping that is
involved, describe an easy way to implement the mapping, and discuss the effectiveness of this
approach.

Figure 13.12 Power Architecture Little-Endian Structures in Memory

13.26 Write a small program to determine the endianness of a machine and report the results.
Run the program on a computer available to you and turn in the output.
13.27 The MIPS processor can be set to operate in either big-endian or little-endian mode.
Consider the Load Byte Unsigned (LBU) instruction, which loads a byte from memory into the
low-order 8 bits of a register and fills the high-order 24 bits of the register with zeros. The
description of LBU is given in the MIPS reference manual using a register-transfer language as

mem ← LoadMemory(…)
byte ← VirtualAddress
if CONDITION then
 GPR[rt] ← 0 ||mem × ×
else
 GPR[rt] ← 0 ||mem × ×
endif

where byte refers to the two low-order bits of the effective address and mem refers to the value
loaded from memory. In the manual, instead of the word CONDITION, one of the following two
words is used: BigEndian, LittleEndian. Which word is used?
13.28 Most, but not all, processors use big- or little-endian bit ordering within a byte that is
consistent with big- or little-endian ordering of bytes within a multibyte scalar. Let us consider
the Motorola 68030, which uses big-endian byte ordering. The documentation of the 68030
concerning formats is confusing. The user’s manual explains that the bit ordering of bit fields is
the opposite of bit ordering of integers. Most bit field operations operate with one endian

1..0

24
31 – 8 byte .. 24 – 8 byte

24
7 + 8 byte .. 8 byte

ordering, but a few bit field operations require the opposite ordering. The following description
from the user’s manual describes most of the bit field operations:
A bit operand is specified by a base address that selects one byte in memory (the base byte),
and a bit number that selects the one bit in this byte. The most significant bit is bit seven. A bit
field operand is specified by: (1) a base address that selects one byte in memory; (2) a bit field
offset that indicates the leftmost (base) bit of the bit field in relation to the most significant bit of
the base byte; and (3) a bit field width that determines how many bits to the right of the base
byte are in the bit field. The most significant bit of the base byte is bit field offset 0, the least
significant bit of the base byte is bit field offset 7.

Do these instructions use big-endian or little-endian bit ordering?

Appendix 13A Little-, Big-, and Bi-Endian
An annoying and curious phenomenon relates to how the bytes within a word and the bits within a
byte are both referenced and represented. We look first at the problem of byte ordering and then
consider that of bits.

Byte Ordering
The concept of endianness was first discussed in the literature by Cohen [COHE81]. With respect to
bytes, endianness has to do with the byte ordering of multibyte scalar values. The issue is best
introduced with an example. Suppose we have the 32-bit hexadecimal value 12345678, and that it is
stored in a 32-bit word in byte-addressable memory at byte location 184. The value consists of 4
bytes, with the least significant byte containing the value 78 and the most significant byte containing
the value 13. There are two obvious ways to store this value:

Address Value Address Value

184 12 184 78

185 34 185 56

186 56 186 34

187 78 187 12

The mapping on the left stores the most significant byte in the lowest numerical byte address; this is
known as big endian and is equivalent to the left-to-right order of writing in Western culture
languages. The mapping on the right stores the least significant byte in the lowest numerical byte
address; this is known as little endian and is reminiscent of the right-to-left order of arithmetic
operations in arithmetic units. For a given multibyte scalar value, big endian and little endian are
byte-reversed mappings of each other.

 The terms big endian and little endian come from Part I, Chapter 4 of Jonathan Swift’s Gulliver’s Travels. They

refer to a religious war between two groups, one that breaks eggs at the big end and the other that breaks eggs at
the little end.

The concept of endianness arises when it is necessary to treat a multiple-byte entity as a single data
item with a single address, even though it is composed of smaller addressable units. Some machines,
such as the Intel 80x86, x86, VAX, and Alpha, are little-endian machines, whereas others, such as the
IBM System 370/390, the Motorola 680x0, Sun SPARC, and most RISC machines, are big endian.
This presents problems when data are transferred from a machine of one endian type to the other,
and when a programmer attempts to manipulate individual bytes or bits within a multibyte scalar.

The property of endianness does not extend beyond an individual data unit. In any machine,
aggregates such as files, data structures, and arrays are composed of multiple data units, each with
endianness. Thus, conversion of a block of memory from one style of endianness to the other requires
knowledge of the data structure.

3

3

Figure 13.13 illustrates how endianness determines addressing and byte order. The C structure at the
top contains a number of data types. The memory layout in the lower left results from compilation of
that structure for a big-endian machine, and that in the lower right for a little-endian machine. In each
case, memory is depicted as a series of 64-bit rows. For the big-endian case, memory typically is
viewed left to right, top to bottom, whereas for the little-endian case, memory typically is viewed as
right to left, top to bottom. Note that these layouts are arbitrary. Either scheme could use either left to
right or right to left within a row; this is a matter of depiction, not memory assignment. In fact, in
looking at programmer manuals for a variety of machines, a bewildering collection of depictions is to
be found, even within the same manual.

struct{
 int a; //0x1112_1314	 word
 int pad; //
 double b; //0x2122_2324_2526_2728	 doubleword
 char* c; //0x3132_3334	 word
 char d[7]; //'A','B','C','D','E','F','G'	 byte array
 short e; //0x5152	 halfword
 int f; //0x6162_6364	 word
} s;

We can make several observations about this data structure:

Each data item has the same address in both schemes. For example, the address of the
doubleword with hexadecimal value 2122232425262728 is 08.
Within any given multibyte scalar value, the ordering of bytes in the little-endian structure is the
reverse of that for the big-endian structure.
Endianness does not affect the ordering of data items within a structure. Thus, the four-character
word c exhibits byte reversal, but the seven-character byte array d does not. Hence, the address of
each individual element of d is the same in both structures.

Figure 13.14 Another View of Figure 13.13

The effect of endianness is perhaps more clearly demonstrated when we view memory as a vertical
array of bytes, as shown in Figure 13.14.

There is no general consensus as to which is the superior style of endianness. The following points
favor the big-endian style:

 The prophet revered by both groups in the Endian Wars of Gulliver’s Travels had this to say. “All true Believers

shall break their Eggs at the convenient End.” Not much help!

Character-string sorting: A big-endian processor is faster in comparing integer-aligned character
strings; the integer ALU can compare multiple bytes in parallel.

4

4

Decimal/IRA dumps: All values can be printed left to right without causing confusion.
Consistent order: Big-endian processors store their integers and character strings in the same
order (most significant byte comes first).

The following points favor the little-endian style:

A big-endian processor has to perform addition when it converts a 32-bit integer address to a 16-bit
integer address, to use the least significant bytes.
It is easier to perform higher-precision arithmetic with the little-endian style; you don’t have to find
the least-significant byte and move backward.

The differences are minor and the choice of endian style is often more a matter of accommodating
previous machines than anything else.

The PowerPC is a bi-endian processor that supports both big-endian and little-endian modes. The bi-
endian architecture enables software developers to choose either mode when migrating operating
systems and applications from other machines. The operating system establishes the endian mode in
which processes execute. Once a mode is selected, all subsequent memory loads and stores are
determined by the memory-addressing model of that mode. To support this hardware feature, 2 bits
are maintained in the machine state register (MSR) maintained by the operating system as part of the
process state. One bit specifies the endian mode in which the kernel runs; the other specifies the
processor’s current operating mode. Thus, mode can be changed on a per-process basis.

Bit Ordering
In ordering the bits within a byte, we are immediately faced with two questions:

1. Do you count the first bit as bit zero, or as bit one?
2. Do you assign the lowest bit number to the byte’s least significant bit (little endian), or to the

bytes, most significant bit (big endian)?

These questions are not answered in the same way on all machines. Indeed, on some machines, the
answers are different in different circumstances. Furthermore, the choice of big- or little-endian bit
ordering within a byte is not always consistent with big- or little-endian ordering of bytes within a
multibyte scalar. The programmer needs to be concerned with these issues when manipulating
individual bits.

Another area of concern is when data are transmitted over a bit-serial line. When an individual byte is
transmitted, does the system transmit the most significant bit first, or the least significant bit first? The
designer must make certain that incoming bits are handled properly. For a discussion of this issue,
see [JAME90].

Chapter 14 Instruction Sets: Addressing Modes and Formats

14.5 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Describe the various types of addressing modes common in instruction sets.
Present an overview of x86 and ARM addressing modes.
Summarize the issues and trade- ​offs involved in designing an instruction format .
Present an overview of x86 and ARM instruction formats.
Understand the distinction between machine language and assembly language.

In Chapter 13, we focused on what an instruction set does. Specifically, we
examined the types of operands and operations that may be specified by machine
instructions. This chapter turns to the question of how to specify the operands and
operations of instructions. Two issues arise. First, how is the address of an
operand specified, and second, how are the bits of an instruction organized to
define the operand addresses and operation of that instruction?

14.1 Addressing Modes
Immediate Addressing
Direct Addressing
Indirect Addressing
Register Addressing
Register Indirect Addressing
Displacement Addressing
Stack Addressing

14.2 x86 and ARM Addressing Modes
x86 Addressing Modes
ARM Addressing Modes

14.3 Instruction Formats
Instruction Length
Allocation of Bits
Variable-​Length Instructions

14.4 x86 and ARM Instruction Formats
x86 Instruction Formats
ARM Instruction Formats

14.1 Addressing Modes
The address field or fields in a typical instruction format are relatively small. We would like to be able
to reference a large range of locations in main memory or, for some systems, virtual memory. To
achieve this objective, a variety of addressing techniques has been employed. They all involve some
trade-​off between address range and/or addressing flexibility, on the one hand, and the number of
memory references in the instruction and/or the complexity of address calculation, on the other. In this
section, we examine the most common addressing techniques, or modes:

Immediate
Direct
Indirect
Register
Register indirect
Displacement
Stack

These modes are illustrated in Figure 14.1. In this section, we use the following notation:
A = contents of an address field in the instruction
R = contents of an address field in the instruction that refers to a register

EA = actual (effective) address of the location containing the referenced operand
(X) = contents of memory location X or register X

Figure 14.1 Addressing Modes

Table 14.1 indicates the address calculation performed for each addressing mode.

Table 14.1 Basic Addressing Modes

Mode Algorithm Principal Advantage Principal Disadvantage

Immediate No memory reference Limited operand magnitude

Direct Simple Limited address space

Indirect Large address space Multiple memory references

Operand = A

EA = A

EA = (A)

EA = R

Register No memory reference Limited address space

Register indirect Large address space Extra memory reference

Displacement Flexibility Complexity

Stack No memory reference Limited applicability

Before beginning this discussion, two comments need to be made. First, virtually all computer
architectures provide more than one of these addressing modes. The question arises as to how the
processor can determine which address mode is being used in a particular instruction. Several
approaches are taken. Often, different opcodes will use different addressing modes. Also, one or more
bits in the instruction format can be used as a mode field. The value of the mode field determines
which addressing mode is to be used.

The second comment concerns the interpretation of the effective address (EA). In a system without
virtual memory, the effective address will be either a main memory address or a register. In a virtual
memory system, the effective address is a virtual address or a register. The actual mapping to a
physical address is a function of the memory management unit (MMU) and is invisible to the
programmer.

Immediate Addressing

The simplest form of addressing is immediate addressing , in which the operand value is present
in the instruction

This mode can be used to define and use constants or set initial values of variables. Typically, the
number will be stored in twos complement form; the leftmost bit of the operand field is used as a sign
bit. When the operand is loaded into a data register, the sign bit is extended to the left to the full data
word size. In some cases, the immediate binary value is interpreted as an unsigned nonnegative
integer.

The advantage of immediate addressing is that no memory reference other than the instruction fetch
is required to obtain the operand, thus saving one memory or cache cycle in the instruction cycle. The
disadvantage is that the size of the number is restricted to the size of the address field, which, in most
instruction sets, is small compared with the word length.

Direct Addressing

A very simple form of addressing is direct addressing, in which the address field contains the effective
address of the operand:

The technique was common in earlier generations of computers, but is not common on contemporary
architectures. It requires only one memory reference and no special calculation. The obvious limitation
is that it provides only a limited address space.

EA = (R)

EA = A + (R)

EA = top of stack

Operand = A

EA = A

Indirect Addressing

With direct addressing, the length of the address field is usually less than the word length, thus limiting
the address range. One solution is to have the address field refer to the address of a word in memory,
which in turn contains a full- ​length address of the operand. This is known as indirect addressing :

As defined earlier, the parentheses are to be interpreted as meaning contents of. The obvious
advantage of this approach is that for a word length of N, an address space of is now available.
The disadvantage is that instruction execution requires two memory references to fetch the operand:
one to get its address and a second to get its value.

Although the number of words that can be addressed is now equal to , the number of different
effective addresses that may be referenced at any one time is limited to , where K is the length of
the address field. Typically, this is not a burdensome restriction, and it can be an asset. In a virtual
memory environment, all the effective address locations can be confined to page 0 of any process.
Because the address field of an instruction is small, it will naturally produce low- ​numbered direct
addresses, which would appear in page 0. (The only restriction is that the page size must be greater
than or equal to .) When a process is active, there will be repeated references to page 0, causing it
to remain in real memory. Thus, an indirect memory reference will involve, at most, one page fault
rather than two.

A rarely used variant of indirect addressing is multilevel or cascaded indirect addressing:

In this case, one bit of a full-​word address is an indirect flag (I). If the I bit is 0, then the word contains
the EA. If the I bit is 1, then another level of indirection is invoked. There does not appear to be any
particular advantage to this approach, and its disadvantage is that three or more memory references
could be required to fetch an operand.

Register Addressing

Register addressing is similar to direct addressing. The only difference is that the address field refers
to a register rather than a main memory address:

To clarify, if the contents of a register address field in an instruction is 5, then register R5 is the
intended address, and the operand value is contained in R5. Typically, an address field that
references registers will have from 3 to 5 bits, so that a total of from 8 to 32 general- ​purpose registers
can be referenced.

The advantages of register addressing are that (1) only a small address field is needed in the
instruction, and (2) no time- ​consuming memory references are required. As was discussed in Chapter
5, the memory access time for a register internal to the processor is much less than that for a main
memory address. The disadvantage of register addressing is that the address space is very limited.

If register addressing is heavily used in an instruction set, this implies that the processor registers will
be heavily used. Because of the severely limited number of registers (compared with main memory
locations), their use in this fashion makes sense only if they are employed efficiently. If every operand

EA = (A)

2
N

2
N

2
K

2
K

EA = (… (A) …)

EA = R

is brought into a register from main memory, operated on once, and then returned to main memory,
then a wasteful intermediate step has been added. If, instead, the operand in a register remains in use
for multiple operations, then a real savings is achieved. An example is the intermediate result in a
calculation. In particular, suppose that the algorithm for twos complement multiplication were to be
implemented in software. The location labeled A in the flowchart (Figure 11.12) is referenced many
times and should be implemented in a register rather than a main memory location.

It is up to the programmer or compiler to decide which values should remain in registers, and which
should be stored in main memory. Most modern processors employ multiple general- ​purpose
registers, placing a burden for efficient execution on the assembly- ​language programmer (e.g.,
compiler writer).

Register Indirect Addressing

Just as register addressing is analogous to direct addressing, register indirect addressing is
analogous to indirect addressing. In both cases, the only difference is whether the address field refers
to a memory location or a register. Thus, for register indirect address,

The advantages and limitations of register indirect addressing are basically the same as for indirect
addressing. In both cases, the address space limitation (limited range of addresses) of the address
field is overcome by having that field refer to a word- ​length location containing an address. In addition,
register indirect addressing uses one less memory reference than indirect addressing.

Displacement Addressing

A very powerful mode of addressing combines the capabilities of direct addressing and register
indirect addressing. It is known by a variety of names depending on the context of its use, but the
basic mechanism is the same. We will refer to this as displacement addressing:

Displacement addressing requires that the instruction have two address fields, at least one of which is
explicit. The value contained in one address field is used directly. The other address field,
or an implicit reference based on opcode, refers to a register whose contents are added to A to
produce the effective address.

We will describe three of the most common uses of displacement addressing:

Relative addressing
Base-​register addressing
Indexing

Relative Addressing

For relative addressing, also called PC- ​relative addressing, the implicitly referenced register is the
program counter (PC). That is, the next instruction address is added to the address field to produce
the EA. Typically, the address field is treated as a twos complement number for this operation. Thus,
the effective address is a displacement relative to the address of the instruction.

Relative addressing exploits the concept of locality that was discussed in Chapters 4 and 9. If most

EA = (R)

EA = A + (R)

(value = A)

memory references are relatively near to the instruction being executed, then the use of relative
addressing saves address bits in the instruction.

Base-Register Addressing

For base-​register addressing, the interpretation is the following: The referenced register contains a
main memory address, and the address field contains a displacement (usually an unsigned integer
representation) from that address. The register reference may be explicit or implicit.

Base-​register addressing also exploits the locality of memory references. It is a convenient means of
implementing segmentation, which was discussed in Chapter 9. In some implementations, a single
segment-​base register is employed and is used implicitly. In others, the programmer may choose a
register to hold the base address of a segment, and the instruction must reference it explicitly. In this
latter case, if the length of the address field is K and the number of possible registers is N, then one
instruction can reference any one of N areas of words.

Indexing

For indexing, the interpretation is typically the following: The address field references a main memory
address, and the referenced register contains a positive displacement from that address. Note that
this usage is just the opposite of the interpretation for base- ​register addressing. Of course, it is more
than just a matter of user interpretation. Because the address field is considered to be a memory
address in indexing, it generally contains more bits than an address field in a comparable
base-​register instruction. Also, we will see that there are some refinements to indexing that would not
be as useful in the base- ​register context. Nevertheless, the method of calculating the EA is the same
for both base-​register addressing and indexing, and in both cases the register reference is sometimes
explicit and sometimes implicit (for different processor types).

An important use of indexing is to provide an efficient mechanism for performing iterative operations.
Consider, for example, a list of numbers stored starting at location A. Suppose that we would like to
add 1 to each element on the list. We need to fetch each value, add 1 to it, and store it back. The
sequence of effective addresses that we need is up to the last location on the
list. With indexing, this is easily done. The value A is stored in the instruction’s address field, and the
chosen register, called an index register, is initialized to 0. After each operation, the index register is
incremented by 1.

Because index registers are commonly used for such iterative tasks, it is typical that there is a need to
increment or decrement the index register after each reference to it. Because this is such a common
operation, some systems will automatically do this as part of the same instruction cycle. This is known
as autoindexing . If certain registers are devoted exclusively to indexing, then autoindexing can be
invoked implicitly and automatically. If general- ​purpose registers are used, the autoindex operation
may need to be signaled by a bit in the instruction. Autoindexing using increment can be depicted as
follows.

In some machines, both indirect addressing and indexing are provided, and it is possible to employ
both in the same instruction. There are two possibilities: the indexing is performed either before or
after the indirection.

If indexing is performed after the indirection, it is termed postindexing:

2
K

A , A + 1 , A + 2 , . . . ,

EA = A + (R)
(R) ← (R) + 1

First, the contents of the address field are used to access a memory location containing a direct
address. This address is then indexed by the register value. This technique is useful for accessing one
of a number of blocks of data of a fixed format. For example, it was described in Chapter 9 that the
operating system needs to employ a process control block for each process. The operations
performed are the same regardless of which block is being manipulated. Thus, the addresses in the
instructions that reference the block could point to a location containing a variable pointer
to the start of a process control block. The index register contains the displacement within the block.

With preindexing, the indexing is performed before the indirection:

An address is calculated as with simple indexing. In this case, however, the calculated address
contains not the operand, but the address of the operand. An example of the use of this technique is
to construct a multiway branch table. At a particular point in a program, there may be a branch to one
of a number of locations depending on conditions. A table of addresses can be set up starting at
location A. By indexing into this table, the required location can be found.

Typically, an instruction set will not include both preindexing and postindexing.

Stack Addressing

The final addressing mode that we consider is stack addressing. As defined in Appendix E, a
A stack
is a linear array of locations. It is sometimes referred to as a pushdown list or last-​in-​first-​out queue.
The stack is a reserved block of locations. Items are appended to the top of the stack so that, at any
given time, the block is partially filled. Associated with the stack is a pointer whose value is the
address of the top of the stack. Alternatively, the top two elements of the stack may be in processor
registers, in which case the stack pointer references the third element of the stack. The stack pointer
is maintained in a register. Thus, references to stack locations in memory are in fact register indirect
addresses.

The stack mode of addressing is a form of implied addressing. The machine instructions need not
include a memory reference, but implicitly operate on the top of the stack.

EA = (A) + (R)

(value = A)

EA = (A + (R))

14.2 x86 and ARM Addressing Modes

x86 Addressing Modes

Recall from Figure 9.21 that the x86 address translation mechanism produces an address, called a
virtual or effective address, that is an offset into a segment. The sum of the starting address of the
segment and the effective address produces a linear address. If paging is being used, this linear
address must pass through a page- ​translation mechanism to produce a physical address. In what
follows, we ignore this last step because it is transparent to the instruction set and to the programmer.

The x86 is equipped with a variety of addressing modes intended to allow the efficient execution of
high- ​level languages. Figure 14.2 indicates the logic involved. The segment register determines the
segment that is the subject of the reference. There are six segment registers; the one being used for a
particular reference depends on the context of execution and the instruction. Each segment register
holds an index into the segment descriptor table (Figure 9.20), which holds the starting address of the
corresponding segments. Associated with each user- ​visible segment register is a segment descriptor
register (not programmer visible), which records the access rights for the segment as well as the
starting address and limit (length) of the segment. In addition, there are two registers that may be
used in constructing an address: the base register and the index register.

Figure 14.2 x86 Addressing Mode Calculation

Table 14.2 lists the x86 addressing modes. Let us consider each of these in turn.

Table 14.2 x86 Addressing Modes

Mode Algorithm

Immediate

Register Operand

Displacement

Base

Base with Displacement

Scaled Index with Displacement

Base with Index and Displacement

Base with Scaled Index and Displacement

Relative

For the immediate mode, the operand is included in the instruction. The operand can be a byte,
word, or doubleword of data.

For register operand mode, the operand is located in a register. For general instructions, such as
data transfer, arithmetic, and logical instructions, the operand can be one of the 32-bit general
registers (EAX, EBX, ECX, EDX, ESI, EDI, ESP, EBP), one of the 16-bit general registers (AX, BX,
CX, DX, SI, DI, SP, BP), or one of the 8-bit general registers (AH, BH, CH, DH, AL, BL, CL, DL). There
are also some instructions that reference the segment selector registers (CS, DS, ES, SS, FS, GS).

The remaining addressing modes reference locations in memory. The memory location must be
specified in terms of the segment containing the location and the offset from the beginning of the

LA = linear address

(X) = contents of X

SR = segment register

PC = program counter

A = contents of an address field in the instruction

R = register

B = base register

I = index register

S = scaling factor

Operand = A

LA = R

LA = (SR) + A

LA = (SR) + (B)

LA = (SR) + (B) + A

LA = (SR) + (I) × S + A

LA = (SR) + (B) + (I) + A

LA = (SR) + (I) × S + (B) + A

LA = (PC) + A

segment. In some cases, a segment is specified explicitly; in others, the segment is specified by
simple rules that assign a segment by default.

In the displacement mode, the operand’s offset (the effective address of Figure 14.2) is contained as
part of the instruction as an 8-, 16-, or 32-bit displacement. With segmentation, all addresses in
instructions refer merely to an offset in a segment. The displacement addressing mode is found on
few machines because, as mentioned earlier, it leads to long instructions. In the case of the x86, the
displacement value can be as long as 32 bits, making for a 6-byte instruction. Displacement
addressing can be useful for referencing global variables.

The remaining addressing modes are indirect, in the sense that the address portion of the instruction
tells the processor where to look to find the address. The base mode specifies that one of the 8-, 16-,
or 32-bit registers contains the effective address. This is equivalent to what we have referred to as
register indirect addressing.

In the base with displacement mode, the instruction includes a displacement to be added to a base
register, which may be any of the general- ​purpose registers. Examples of uses of this mode are as
follows:

Used by a compiler to point to the start of a local variable area. For example, the base register
could point to the beginning of a stack frame, which contains the local variables for the
corresponding procedure.
Used to index into an array when the element size is not 1, 2, 4, or 8 bytes and which therefore
cannot be indexed using an index register. In this case, the displacement points to the beginning of
the array, and the base register holds the results of a calculation to determine the offset to a
specific element within the array.
Used to access a field of a record. The base register points to the beginning of the record, while
the displacement is an offset to the field.

In the scaled index with displacement mode, the instruction includes a displacement to be added to
a register, in this case called an index register. The index register may be any of the general- ​purpose
registers except the one called ESP, which is generally used for stack processing. In calculating the
effective address, the contents of the index register are multiplied by a scaling factor of 1, 2, 4, or 8,
and then added to a displacement. This mode is very convenient for indexing arrays. A scaling factor
of 2 can be used for an array of 16-bit integers. A scaling factor of 4 can be used for 32-bit integers or
floating- ​point numbers. Finally, a scaling factor of 8 can be used for an array of double- ​precision
floating- ​point numbers.

The base with index and displacement mode sums the contents of the base register, the index
register, and a displacement to form the effective address. Again, the base register can be any
general- ​purpose register and the index register can be any general- ​purpose register except ESP. As
an example, this addressing mode could be used for accessing a local array on a stack frame. This
mode can also be used to support a two- ​dimensional array; in this case, the displacement points to
the beginning of the array, and each register handles one dimension of the array.

The based scaled index with displacement mode sums the contents of the index register multiplied
by a scaling factor, the contents of the base register, and the displacement. This is useful if an array is
stored in a stack frame; in this case, the array elements would be 2, 4, or 8 bytes each in length. This
mode also provides efficient indexing of a two- ​dimensional array when the array elements are 2, 4, or
8 bytes in length.

Finally, relative addressing can be used in transfer- ​of-​control instructions. A displacement is added
to the value of the program counter, which points to the next instruction. In this case, the displacement
is treated as a signed byte, word, or doubleword value, and that value either increases or decreases

the address in the program counter.

ARM Addressing Modes

Typically, a RISC machine, unlike a CISC machine, uses a simple and relatively straightforward set of
addressing modes. The ARM architecture departs somewhat from this tradition by providing a
relatively rich set of addressing modes. These modes are most conveniently classified with respect to
the type of instruction.

 As with our discussion of x86 addressing, we ignore the translation from virtual to physical address in the following

discussion.

LOAD/STORE ADDRESSING

Load and store instructions are the only instructions that reference memory. This is always done
indirectly through a base register plus offset. There are three alternatives with respect to indexing
(Figure 14.3):

Offset: For this addressing method, indexing is not used. An offset value is added to or
subtracted from the value in the base register to form the memory address. As an example, Figure
14.3a illustrates this method with the assembly language instruction STRB r0, [r1, #12]! .
This is the store byte instruction. In this case the base address is in register r1 and the
displacement is an immediate value of decimal 12. The resulting address (base plus offset) is the
location where the least significant byte from r0 is to be stored.
Preindex: The memory address is formed in the same way as for offset addressing. The memory
address is also written back to the base register. In other words, the base register value is
incremented or decremented by the offset value. Figure 14.3b illustrates this method with the
assembly language instruction STRB r0, [r1, #12]! . The exclamation point signifies
preindexing.
Postindex: The memory address is the base register value. An offset is added to or subtracted
from the base register value and the result is written back to the base register. Figure 14.3c
illustrates this method with the assembly language instruction STRB r0, [r1], #12 .

1

1

Figure 14.3 ARM Indexing Methods

Note that what ARM refers to as a base register acts as an index register for preindex and postindex
addressing. The offset value can either be an immediate value stored in the instruction, or it can be in
another register. If the offset value is in a register, another useful feature is available: scaled register
addressing. The value in the offset register is scaled by one of the shift operators: Logical Shift Left,
Logical Shift Right, Arithmetic Shift Right, Rotate Right, or Rotate Right Extended (which includes the

carry bit in the rotation). The amount of the shift is specified as an immediate value in the instruction.

DATA PROCESSING INSTRUCTION ADDRESSING

Data processing instructions use either register addressing or a mixture of register and immediate
addressing. For register addressing, the value in one of the register operands may be scaled using
one of the five shift operators defined in the preceding paragraph.

BRANCH INSTRUCTIONS

The only form of addressing for branch instructions is immediate addressing. The branch instruction
contains a 24-bit value. For address calculation, this value is shifted left 2 bits, so that the address is
on a word boundary. Thus the effective address range is from the program counter.

LOAD/STORE MULTIPLE ADDRESSING

Load Multiple instructions load a subset (possibly all) of the general- ​purpose registers from memory.
Store Multiple instructions store a subset (possibly all) of the general- ​purpose registers to memory.
The list of registers for the load or store is specified in a 16-bit field in the instruction, with each bit
corresponding to one of the 16 registers. Load and Store Multiple addressing modes produce a
sequential range of memory addresses. The lowest- ​numbered register is stored at the lowest memory
address and the highest- ​numbered register at the highest memory address. Four addressing modes
are used (Figure 14.4): increment after, increment before, decrement after, and decrement before. A
base register specifies a main memory address where register values are stored in or loaded from in
ascending (increment) or descending (decrement) word locations. Incrementing or decrementing
starts either before or after the first memory access.

Figure 14.4 ARM Load/Store Multiple Addressing

These instructions are useful for block loads or stores, stack operations, and procedure exit
sequences.

±32MB

14.3 Instruction Formats
An instruction format defines the layout of the bits of an instruction, in terms of its constituent fields. An
instruction format must include an opcode and, implicitly or explicitly, zero or more operands. Each
explicit operand is referenced using one of the addressing modes described in Section 14.1. The
format must, implicitly or explicitly, indicate the addressing mode for each operand. For most
instruction sets, more than one instruction format is used.

The design of an instruction format is a complex art, and an amazing variety of designs have been
implemented. We examine the key design issues, looking briefly at some designs to illustrate points,
and then we examine the x86 and ARM solutions in detail.

Instruction Length

The most basic design issue to be faced is the instruction format length. This decision affects, and is
affected by, memory size, memory organization, bus structure, processor complexity, and processor
speed. This decision determines the richness and flexibility of the machine as seen by the
assembly- ​language programmer.

The most obvious trade- ​off here is between the desire for a powerful instruction repertoire and a need
to save space. Programmers want more opcodes, more operands, more addressing modes, and
greater address range. More opcodes and more operands make life easier for the programmer,
because shorter programs can be written to accomplish given tasks. Similarly, more addressing
modes give the programmer greater flexibility in implementing certain functions, such as table
manipulations and multiple- ​way branching. And, of course, with the increase in main memory size and
the increasing use of virtual memory, programmers want to be able to address larger memory ranges.
All of these things (opcodes, operands, addressing modes, address range) require bits and push in
the direction of longer instruction lengths. But longer instruction length may be wasteful. A 64-bit
instruction occupies twice the space of a 32-bit instruction, but is probably less than twice as useful.

Beyond this basic trade- ​off, there are other considerations. Either the instruction length should be
equal to the memory- ​transfer length (in a bus system, databus length) or one should be a multiple of
the other. Otherwise, we will not get an integral number of instructions during a fetch cycle. A related
consideration is the memory transfer rate. This rate has not kept up with increases in processor
speed. Accordingly, memory can become a bottleneck if the processor can execute instructions faster
than it can fetch them. One solution to this problem is to use cache memory (see Section 4.3);
another is to use shorter instructions. Thus, 16-bit instructions can be fetched at twice the rate of 32-
bit instructions, but probably can be executed less than twice as rapidly.

A seemingly mundane but nevertheless important feature is that the instruction length should be a
multiple of the character length, which is usually 8 bits, and of the length of fixed- ​point numbers. To
see this, we need to make use of that unfortunately ill- ​defined word, word [FRAI83]. The word length
of memory is, in some sense, the “natural” unit of organization. The size of a word usually determines
the size of fixed-​point numbers (usually the two are equal). Word size is also typically equal to, or at
least integrally related to, the memory transfer size. Because a common form of data is character
data, we would like a word to store an integral number of characters. Otherwise, there are wasted bits
in each word when storing multiple characters, or a character will have to straddle a word boundary.
The importance of this point is such that IBM, when it introduced the System/360 and wanted to
employ 8-bit characters, made the wrenching decision to move from the 36-bit architecture of the
scientific members of the 700/7000 series to a 32-bit architecture.

Allocation of Bits

We’ve looked at some of the factors that go into deciding the length of the instruction format. An
equally difficult issue is how to allocate the bits in that format. The trade- ​offs here are complex.

For a given instruction length, there is clearly a trade- ​off between the number of opcodes and the
power of the addressing capability. More opcodes obviously mean more bits in the opcode field. For
an instruction format of a given length, this reduces the number of bits available for addressing. There
is one interesting refinement to this trade- ​off, and that is the use of variable-​length opcodes. In this
approach, there is a minimum opcode length but, for some opcodes, additional operations may be
specified by using additional bits in the instruction. For a fixedlength instruction, this leaves fewer bits
for addressing. Thus, this feature is used for those instructions that require fewer operands and/or less
powerful addressing.

The following interrelated factors go into determining the use of the addressing bits.

Number of addressing modes: Sometimes an addressing mode can be indicated implicitly. For
example, certain opcodes might always call for indexing. In other cases, the addressing modes
must be explicit, and one or more mode bits will be needed.
Number of operands: We have seen that fewer addresses can make for longer, more awkward
programs (e.g., Figure 13.3). Typical instruction formats on today’s machines include two
operands. Each operand address in the instruction might require its own mode indicator, or the use
of a mode indicator could be limited to just one of the address fields.
Register versus memory: A machine must have registers so that data can be brought into the
processor for processing. With a single user- ​visible register (usually called the accumulator), one
operand address is implicit and consumes no instruction bits. However, single- ​register
programming is awkward and requires many instructions. Even with multiple registers, only a few
bits are needed to specify the register. The more that registers can be used for operand
references, the fewer bits are needed. A number of studies indicate that a total of 8 to 32
user-​visible registers is desirable [LUND77, HUCK83]. Most contemporary architectures have at
least 32 registers.
Number of register sets: Most contemporary machines have one set of general- ​purpose
registers, with typically 32 or more registers in the set. These registers can be used to store data
and can be used to store addresses for displacement addressing. Some architectures, including
that of the x86, have a collection of two or more specialized sets (such as data and displacement).
One advantage of this latter approach is that, for a fixed number of registers, a functional split
requires fewer bits to be used in the instruction. For example, with two sets of eight registers, only
3 bits are required to identify a register; the opcode or mode register will determine which set of
registers is being referenced.
Address range: For addresses that reference memory, the range of addresses that can be
referenced is related to the number of address bits. Because this imposes a severe limitation,
direct addressing is rarely used. With displacement addressing, the range is opened up to the
length of the address register. Even so, it is still convenient to allow rather large displacements
from the register address, which requires a relatively large number of address bits in the
instruction.
Address granularity: For addresses that reference memory rather than registers, another factor is
the granularity of addressing. In a system with 16- or 32-bit words, an address can reference a
word or a byte at the designer’s choice. Byte addressing is convenient for character manipulation
but requires, for a fixed-​size memory, more address bits.

Thus, the designer is faced with a host of factors to consider and balance. How critical the various
choices are is not clear. As an example, we cite one study [CRAG79] that compared various
instruction format approaches, including the use of a stack, general- ​purpose registers, an

accumulator, and only memory- ​to-​register approaches. Using a consistent set of assumptions, no
significant difference in code space or execution time was observed.

Let us briefly look at how two historical machine designs balance these various factors.

PDP-8

One of the simplest instruction designs for a general- ​purpose computer was for the PDP- ​8 [BELL78b].
The PDP-​8 uses 12-bit instructions and operates on 12-bit words. There is a single general- ​purpose
register, the accumulator.

Despite the limitations of this design, the addressing is quite flexible. Each memory reference consists
of 7 bits plus two 1-bit modifiers. The memory is divided into fixed- ​length pages of words
each. Address calculation is based on references to page 0 or the current page (page containing this
instruction) as determined by the page bit. The second modifier bit indicates whether direct or indirect
addressing is to be used. These two modes can be used in combination, so that an indirect address is
a 12-bit address contained in a word of page 0 or the current page. In addition, 8 dedicated words on
page 0 are autoindex “registers.” When an indirect reference is made to one of these locations,
preindexing occurs.

Figure 14.5 shows the PDP-​8 instruction format. There are a 3-bit opcode and three types of
instructions. For opcodes 0 through 5, the format is a single- ​address memory reference instruction
including a page bit and an indirect bit. Thus, there are only six basic operations. To enlarge the group
of operations, opcode 7 defines a register reference or microinstruction. In this format, the remaining
bits are used to encode additional operations. In general, each bit defines a specific operation (e.g.,
clear accumulator), and these bits can be combined in a single instruction. The microinstruction
strategy was used as far back as the PDP-​1 by DEC and is, in a sense, a forerunner of today’s
microprogrammed machines, to be discussed in Part Four. Opcode 6 is the I/O operation; 6 bits are
used to select one of 64 devices, and 3 bits specify a particular I/O command.

27 = 128

Figure 14.5 PDP-​8 Instruction Formats

The PDP-​8 instruction format is remarkably efficient. It supports indirect addressing, displacement
addressing, and indexing. With the use of the opcode extension, it supports a total of approximately
35 instructions. Given the constraints of a 12-bit instruction length, the designers could hardly have
done better.

PDP-10

A sharp contrast to the instruction set of the PDP-​8 is that of the PDP-​10. The PDP-​10 was designed
to be a large- ​scale time-​shared system, with an emphasis on making the system easy to program,
even if additional hardware expense was involved.

Among the design principles employed in designing the instruction set were the following [BELL78c]:

Orthogonality: Orthogonality is a principle by which two variables are independent of each other.
In the context of an instruction set, the term indicates that other elements of an instruction are
independent of (not determined by) the opcode. The PDP- ​10 designers use the term to describe
the fact that an address is always computed in the same way, independent of the opcode. This is in
contrast to many machines, where the address mode sometimes depends implicitly on the operator
being used.
Completeness: Each arithmetic data type (integer, fixed- ​point, floating- ​point) should have a
complete and identical set of operations.
Direct addressing: Base plus displacement addressing, which places a memory organization

burden on the programmer, was avoided in favor of direct addressing.
Each of these principles advances the main goal of ease of programming.

The PDP-​10 has a 36-bit word length and a 36-bit instruction length. The fixed instruction format is
shown in Figure 14.6. The opcode occupies 9 bits, allowing up to 512 operations. In fact, a total of
365 different instructions are defined. Most instructions have two addresses, one of which is one of 16
general- ​purpose registers. Thus, this operand reference occupies 4 bits. The other operand reference
starts with an 18-bit memory address field. This can be used as an immediate operand or a memory
address. In the latter usage, both indexing and indirect addressing are allowed. The same
general- ​purpose registers are also used as index registers.

Figure 14.6 PDP-​10 Instruction Format

A 36-bit instruction length is a true luxury. There is no need to do clever things to get more opcodes; a
9-bit opcode field is more than adequate. Addressing is also straightforward. An 18-bit address field
makes direct addressing desirable. For memory sizes greater than , indirection is provided. For the
ease of the programmer, indexing is provided for table manipulation and iterative programs. Also, with
an 18-bit operand field, immediate addressing becomes attractive.

The PDP-​10 instruction set design does accomplish the objectives listed earlier [LUND77]. It eases
the task of the programmer or compiler at the expense of an inefficient utilization of space. This was a
conscious choice made by the designers and therefore cannot be faulted as poor design.

Variable- ​Length Instructions

The examples we have looked at so far have used a single fixed instruction length, and we have
implicitly discussed trade- ​offs in that context. But the designer may choose instead to provide a variety
of instruction formats of different lengths. This tactic makes it easy to provide a large repertoire of
opcodes, with different opcode lengths. Addressing can be more flexible, with various combinations of
register and memory references plus addressing modes. With variable- ​length instructions, these many
variations can be provided efficiently and compactly.

The principal price to pay for variable- ​length instructions is an increase in the complexity of the
processor. Falling hardware prices, the use of microprogramming (discussed in Part Four), and a
general increase in understanding of the principles of processor design have all contributed to making
this a small price to pay. However, we will see that RISC and superscalar machines can exploit the
use of fixed-​length instructions to provide improved performance.

The use of variable- ​length instructions does not remove the desirability of making all of the instruction
lengths integrally related to the word length. Because the processor does not know the length of the
next instruction to be fetched, a typical strategy is to fetch a number of bytes or words equal to at least
the longest possible instruction. This means that sometimes multiple instructions are fetched.
However, as we shall see in Chapter 16, this is a good strategy to follow in any case.

PD-11

The PDP-​11 was designed to provide a powerful and flexible instruction set within the constraints of a

218

16-bit minicomputer [BELL70].

The PDP-​11 employs a set of eight 16-bit general- ​purpose registers. Two of these registers have
additional significance: one is used as a stack pointer for special- ​purpose stack operations, and one is
used as the program counter, which contains the address of the next instruction.

Figure 14.7 shows the PDP-​11 instruction formats. Thirteen different formats are used, encompassing
zero-, one-, and two- ​address instruction types. The opcode can vary from 4 to 16 bits in length.
Register references are 6 bits in length. Three bits identify the register, and the remaining 3 bits
identify the addressing mode. The PDP- ​11 is endowed with a rich set of addressing modes. One
advantage of linking the addressing mode to the operand rather than the opcode, as is sometimes
done, is that any addressing mode can be used with any opcode. As was mentioned, this
independence is referred to as orthogonality.

Figure 14.7 Instruction Formats for the PDP-​11

PDP-​11 instructions are usually one word (16 bits) long. For some instructions, one or two memory
addresses are appended, so that 32-bit and 48-bit instructions are part of the repertoire. This provides
for further flexibility in addressing.

The PDP-​11 instruction set and addressing capability are complex. This increases both hardware cost
and programming complexity. The advantage is that more efficient or compact programs can be
developed.

VAX

Most architectures provide a relatively small number of fixed instruction formats. This can cause two
problems for the programmer. First, addressing mode and opcode are not orthogonal. For example,
for a given operation, one operand must come from a register and another from memory, or both from
registers, and so on. Second, only a limited number of operands can be accommodated: typically up
to two or three. Because some operations inherently require more operands, various strategies must
be used to achieve the desired result using two or more instructions.

To avoid these problems, two criteria were used in designing the VAX instruction format [STRE78]:

1. All instructions should have the “natural” number of operands.
2. All operands should have the same generality in specification.

The result is a highly variable instruction format. An instruction consists of a 1- or 2-byte opcode
followed by from zero to six operand specifiers, depending on the opcode. The minimal instruction
length is 1 byte, and instructions up to 37 bytes can be constructed. Figure 14.8 gives a few
examples.

Figure 14.8 Example of VAX Instructions

The VAX instruction begins with a 1-byte opcode. This suffices to handle most VAX instructions.
However, as there are over 300 different instructions, 8 bits are not enough. The hexadecimal codes
FD and FF indicate an extended opcode, with the actual opcode being specified in the second byte.

The remainder of the instruction consists of up to six operand specifiers. An operand specifier is, at
minimum, a 1-byte format in which the leftmost 4 bits are the address mode specifier. The only
exception to this rule is the literal mode, which is signaled by the pattern 00 in the leftmost 2 bits,
leaving space for a 6-bit literal. Because of this exception, a total of 12 different addressing modes can
be specified.

An operand specifier often consists of just one byte, with the rightmost 4 bits specifying one of 16
general- ​purpose registers. The length of the operand specifier can be extended in one of two ways.
First, a constant value of one or more bytes may immediately follow the first byte of the operand
specifier. An example of this is the displacement mode, in which an 8-, 16-, or 32-bit displacement is

used. Second, an index mode of addressing may be used. In this case, the first byte of the operand
specifier consists of the 4-bit addressing mode code of 0100 and a 4-bit index register identifier. The
remainder of the operand specifier consists of the base address specifier, which may itself be one or
more bytes in length.

The reader may be wondering, as the author did, what kind of instruction requires six operands.
Surprisingly, the VAX has a number of such instructions. Consider

ADDP6 OP1, OP2, OP3, OP4, OP5, OP6

This instruction adds two packed decimal numbers. OP1 and OP2 specify the length and starting
address of one decimal string; OP3 and OP4 specify a second string. These two strings are added
and the result is stored in the decimal string whose length and starting location are specified by OP5
and OP6.

The VAX instruction set provides for a wide variety of operations and addressing modes. This gives a
programmer, such as a compiler writer, a very powerful and flexible tool for developing programs. In
theory, this should lead to efficient machine- ​language compilations of high- ​level language programs
and, in general, to effective and efficient use of processor resources. The penalty to be paid for these
benefits is the increased complexity of the processor compared with a processor with a simpler
instruction set and format.

We return to these matters in Chapter 17, where we examine the case for very simple instruction
sets.

14.4 x86 and ARM Instruction Formats

x86 Instruction Formats

The x86 is equipped with a variety of instruction formats. Of the elements described in this subsection,
only the opcode field is always present. Figure 14.9 illustrates the general instruction format.
Instructions are made up of from zero to four optional instruction prefixes, a 1- or 2-byte opcode, an
optional address specifier (which consists of the ModR/M byte and the Scale Index Base byte) an
optional displacement, and an optional immediate field.

Figure 14.9 x86 Instruction Format

Let us first consider the prefix bytes:

Instruction prefixes: The instruction prefix, if present, consists of the LOCK prefix or one of the
repeat prefixes. The LOCK prefix is used to ensure exclusive use of shared memory in
multiprocessor environments. The repeat prefixes specify repeated operation of a string, which
enables the x86 to process strings much faster than with a regular software loop. There are five
different repeat prefixes: REP, REPE, REPZ, REPNE, and REPNZ. When the absolute REP prefix
is present, the operation specified in the instruction is executed repeatedly on successive elements
of the string; the number of repetitions is specified in register CX. The conditional REP prefix
causes the instruction to repeat until the count in CX goes to zero, or until the condition is met.
Segment override: Explicitly specifies which segment register an instruction should use,
overriding the default segment- ​register selection generated by the x86 for that instruction.
Operand size: An instruction has a default operand size of 16 or 32 bits, and the operand prefix
switches between 32-bit and 16-bit operands.
Address size: The processor can address memory using either 16- or 32-bit addresses. The

address size determines the displacement size in instructions and the size of address offsets
generated during effective address calculation. One of these sizes is designated as default, and
the address size prefix switches between 32-bit and 16-bit address generation.

The instruction itself includes the following fields:

Opcode: The opcode field is 1, 2, or 3 bytes in length. The opcode may also include bits that
specify if data is byte-​ or full-​size (16 or 32 bits depending on context), direction of data operation
(to or from memory), and whether an immediate data field must be sign extended.
ModR/M: This byte, and the next, provide addressing information. The ModR/M byte specifies
whether an operand is in a register or in memory; if it is in memory, then fields within the byte
specify the addressing mode to be used. The ModR/M byte consists of three fields: The Mod field
(2 bits) combines with the R/M field to form 32 possible values: 8 registers and 24 indexing modes;
the Reg/Opcode field (3 bits) specifies either a register number or three more bits of opcode
information; the R/M field (3 bits) can specify a register as the location of an operand, or it can form
part of the addressing- ​mode encoding in combination with the Mod field.
SIB: Certain encoding of the ModR/M byte specifies the inclusion of the SIB byte to specify fully
the addressing mode. The SIB byte consists of three fields: The Scale field (2 bits) specifies the
scale factor for scaled indexing; the Index field (3 bits) specifies the index register; the Base field (3
bits) specifies the base register.
Displacement: When the addressing- ​mode specifier indicates that a displacement is used, an 8-,
16-, or 32-bit signed integer displacement field is added.
Immediate: Provides the value of an 8-, 16-, or 32-bit operand.

Several comparisons may be useful here. In the x86 format, the addressing mode is provided as part
of the opcode sequence rather than with each operand. Because only one operand can have
address- ​mode information, only one memory operand can be referenced in an instruction. In contrast,
the VAX carries the address- ​mode information with each operand, allowing memory- ​to-​memory
operations. The x86 instructions are therefore more compact. However, if a memory- ​to-​memory
operation is required, the VAX can accomplish this in a single instruction.

The x86 format allows the use of not only 1-byte, but also 2-byte and 4-byte offsets for indexing.
Although the use of the larger index offsets results in longer instructions, this feature provides needed
flexibility. For example, it is useful in addressing large arrays or large stack frames. In contrast, the
IBM S/370 instruction format allows offsets no greater than 4 Kbytes (12 bits of offset information),
and the offset must be positive. When a location is not in reach of this offset, the compiler must
generate extra code to generate the needed address. This problem is especially apparent in dealing
with stack frames that have local variables occupying in excess of 4 Kbytes. As [DEWA90] puts it,
“generating code for the 370 is so painful as a result of that restriction that there have even been
compilers for the 370 that simply chose to limit the size of the stack frame to 4 Kbytes.”

As can be seen, the encoding of the x86 instruction set is very complex. This has to do partly with the
need to be backward compatible with the 8086 machine and partly with a desire on the part of the
designers to provide every possible assistance to the compiler writer in producing efficient code. It is a
matter of some debate whether an instruction set as complex as this is preferable to the opposite
extreme of the RISC instruction sets.

ARM Instruction Formats

All instructions in the ARM architecture are 32 bits long and follow a regular format (Figure 14.10).
The first four bits of an instruction are the condition code. As discussed in Chapter 13, virtually
Virtually all ARM instructions can be conditionally executed. The next three bits specify the general
type of instruction. For most instructions other than branch instructions, the next five bits constitute an
opcode and/or modifier bits for the operation. The remaining 20 bits are for operand addressing. The

regular structure of the instruction formats eases the job of the instruction decode units.

Figure 14.10 ARM Instruction Formats

IMMEDIATE CONSTANTS

To achieve a greater range of immediate values, the data processing immediate format specifies both
an immediate value and a rotate value. The 8-bit immediate value is expanded to 32 bits and then
rotated right by a number of bits equal to twice the 4-bit rotate value. Several examples are shown in
Figure 14.11.

Figure 14.11 Examples of Use of ARM Immediate Constants

THUMB INSTRUCTION SET

The Thumb instruction set is a re-​encoded subset of the ARM instruction set. Thumb is designed to
increase the performance of ARM implementations that use a 16-bit or narrower memory data bus
and to allow better code density than provided by the ARM instruction for both 16-bit and 32-bit
processors. The Thumb instruction set was created by analyzing the 32-bit ARM instruction set and
deriving the best fit 16-bit instruction set, thus reducing code size. The savings is achieved in the
following way:

1. Thumb instructions are unconditional, so the condition code field is not used. Also, all Thumb
arithmetic and logic instructions update the condition flags, so that the update- ​flag bit is not
needed. Savings: 5 bits.

2. Thumb has only a subset of the operations in the full instruction set and uses only a 2-bit
opcode field, plus a 3-bit type field. Savings: 2 bits.

3. The remaining savings of 9 bits comes from reductions in the operand specifications. For
example, Thumb instructions reference only registers r0 through r7, so only 3 bits are required
for register references, rather than 4 bits. Immediate values do not include a 4-bit rotate field.

The ARM processor can execute a program consisting of a mixture of Thumb instructions and 32-bit
ARM instructions. A bit in the processor control register determines which type of instruction is
currently being executed. Figure 14.12 shows an example. The figure shows both the general format
and a specific instance of an instruction in both 16-bit and 32-bit formats.

Figure 14.12 Expanding a Thumb ADD Instruction into its ARM Equivalent

THUMB-2 INSTRUCTION SET

With the introduction of the Thumb instruction set, the user was required to blend instruction sets by
compiling performance critical code to ARM and the rest to Thumb. This manual code blending
requires additional effort and it is difficult to achieve optimal results. To overcome these problems,
ARM developed the Thumb- ​2 instruction set, which is the only instruction set available on the
Cortex-​M microcontroller products.

Thumb-​2 is a major enhancement to the Thumb instruction set architecture (ISA). It introduces 32-bit
instructions that can be intermixed freely with the older 16-bit Thumb instructions. These new 32-bit
instructions cover almost all the functionality of the ARM instruction set. The most important difference
between the Thumb ISA and the ARM ISA is that most 32-bit Thumb instructions are unconditional,
whereas almost all ARM instructions can be conditional. However, Thumb- ​2 introduces a new If-​Then
(IT) instruction that delivers much of the functionality of the condition field in ARM instructions.
Thumb-​2 delivers overall code density comparable with Thumb, together with the performance levels
associated with the ARM ISA. Before Thumb- ​2, developers had to choose between Thumb for size
and ARM for performance.

[ROBI07] reports on an analysis of the Thumb- ​2 instruction set compared with the ARM and original
Thumb instruction sets. The analysis involved compiling and executing the Embedded Microprocessor
Benchmark Consortium (EEMBC) benchmark suite using the three instruction sets, with the following
results:

With compilers optimized for performance, Thumb- ​2 size was 26% smaller than ARM, and slightly
larger than original Thumb.
With compilers optimized for space, Thumb- ​2 size was 32% smaller than ARM, and slightly smaller
than original Thumb.
With compilers optimized for performance, Thumb- ​2 performance on the benchmark suite was
98% of ARM performance and 125% of original Thumb performance.

These results confirm that Thumb-​2 meets its design objectives.

Figure 14.13 shows how the new 32-bit Thumb instructions are encoded. The encoding is compatible
with the existing Thumb unconditional branch instructions, which has the bit pattern 11100 in the five

leftmost bits of the instruction. No other 16-bit instruction begins with the pattern 111 in the three
leftmost bits, so the bit patterns 11101, 11110, and 11111 indicate that this is a 32-bit Thumb
instruction.

Figure 14.13 Thumb-​2 Encoding

14.5 Key Terms, Review Questions, and Problems

Key Terms

autoindexing

base-​register addressing

direct addressing

displacement addressing

effective address

immediate addressing

indexing

indirect addressing

instruction format

postindexing

preindexing

register addressing

register indirect addressing

relative addressing

word

Review Questions

Problems

14.1 Briefly define immediate addressing.
14.2 Briefly define direct addressing .
14.3 Briefly define indirect addressing.
14.4 Briefly define register addressing.
14.5 Briefly define register indirect addressing.
14.6 Briefly define displacement addressing.
14.7 Briefly define relative addressing.
14.8 What is the advantage of autoindexing?
	14.9 What is the difference between postindexing and preindexing?
14.10 What facts go into determining the use of the addressing bits of an instruction?
14.11 What are the advantages and disadvantages of using a variable- ​length instruction
format?

14.1 Given the following memory values and a one- ​address machine with an accumulator, what
values do the following instructions load into the accumulator?

Word 20 contains 40.
Word 30 contains 50.

Word 40 contains 60.
Word 50 contains 70.
a. LOAD IMMEDIATE 20
b. LOAD DIRECT 20
c. LOAD INDIRECT 20
d. LOAD IMMEDIATE 30
e. LOAD DIRECT 30
f. LOAD INDIRECT 30

14.2 Let the address stored in the program counter be designated by the symbol X1. The
instruction stored in X1 has an address part (operand reference) X2. The operand needed to
execute the instruction is stored in the memory word with address X3. An index register
contains the value X4. What is the relationship between these various quantities if the
addressing mode of the instruction is (a) direct; (b) indirect; (c) PC relative; (d) indexed?
14.3 An address field in an instruction contains decimal value 14. Where is the corresponding
operand located for

a. immediate addressing?
b. direct addressing?
c. indirect addressing?
d. register addressing?
e. register indirect addressing?

14.4 Consider a 16-bit processor in which the following appears in main memory, starting at
location 200:

200 Load to AC Mode

201 500

202 Next instruction

The first part of the first word indicates that this instruction loads a value into an accumulator.
The Mode field specifies an addressing mode and, if appropriate, indicates a source register;
assume that when used, the source register is R1, which has a value of 400. There is also a
base register that contains the value 100. The value of 500 in location 201 may be part of the
address calculation. Assume that location 399 contains the value 999, location 400 contains the
value 1000, and so on. Determine the effective address and the operand to be loaded for the
following address modes:

a. Direct
b. Immediate
c. Indirect
d. PC relative
e. Displacement
f. Register
g. Register indirect
h. Autoindexing with increment, using R1

	14.5 A PC-​relative mode branch instruction is 3 bytes long. The address of the instruction, in
decimal, is 256028. Determine the branch target address if the signed displacement in the
instruction is .−31

14.6 A PC-​relative mode branch instruction is stored in memory at address . The branch is
made to location . The address field in the instruction is 10 bits long. What is the binary
value in the instruction?
14.7 How many times does the processor need to refer to memory when it fetches and
executes an indirect- ​address- ​mode instruction if the instruction is (a) a computation requiring a
single operand; (b) a branch?
14.8 The IBM 370 does not provide indirect addressing. Assume that the address of an operand
is in main memory. How would you access the operand?
14.9 In [COOK82], the author proposes that the PC-​relative addressing modes be eliminated in
favor of other modes, such as the use of a stack. What is the disadvantage of this proposal?
14.10 The x86 includes the following instruction:
IMUL op1, op2, immediate
This instruction multiplies op2, which may be either register or memory, by the immediate
operand value, and places the result in op1, which must be a register. There is no other
three-​operand instruction of this sort in the instruction set. What is the possible use of such an
instruction? (Hint: Consider indexing.)
14.11 Consider a processor that includes a base with indexing addressing mode. Suppose an
instruction is encountered that employs this addressing mode and specifies a displacement of
1970, in decimal. Currently the base and index register contain the decimal numbers 48,022
and 8, respectively. What is the address of the operand?
14.12 Define: is the effective address equal to the contents of location X, with X
incremented by one word length after the effective address is calculated; is the
effective address equal to the contents of location X, with X decremented by one word length
before the effective address is calculated; is the effective address equal to the
contents of location X, with X decremented by one word length after the effective address is
calculated. Consider the following instructions, each in the format (Operation Source Operand,
Destination Operand), with the result of the operation placed in the destination operand.

a. OP X, (X)
b.

c.

d.

e.

f.

g.

Using X as the stack pointer, which of these instructions can pop the top two elements from the
stack, perform the designated operation (e.g., ADD source to destination and store in
destination), and push the result back on the stack? For each such instruction, does the stack
grow toward memory location 0 or in the opposite direction?
14.13 Assume a stack-​oriented processor that includes the stack operations PUSH and POP.
Arithmetic operations automatically involve the top one or two stack elements. Begin with an
empty stack. What stack elements remain after the following instructions are executed?

PUSH 4

PUSH 7

PUSH 8

62010

53010

EA = (X) +

EA = − (X)

EA = (X) −

OP(X) , (X) +

OP(X) + , (X)

OP − (X) , (X)

OP − (X) , (X) +

OP(X) + , (X) +

OP(X) − , (X)

ADD

PUSH 10

SUB

MUL

	14.14 Justify the assertion that a 32-bit instruction is probably much less than twice as useful
as a 16-bit instruction.
14.15 Why was IBM’s decision to move from 36 bits to 32 bits per word wrenching, and to
whom?
14.16 Assume an instruction set that uses a fixed 16-bit instruction length. Operand specifiers
are 6 bits in length. There are K two-​operand instructions and L zero-​operand instructions. What
is the maximum number of one- ​operand instructions that can be supported?
14.17 Design a variable- ​length opcode to allow all of the following to be encoded in a 36-bit
instruction:

instructions with two 15-bit addresses and one 3-bit register number;
instructions with one 15-bit address and one 3-bit register number;
instructions with no addresses or registers.

14.18 Consider the results of Problem 10.6. Assume that M is a 16-bit memory address and that
X, Y, and Z are either 16-bit addresses or 4-bit register numbers. The one- ​address machine
uses an accumulator, and the two- ​ and three-​address machines have 16 registers and
instructions operating on all combinations of memory locations and registers. Assuming 8-bit
opcodes and instruction lengths that are multiples of 4 bits, how many bits does each machine
need to compute X?
14.19 Is there any possible justification for an instruction with two opcodes?
14.20 The 16-bit Zilog Z8001 has the following general instruction format:

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Mode Opcode w/b Operand 2 Operand 1

The mode field specifies how to locate the operands from the operand fields. The w/b field is
used in certain instructions to specify whether the operands are bytes or 16-bit words. The
operand 1 field may (depending on the mode field contents) specify one of 16 general- ​purpose
registers. The operand 2 field may specify any general- ​purpose registers except register 0.
When the operand 2 field is all zeros, each of the original opcodes takes on a new meaning.

a. How many opcodes are provided on the Z8001?
b. Suggest an efficient way to provide more opcodes and indicate the trade- ​off involved.

Chapter 15 Assembly Language and Related Topics

15.8 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the distinction between machine language and assembly language.
Discuss the advantages and disadvantages of using assembly language.
Describe the key elements in assembly language.
Be able to read and understand programs written in NASM.
Summarize the steps of the assembly process.
Present an overview of the loading and linking process.

This chapter is devoted to a discussion of assembly language and related topics.
There are a number of reasons why it is worthwhile to study assembly language

15.1 Assembly Language Concepts
15.2 Motivation for Assembly Language Programming
15.3 Assembly Language Elements

Statements
Pseudo-instructions
Macro Definitions
Directives
System Calls

15.4 Examples
Greatest Common Divisor
Prime Number Program
String Manipulation

15.5 Types of Assemblers
15.6 Assemblers

Two-Pass Assembler
One-Pass Assembler
Example: Prime Number Program

15.7 Loading and Linking
Relocation
Loading
Linking

programming (as compared with programming in a higher-level language),
including the following:

1. It clarifies the execution of instructions.
2. It shows how data are represented in memory.
3. It shows how a program interacts with the operating system, processor, and

the I/O system.
4. It clarifies how a program accesses external devices.
5. Understanding assembly language programmers makes students better

high-level language (HLL) programmers, by giving them a better idea of the
target language that the HLL must be translated into.

The chapter begins with an overview of assembly language concepts. This is
followed by a study of the basic elements of an assembly language, using the x86
architecture for our examples. Next, we look at the operation of the assembler.
This is followed by a discussion of linkers and loaders.

The examples in this chapter use the x86 architecture and machine instruction set,
and the Netwide Assembler (NASM), designed for use on x86 machines. NASM
has the advantage of being free and open source, and is popular for use on Linux
and UNIX operating systems.

Table 15.1 defines some of the key terms used in this chapter.

Table 15.1 Key Terms for this Chapter

Assembler

A program that translates assembly language into machine code.

Assembly Language

A symbolic representation of the machine language of a specific processor,
augmented by additional types of statements that facilitate program writing and
that provide instructions to the assembler.

Compiler

A program that converts another program from some source language (or
programming language) to machine language (object code). Some compilers
output assembly language which is then converted to machine language by a
separate assembler. A compiler is distinguished from an assembler by the fact
that each input statement does not, in general, correspond to a single machine

instruction or fixed sequence of instructions. A compiler may support such
features as automatic allocation of variables, arbitrary arithmetic expressions,
control structures such as FOR and WHILE loops, variable scope, input/output
operations, higher-order functions and portability of source code.

Executable Code

The machine code generated by a source code language processor such as an
assembler or compiler. This is software in a form that can be run in the
computer.

Instruction Set

The collection of all possible instructions for a particular computer; that is, the
collection of machine language instructions that a particular processor
understands.

Linker

A utility program that combines one or more files containing object code from
separately compiled program modules into a single file containing loadable or
executable code.

Loader

A program routine that copies an executable program into memory for
execution.

Machine Language, or Machine Code

The binary representation of a computer program which is actually read and
interpreted by the computer. A program in machine code consists of a sequence
of machine instructions (possibly interspersed with data). Instructions are binary
strings which may be either all the same size (e.g., one 32-bit word for many
modern RISC microprocessors) or of different sizes.

Object Code

The machine language representation of programming source code. Object
code is created by a compiler or assembler and is then turned into executable
code by the linker.

15.1 Assembly Language Concepts
A processor can understand and execute machine instructions. Such instructions are simply binary
numbers stored in the computer. If a programmer wished to program directly in machine language,
then it would be necessary to enter the program as binary data.

Consider the simple statement in the C programming language.

Suppose that we wished to program this statement in machine language and that the contents of i, j,
and k have been initialized to 2, 3, and 4, respectively. Assume a simple machine with a 16-bit word
length consisting of an 8-bit opcode and an 8-bit address, and the only available register is an
accumulator (AC). The binary program is shown in Figure 15.1a. The program starts in location 101
(decimal). Memory is reserved for the four variables starting at location 201. The program consists of
four instructions:

1. Load the contents of location 201 into the AC.
2. Add the contents of location 202 to the AC.
3. Add the contents of location 203 to the AC.
4. Store the contents of the AC in location 204.

This is clearly a tedious and very error-prone process.

A slight improvement is to write the program in hexadecimal rather than binary notation (Figure
15.1b). We could write the program as a series of lines. Each line contains the address of a memory
location and the hexadecimal code of the binary value to be stored in that location. Then we need a
program that will accept this input, translate each line into a binary number, and store it in the
specified location.

n = i + j + k;

Figure 15.1 Programming the Statement

For more improvement, we can make use of the symbolic name or mnemonic of each instruction; the
documentation for any machine includes such names (e.g., Table 13.9 for the x86 architecture). This
results in the symbolic program shown in Figure 15.1c. Each line of input still represents one memory
location. Each line consists of three fields, separated by spaces. The first field contains the address of
a location. For an instruction, the second field contains the three-letter symbol for the opcode. If it is a
memory-referencing instruction, then a third field contains the address. To store arbitrary data in a
location, we invent a pseudoinstruction with the symbol DAT. This is merely an indication that the third
field on the line contains a hexadecimal number to be stored in the location specified in the first field.

For this type of input, we need a slightly more complex program. The program accepts each line of
input, generates a binary number based on the second and third (if present) fields, and stores it in the
location specified by the first field.

The use of a symbolic program makes life much easier, but it is still awkward. In particular, we must
give an absolute address for each word. This means that the program and data can be loaded into
only one place in memory, and we must know that place ahead of time. Worse, suppose that we wish
to change the program some day by adding or deleting a line. This will change the addresses of all
subsequent words.

A much better system, and one commonly used, is to use symbolic addresses. This is illustrated in
Figure 15.1d. Each line still consists of three fields. The first field is still for the address, but a symbol
is used instead of an absolute numerical address. Some lines have no address, implying that the
address of that line is one more than the address of the previous line. For memory-reference
instructions, the third field also contains a symbolic address.

n = i + j + k

With this last refinement, we have an assembly language. Programs written in assembly language
(assembly programs) are translated into machine language by an assembler. This program must not
only do the symbolic translation discussed earlier, but also assign some form of memory addresses to
symbolic addresses.

The development of assembly language was a major milestone in the evolution of computer
technology. It was the first step to the high-level languages in use today. Although few programmers
use assembly language, virtually all machines provide one. They are used, if at all, for systems
programs such as compilers and I/O routines.

15.2 Motivation For Assembly Language Programming
Assembly language is a programming language that is one step away from machine language.
Typically, each assembly language instruction is translated into one machine instruction by the
assembler. Assembly language is hardware dependent, with a different assembly language for each
type of processor. In particular, assembly language instructions can make reference to specific
registers in the processor, include all of the opcodes of the processor, and reflect the bit length of the
various registers of the processor and operands of the machine language. An assembly language
programmer must therefore understand the computer’s architecture.

Programmers rarely use assembly language for applications, or even systems programs. HLLs
provide an expressive power and conciseness that greatly eases the programmer’s tasks. The
disadvantages of using an assembly language rather than an HLL include the following [FOG17]:

1. Development time. Writing code in assembly language takes much longer than writing in a
high-level language.

2. Reliability and security. It is easy to make errors in assembly code. The assembler is not
checking if the calling conventions and register save conventions are obeyed. Nobody is
checking for you if the number of PUSH and POP instructions is the same in all possible
branches and paths. There are so many possibilities for hidden errors in assembly code that it
affects the reliability and security of the project unless you have a very systematic approach to
testing and verifying.

3. Debugging and verifying. Assembly code is more difficult to debug and verify because there
are more possibilities for errors than in high-level code.

4. Maintainability. Assembly code is more difficult to modify and maintain because the language
allows unstructured spaghetti code and all kinds of tricks that are difficult for others to
understand. Thorough documentation and a consistent programming style are needed.

5. Portability. Assembly code is platform-specific. Porting to a different platform is difficult.
6. System code can use intrinsic functions instead of assembly. The best modern C++

compilers have intrinsic functions for accessing system control registers and other system
instructions. Assembly code is no longer needed for device drivers and other system code when
intrinsic functions are available.

7. Application code can use intrinsic functions or vector classes instead of assembly. The
best modern C++ compilers have intrinsic functions for vector operations and other special
instructions that previously required assembly programming.

8. Compilers have been improved a lot in recent years. The best compilers are now quite
good. It takes a lot of expertise and experience to optimize better than the best C++ compiler.

Yet there are still some advantages to the occasional use of assembly language, including the
following [FOG17]:

1. Debugging and verifying. Looking at compiler-generated assembly code or the disassembly
window in a debugger is useful for finding errors and for checking how well a compiler optimizes
a particular piece of code.

2. Making compilers. Understanding assembly coding techniques is necessary for making
compilers, debuggers, and other development tools.

3. Embedded systems. Small embedded systems have fewer resources than PCs and
mainframes. Assembly programming can be necessary for optimizing code for speed or size in
small embedded systems.

4. Hardware drivers and system code. Accessing hardware, system control registers, and so on
may sometimes be difficult or impossible with high level code.

5. Accessing instructions that are not accessible from high-level language. Certain assembly
instructions have no high-level language equivalent.

6. Self-modifying code. Self-modifying code is generally not profitable because it interferes with
efficient code caching. It may, however, be advantageous, for example, to include a small
compiler in math programs where a user-defined function has to be calculated many times.

7. Optimizing code for size. Storage space and memory is so cheap nowadays that it is not
worth the effort to use assembly language for reducing code size. However, cache size is still
such a critical resource that it may be useful in some cases to optimize a critical piece of code
for size in order to make it fit into the code cache.

8. Optimizing code for speed. Modern C++ compilers generally optimize code quite well in most
cases. But there are still cases where compilers perform poorly and where dramatic increases
in speed can be achieved by careful assembly programming.

9. Function libraries. The total benefit of optimizing code is higher in function libraries that are
used by many programmers.

10. Making function libraries compatible with multiple compilers and operating systems. It is
possible to make library functions with multiple entries that are compatible with different
compilers and different operating systems. This requires assembly programming.

The terms assembly language and machine language are sometimes, erroneously, used
synonymously. Machine language consists of instructions directly executable by the processor. Each
machine language instruction is a binary string containing an opcode, operand references, and
perhaps other bits related to execution, such as flags. For convenience, instead of writing an
instruction as a bit string, it can be written symbolically, with names for opcodes and registers. An
assembly language makes much greater use of symbolic names, including assigning names to
specific main memory locations and specific instruction locations. Assembly language also includes
statements that are not directly executable but serve as instructions to the assembler that produces
machine code from an assembly language program.

15.3 Assembly Language Elements

Statements

The heart of any assembly language program are statements. A statement in a typical assembly
language has the form shown in Figure 15.2. It consists of four elements: label, mnemonic, operand,
and comment.

Figure 15.2 Assembly-Language Statement Structure

LABEL

 If a label is present, the assembler defines the label as equivalent to the address into which the first
byte of the object code generated for that instruction will be loaded. The programmer may
subsequently use the label as an address or as data in another instruction’s address field. The
assembler replaces the label with the assigned value when creating an object program. Labels are
most frequently used in branch instructions.

As an example, here is a program fragment:

L2: SUB EAX, EDX ; subtract contents of register EDX
from
 ; contents of EAX and store result in
EAX
 JG L2 ; jump to L2 if result of subtraction is
 ; positive

The program will continue to loop back to location L2 until the result is zero or negative. Thus, when
the jg instruction is executed, if the result is positive, the processor places the address equivalent to
the label L2 in the program counter.

Reasons for using a label include the following:

1. A label makes a program location easier to find and remember.
2. The label can easily be moved to correct a program. The assembler will automatically change

the address in all instructions that use the label when the program is reassembled.
3. The programmer does not have to calculate relative or absolute memory addresses, but just

uses labels as needed.

MNEMONIC

  The mnemonic is the name of the operation or function of the assembly language statement. As
discussed subsequently, a statement can correspond to a machine instruction, an assembler directive,
or a macro. In the case of a machine instruction, a mnemonic is the symbolic name associated with a
particular opcode.

Table 13.3 lists the mnemonic, or instruction name, of many of the x86 instructions. Appendix A of
[CART06] lists the x86 instructions, together with the operands for each and the effect of the
instruction on the condition codes. Appendix B of the NASM manual provides a more detailed
description of each x86 instruction. Both documents are available at box.com/COA11e.

OPERAND(S)

An assembly language statement includes zero or more operands. Each operand identifies an
immediate value, a register value, or a memory location. Typically, the assembly language provides
conventions for distinguishing among the three types of operand references, as well as conventions
for indicating addressing mode.

For the x86 architecture, an assembly language statement may refer to a register operand by name.
Figure 15.3 illustrates the general-purpose x86 registers, with their symbolic name and their bit
encoding. The assembler will translate the symbolic name into the binary identifier for the register.

Figure 15.3 Intel x86 Program Execution Registers

As discussed in Section 14.2, the x86 architecture has a rich set of addressing modes, each of which
must be expressed symbolically in the assembly language. Here we cite a few of the common
examples. For register addressing, the name of the register is used in the instruction. For example,
MOV ECX, EBX copies the contents of register EBX into register ECX. Immediate addressing
indicates that the value is encoded in the instruction. For example, MOV EAX, 100H copies the
hexadecimal value 100 into register EAX. The immediate value can also be expressed as a binary
number with the suffix B or a decimal number with no suffix. Thus, equivalent statements to the
preceding one are MOV EAX, 100000000B and MOV EAX, 256 . Direct addressing refers to a
memory location and is expressed as a displacement from the DS segment register. This is best
explained by example. Assume that the 16-bit data segment register DS contains the value 1000H.
Then the following sequence occurs:

MOV AX, 1234H
MOV [3518H], AX

First the 16-bit register AX is initialized to 1234H. Then, in line two, the contents of AX are moved to
the logical address DS:3518. This address formed by shifting the contents of DS left 4 bits and adding
3518H to form the 32-bit logical address 13518H.

COMMENT

All assembly languages allow the placement of comments in the program. A comment can either
occur at the right-hand end of an assembly statement or can occupy an entire text line. In either case,
the comment begins with a special character that signals to the assembler that the rest of the line is a
comment and is to be ignored by the assembler. Typically, assembly languages for the x86
architecture use a semicolon (;) for the special character.

Pseudo-instructions

Pseudo-instructions are statements which, though not real x86 machine instructions, are used in the
instruction field anyway because that’s the most convenient place to put them. The NASM pseudo-
instructions are DB, DW, DD, DQ, DT, DO, DY, and DZ; their uninitialized counterparts RESB, RESW,
RESD, RESQ, REST, RESO, RESY, and RESZ; the INCBIN command, the EQU command, and the
TIMES prefix.

Pseudo-instructions are not directly translated into machine language instructions. Instead, directives
are instructions to the assembler to perform specified actions during the assembly process. Examples
include the following:

Define constants
Designate areas of memory for data storage
Initialize areas of memory
Place tables or other fixed data in memory
Allow references to other programs

Table 15.2 lists the NASM directives. As an example, consider the following sequence of statements:

L2 DB “A” ; byte initialized to ASCII code for A (65)
 MOV AL, [L1] ; copy byte at L1 into AL

 MOV EAX, L1 ; store address of byte at L1 in EAX
 MOV [L1], AH ; copy contents of AH into byte at L1

Table 15.2 Some NASM Assembly-Language Directives

(a) Letters for RES x and Dx Directives

Unit Letter

byte B

word (2 bytes) W

double word (4 bytes) D

quad word (8 bytes) Q

ten bytes T

(b) Directives

Name Description Example

DB, DW, DD, DQ, DT Initialize locations
L6 DD 1A92H

;doubleword at L6

initialized to 1A92H

RESB, RESW, RESD,
RESQ, REST

Reserve uninitialized
locations BUFFER RESB 64

;reserve 64 bytes starting

at BUFFER

INCBIN Include binary file in output
INCBIN “file.dat” ;

include this file

EQU Define a symbol to a given
constant value MSGLEN EQU 25

;the constant MSGLEN

equals decimal 25

TIMES Repeat instruction multiple
times ZEROBUF TIMES 64 DB 0

;initialize 64-byte buffer

to all zeros

If a plain label is used, it is interpreted as the address (or offset) of the data. If the label is placed
inside square brackets, it is interpreted as the data at the address.

Macro Definitions

A macro definition is similar to a subroutine in several ways. A subroutine is a section of a program
that is written once, and can be used multiple times by calling the subroutine from any point in the
program. When a program is compiled or assembled, the subroutine is loaded only once. A call to the
subroutine transfers control to the subroutine and a return instruction in the subroutine returns control
to the point of the call. Similarly, a macro definition is a section of code that the programmer writes
once, and then can use many times. The main difference is that when the assembler encounters a
macro call, it replaces the macro call with the macro itself. This process is called macro expansion.
So, if a macro is defined in an assembly language program and invoked 10 times in the source
program, then 10 instances of the macro will appear in the assembled code. In essence, subroutines
are handled by the hardware at run time, whereas macros are handled by the assembler at assembly
time. Macros provide the same advantage as subroutines in terms of modular programming, but
without the runtime overhead of a subroutine call and return. The tradeoff is that the macro approach
uses more space in the object code.

In NASM and many other assemblers, a distinction is made between a single-line macro and a multi-
line macro. In NASM, single-line macros are defined using the %DEFINE directive. Here is an
example in which multiple single-line macros are expanded. First, we define two macros:

%DEFINE B(X) = 2*X
%DEFINE A(X) = 1 + B(X)

At some point in the assembly language program, the following statement appears:

MOV AX, A(8)

The assembler expands this statement to:

MOV AX, 1+2*8

which assembles to a machine instruction to move the immediate value 17 to register AX.

Multiline macros are defined using the mnemonic %MACRO. Here is an example of a multiline macro
definition:

%MACRO PROLOGUE 1
 PUSH EBP ; push contents of EBP onto stack
 ; pointed to by ESP and
 ; decrement contents of ESP by 4
 MOV EBP, ESP ; copy contents of ESP to EBP
 SUB ESP, %1 ; subtract first parameter value from ESP

The number 1 after the macro name in the %MACRO line defines the number of parameters the macro
expects to receive. The use of %1 inside the macro definition refers to the first parameter to the macro
call.

The macro call expands to the following lines of code:

MYFUNC: PROLOGUE 12
MYFUNC: PUSH EBP
 MOV EBP, ESP
 SUB ESP, 12

Directives

A directive is a command embedded in the assembly source code that is recognized and acted upon
by the assembler. NASM includes the following directives.

BITS: Specifies whether NASM should generate code designed to run on a processor operating in
16-bit mode, 32-bit mode, or 64-bit mode. The syntax is BITS XX, where XX is 16, 32, or 64.
Normally, this is set by default by the operating system.
DEFAULT: Can change some assembler defaults, such as whether to use relative or absolute
addressing.
SECTION or SEGMENT: Changes that section of the output file the source code will be
assembled into. This is discussed subsequently.
EXTERN: used to declare a symbol which is not defined anywhere in the module being assembled,
but is assumed to be defined in some other module and needs to be referred to by this one.
GLOBAL: GLOBAL is the other end of EXTERN: if one module declares a symbol as EXTERN
and refers to it, then in order to prevent linker errors, some other module must actually define the
symbol and declare it as GLOBAL.
COMMON: Used to declare common variables. A common variable is much like a global variable
declared in the uninitialized data section. The difference is that if more than one module defines the
same common variable, then at link time those variables will be merged and will point at the same
piece of memory.
CPU: Restricts assembly to those instructions that are available on the specified CPU. For
example, this directive can specify 8086, 186, and so on.
FLOAT: Allows the programmer to change some of the default settings to options other than those
used in IEEE 754.
[WARNING]: Used to enable or disable classes of warnings.

Three sections can be defined by NASM. The data section is used for declaring initialized data or
constants. This data does not change at runtime. The programmer can declare various constant
values, file names, buffer size, and so on in this section. The bss section is used for declaring
variables. The text section is used for keeping the actual code. This section must begin with the
declaration global main, which tells the kernel where the program execution begins. The formats for

the three sections are as follows:

section.data

section.bss

section.text

System Calls

The assembler makes use of the x86 INT instruction to make system calls. For example, for Linux and
UNIX systems, the programmer uses the following steps for a system call:

Put the system call number in the EAX register.
Store the arguments to the system call in the registers EBX, ECX, and so on.
Call the relevant interrupt (80h).
The result is usually returned in the EAX register.

There are six registers that store the arguments of the system call used. These are the EBX, ECX,
EDX, ESI, EDI, and EBP. These registers take the consecutive arguments, starting with the EBX
register. If there are more than six arguments, then the memory location of the first argument is stored
in the EBX register.

15.4 EXAMPLES
In this section, we look at three examples of use of the NASM language. We compare these with
corresponding C programs and, in two cases, show the difference between compiled code and
assembly language code.

Greatest Common Divisor

We define the greatest common divisor of the integers a and b as follows:

where we say that k divides a if there is no remainder. Euclid’s algorithm for the greatest common
divisor is based on the following theorem. For any nonnegative integers a and b,

Here is a C language program that implements Euclid’s algorithm:

unsigned int gcd (unsigned int a, unsigned int b)
{
 if (a == 0 && b == 0)
 b = 1;
 else if (b == 0)
 b = a;
 else if (a != 0)
 while (a != b)
 if (a <b)
 b -= a;
 else
 a -= b;
 return b;
}

Figure 15.4 shows two x86 assembly language versions of the preceding program. The program on
the left was done by a C compiler. The program starts with the value of variable a in register ebx, the
value of b in register edx, and returns the result in eax. At the beginning, there is some unnecessary
movement of values among registers. The x86 TEST instruction is used to test for zero (Table 13.3).
The Jae instruction tests for greater than or equal to (Table 13.9).

Figure 15.4 Assembly Programs for Greatest Common Divisor
(a) Compiled program

gcd: mov ebx,eax
 mov eax,edx
 test ebx,ebx
 jne L1
 test edx,edx
 jne L1
 mov eax,1

gcd (a , b) = max [k , such that kdivides aand kdivides b]

gcd (a , b) = gcd (b , amodb)

 ret
L1: test eax,eax
 jne L2
 mov eax,ebx
 ret
L2: test ebx,ebx
 je L5
L3: cmp ebx,eax
 je L5
 jae L4
 sub eax,ebx
 jmp L3
L4: sub ebx,eax
 jmp L3
L5: ret

(b) Written directly in assembly language

gcd: neg eax
 je L3
L1: neg eax
 xchg eax,edx
L2: sub eax,edx
 jg L2
 jne L1
L3: add eax,edx
 jne L4
 inc eax
L4: ret

Figure 15.4b was programmed by hand. The program uses a number of programmer’s tricks to
produce a tighter, more efficient implementation. The programmer has the advantage of
understanding the mathematical relationships involved. Although xchg is not a particularly fast x86
instruction, it does help make the program very compact, and probably not more than a cycle off for
optimal performance. The main loop of the routine exists entirely within an instruction pre-fetch buffer.

Prime Number Program

We now look at an example that includes directives. This example looks at a program that finds prime
numbers. Recall that prime numbers are evenly divisible by only 1 and themselves. There is no simple
and efficient method for determining if a number is prime. The basic method this program uses is to
find the factors of all odd numbers below a given limit. If no factor can be found for an odd number, it
is prime. Figure 15.5 shows the simple algorithm written in C that prints all the prime numbers less
than or equal to an input variable limit. The program checks all odd numbers up to the limit. The
current number being checked is assigned to the variable guess. Then, the program begins at 3 and
keeps incrementing until it finds an odd number that divides guess or until it reaches an odd number
whose square exceeds guess. If no factor is found, guess is printed out and then incremented by 2.

Figure 15.5 C Program for Generating Prime Numbers

unsigned guess; /* current guess for prime */
unsigned factor; /* possible factor of guess
*/
unsigned limit; /* find primes up to this
value */
printf (“Find primes up to : ”);
scanf(“%u”, &limit);
printf (“2\n”); /* treat first two primes as
*/
printf (“3\n”); /* special case */
guess = 5; /* initial guess */
while (guess < = limit) { /* look for a factor of guess
*/
 factor = 3;
 while (factor * factor < guess && guess% factor != 0)
 factor + = 2;
 if (guess % factor != 0)
 printf (“%d\n”, guess);
 guess += 2; /* only look at odd numbers
*/
}

Figure 15.6 shows the same algorithm written in NASM. This program uses the segment and global
NASM directives and the db pseudo-instruction.

Figure 15.6 Assembly Program for Generating Prime Numbers

%include “asm_io.inc”
segment .data
Message db “Find primes up to: ”, 0
segment .bss
Limit resd 1 ; find primes up to this limit
Guess resd 1 ; the current guess for prime
segment .text
 global _asm_main
_asm_main:
 enter 0,0 ; setup routine
 pusha
 mov eax, Message
 call print_string
 call read_int ; scanf(“%u”, & limit);
 mov [Limit], eax
 mov eax, 2 ; printf(“2\n”);
 call print_int
 call print_nl
 mov eax, 3 ; printf(“3\n”);
 call print_int
 call print_nl
 mov dword [Guess], 5 ; Guess = 5;

while_limit: ; while (Guess <= Limit)
 mov eax, [Guess]
 cmp eax, [Limit]
 jnbe end_while_limit ; use jnbe since numbers are unsigned
 mov ebx, 3 ; ebx is factor = 3;
while_factor:
 mov eax,ebx
 mul eax ; edx:eax = eax*eax
 jo end_while_factor ; if answer won’t fit in eax alone
 cmp eax, [Guess]
 jnb end_while_factor ; if !(factor*factor < guess)
 mov eax,[Guess]
 mov edx,0
 div ebx ; edx = edx:eax% ebx
 cmp edx, 0
 je end_while_factor ; if !(guess% factor != 0)
 add ebx,2; factor += 2;
 jmp while_factor
end_while_factor:
 je end_if ; if !(guess% factor != 0)
 mov eax,[Guess] ; printf(“%u\n”)
 call print_int
 call print_nl
end_if:
 add dword [Guess], 2 ; guess += 2
 jmp while_limit
end_while_limit:
 popa
 mov eax, 0 ; return back to C
 leave
 ret

String Manipulation

Before looking at this example, we first look at string data types and operations in x86.

STRING CONSTANTS AND OPERATIONS

Strings are continuous sequences of bits, bytes, words, or doublewords. A bit string can begin at any
bit position of any byte and can contain up to A byte string can contain bytes, words, or
doublewords and can range from zero to (4 GB).

Table 15.3 shows the x86 instructions for byte strings. Similar instructions are available for word, and
doubleword strings. The MOVS, CMPS, SCAS, LODS, and STOS instructions permit large data
structures, such as alphanumeric character strings, to be moved and examined in memory. These
instructions operate on individual elements in a string, which can be a byte, word, or doubleword. The
string elements to be operated on are identified with the ESI (source string element) and EDI
(destination string element) registers. Both of these registers contain absolute addresses (offsets into
a segment) that point to a string element.

232 − 1bits.
232 − 1bytes

Table 15.3 x86 String Instructions

Operation
Name

Description

MOVSB Moves the string byte addressed by the ESI register to the location addressed by
the EDI register.

CMPSB Subtracts the destination string byte from the source string element and updates
the status flags in the EFLAGS register according to the results.

SCASB Subtracts the destination string byte from the contents of the AL register and
updates the status flags according to the results.

LODSB Loads the source string byte identified by the ESI register into the EAX register.

STOSSB Stores the source string byte from the AL register into the memory location
identified with the EDI register.

REP Repeat while the ECX register is not zero.

REPE/REPZ Repeat while the ECX register is not zero and the ZF flag is set.

REPNE/REPNZ Repeat while the ECX register is not zero and the ZF flag is clear.

The string instructions just described perform one iteration of a string operation. To operate strings
longer than a doubleword, the string instructions can be combined with a repeat prefix (REP) to create
a repeating instruction or be placed in a loop. The number of iterations, corresponding to the number
of string elements to be operated on, is in the ECX register. When used in string instructions, the ESI
and EDI registers are automatically incremented or decremented after each iteration of an instruction
point to the next element (byte, word, or doubleword) in the string. String operations can thus begin at
higher addresses and work toward lower ones, or they can begin at lower addresses and work toward
higher ones. The DF flag in the EFLAGS register controls whether the registers are incremented

 or decremented The STD and CLD instructions set and clear this flag,
respectively. When a string instruction has a repeat prefix, the operation executes until one of the
termination conditions specified by the prefix is satisfied. The REPE/REPZ and REPNE/REPNZ
prefixes are used only with the CMPS and SCAS instructions. Also, note that an REP STOS
instruction is the fastest way to initialize a large block of memory.

MOVING A STRING

Figure 15.7 shows a program using the MOVSB instruction to move a character string from a source
to a destination. The example shows the use of the .bss, .data, and .text sections and system calls.
The CLD x86 instruction clears the DF flag.

Figure 15.7 Assembly Program for Moving a String

(DF = 0) (DF = 1) .

section .text
 global main ;must be declared for using
gcc
main: ;tell linker entry point
 mov ecx, len
 mov esi, s1
 mov edi, s2
 cld
 rep movsb
 mov edx,20 ;message length
 mov ecx,s2 ;message to write
 mov ebx,1 ;file descriptor (stdout)
 mov eax,4 ;system call number
(sys_write)
 int 0x80 ;call kernel
 mov eax,1 ;system call number
(sys_exit)
 int 0x80 ;call kernel
section .data
s1 db ‘Hello, world!’,0 ;string 1
len equ $-s1
section .bss
s2 resb 20 ;destination

 15.5 Types of assemblers
An assembler is a software that translates assembly language into machine language. Although all
assemblers perform the same tasks, their implementations vary. The following define some of the
common terms that describe types of assemblers:

Cross-assembler: Runs on a computer other than the one for which it assembles object
programs. Typically, the host machine for the assembler is a larger system, while the target
machine may be a small embedded system or other type of system with limited resources and
programming support software.
Resident assembler: Runs on the computer for which it assembles programs.
Macroassembler: Allows the user to define sequences of instructions as macros.
Microassembler: Used to write the microprograms that define the instruction set of a
microprogrammed computer.
Meta-assembler: Can handle multiple instruction sets.
One-pass assembler: Makes a single pass through the assembly code to produce the machine
code.
Two-pass assembler: Makes two passes through the assembly code to produce the machine
code. Most assemblers require two passes.

15.6 Assemblers
The assembler is a software utility that takes an assembly program as input and produces object code
as output. The object code is a binary file. The assembler views this file as a block of memory starting
at relative location 0.

There are two general approaches to assemblers: the two-pass assembler and the one-pass
assembler.

Two-Pass Assembler

We look first at the two-pass assembler, which is more common and somewhat easier to understand.
The assembler makes two passes through the source code (Figure 15.8):

Figure 15.8 Flowchart of Two-Pass Assembler

FIRST PASS

 In the first pass, the assembler is only concerned with label definitions. The first pass is used to
construct a symbol table that contains a list of all labels and their associated location counter (LC)
values. The first byte of the object code will have the LC value of 0. The first pass examines each
assembly statement. Although the assembler is not yet ready to translate instructions, it must examine
each instruction sufficiently to determine the length of the corresponding machine instruction and
therefore how much to increment the LC. This may require not only examining the opcode but also
looking at the operands and the addressing modes.

Directives such as DQ and REST (see Table 15.2) cause the location counter to be adjusted
according to how much storage is specified.

When the assembler encounters a statement with a label, it places the label into the symbol table
along with the current LC value. The assembler continues until it has read all of the assembly
language statements.

SECOND PASS

The second pass reads the program again from the beginning. Each instruction is translated into the
appropriate binary machine code. Translation includes the following operations:

1. Translate the mnemonic into a binary opcode.
2. Use the opcode to determine the format of the instruction and the location and length of the

various fields in the instruction.
3. Translate each operand name into the appropriate register or memory code.
4. Translate each immediate value into a binary string.
5. Translate any references to labels into the appropriate LC value using the symbol table.
6. Set any other bits in the instruction that are needed, including addressing mode indicators,

condition code bits, and so on.

A simple example, using the ARM assembly language, is shown in Figure 15.9. The ARM assembly
language instruction ADDS r3, r3, #19 is translated into the binary machine instruction 1110 0010
0101 0011 0011 0000 0001 0011.

Figure 15.9 Translating an ARM Assembly Instruction into a Binary Machine Instruction

ZEROTH PASS

Most assembly language includes the ability to define macros. When macros are present there is an
additional pass that the assembler must make before the first pass. Typically, the assembly language
requires that all macro definitions must appear at the beginning of the program.

The assembler begins this “zeroth pass” by reading all macro definitions. Once all the macros are
recognized, the assembler goes through the source code and expands the macros with their
associated parameters whenever a macro call is encountered. The macro processing pass generates

a new version of the source code with all of the macro expansions in place and all of the macro
definitions removed.

One-Pass Assembler

It is possible to implement an assembler that makes only a single pass through the source code (not
counting the macro processing pass). The main difficulty in trying to assemble a program in one pass
involves forward references to labels. Instruction operands may be symbols that have not yet been
defined in the source program. Therefore, the assembler does not know what relative address to
insert in the translated instruction.

In essence, the process of resolving forward references works as follows. When the assembler
encounters an instruction operand that is a symbol that is not yet defined, the assembler does the
following:

1. It leaves the instruction operand field empty (all zeros) in the assembled binary instruction.
2. The symbol used as an operand is entered in the symbol table. The table entry is flagged to

indicate that the symbol is undefined.
3. The address of the operand field in the instruction that refers to the undefined symbol is added

to a list of forward references associated with the symbol table entry.

When the symbol definition is encountered so that an LC value can be associated with it, the
assembler inserts the LC value in the appropriate entry in the symbol table. If there is a forward
reference list associated with the symbol, then the assembler inserts the proper address into any
instruction previously generated that is on the forward reference list.

Example: Prime Number Program

We now look at an example that includes directives. This example looks at a program that finds prime
numbers. Recall that prime numbers are evenly divisible by only 1 and themselves. There is no
formula for doing this. The basic method this program uses is to find the factors of all odd numbers
below a given limit. If no factor can be found for an odd number, it is prime. Figure 15.6 shows the
basic algorithm written in C. Figure 15.7 shows the same algorithm written in NASM assembly
language.

15.7 Loading and Linking
The first step in the creation of an active process is to load a program into main memory and create a
process image (Figure 15.10). Figure 15.11 depicts a scenario typical for most systems. The
application consists of a number of compiled or assembled modules in object-code form. These are
linked to resolve any references between modules. At the same time, references to library routines are
resolved. The library routines themselves may be incorporated into the program or referenced as
shared code that must be supplied by the operating system at run time. In this section, we summarize
the key features of linkers and loaders. First, we discuss the concept of relocation. Then, for clarity in
the presentation, we describe the loading task when a single program module is involved; no linking is
required. We can then look at the linking and loading functions as a whole.

Figure 15.10 The Loading Function

Figure 15.11 A Linking and Loading Scenario

Relocation

In a multiprogramming system, the available main memory is generally shared among a number of
processes. Typically, it is not possible for the programmer to know in advance which other programs
will be resident in main memory at the time of execution of his or her program. In addition, we would
like to be able to swap active processes in and out of main memory to maximize processor utilization
by providing a large pool of ready processes to execute. Once a program has been swapped out to
disk, it would be quite limiting to declare that when it is next swapped back in, it must be placed in the
same main memory region as before. Instead, we may need to relocate the process to a different
area of memory.

Thus, we cannot know ahead of time where a program will be placed, and we must allow that the
program may be moved about in main memory due to swapping. These facts raise some technical
concerns related to addressing, as illustrated in Figure 15.12. The figure depicts a process image. For
simplicity, let us assume that the process image occupies a contiguous region of main memory.
Clearly, the operating system will need to know the location of process control information and of the
execution stack, as well as the entry point, to begin execution of the program for this process.
Because the operating system is managing memory and is responsible for bringing this process into
main memory, these addresses are easy to come by. In addition, however, the processor must deal
with memory references within the program. Branch instructions contain an address to reference the
instruction to be executed next. Data reference instructions contain the address of the byte or word of
data referenced. Somehow, the processor hardware and operating system software must be able to
translate the memory references found in the code of the program into actual physical memory
addresses, reflecting the current location of the program in main memory.

Figure 15.12 Addressing Requirements for a Process

Loading

In Figure 15.11, the loader places the load module in main memory starting at location x. In loading
the program, the addressing requirement illustrated in Figure 15.12 must be satisfied. In general,
three approaches can be taken:

Absolute loading
Relocatable loading
Dynamic run-time loading

ABSOLUTE LOADING

An absolute loader requires that a given load module always be loaded into the same location in main
memory. Thus, in the load module presented to the loader, all address references must be to specific,
or absolute, main memory addresses. For example, if x in Figure 15.11 is location 1024, then the first
word in a load module destined for that region of memory has address 1024.

The assignment of specific address values to memory references within a program can be done either
by the programmer or at compile or assembly time (Table 15.4a). There are several disadvantages to
the former approach. First, every programmer would have to know the intended assignment strategy
for placing modules into main memory. Second, if any modifications are made to the program that
involve insertions or deletions in the body of the module, then all of the addresses will have to be
altered. Accordingly, it is preferable to allow memory references within programs to be expressed
symbolically and then resolve those symbolic references at the time of compilation or assembly. This
is illustrated in Figure 15.13. Every reference to an instruction or item of data is initially represented
by a symbol. In preparing the module for input to an absolute loader, the assembler or compiler will

convert all of these references to specific addresses (in this example, for a module to be loaded
starting at location 1024), as shown in Figure 15.13b.

Table 15.4 Address Binding

(a) Loader

Binding Time Function

Programming
time

All actual physical addresses are directly specified by the programmer in the
program itself.

Compile or
assembly
time

The program contains symbolic address references, and these are converted to
actual physical addresses by the compiler or assembler.

Load time The compiler or assembler produces relative addresses. The loader translates
these to absolute addresses at the time of program loading.

Run time The loaded program retains relative addresses. These are converted dynamically
to absolute addresses by processor hardware.

(b) Linker

Linkage Time Function

Programming
time

No external program or data references are allowed. The programmer must place
into the program the source code for all subprograms that are referenced.

Compile or
assembly
time

The assembler must fetch the source code of every subroutine that is referenced
and assemble them as a unit.

Load module
creation

All object modules have been assembled using relative addresses. These modules
are linked together, and all references are restated relative to the origin of the final
load module.

Load time External references are not resolved until the load module is to be loaded into main
memory. At that time, referenced dynamic link modules are appended to the load
module, and the entire package is loaded into main or virtual memory.

Run time External references are not resolved until the external call is executed by the
processor. At that time, the process is interrupted and the desired module is linked
to the calling program.

Figure 15.13 Absolute and Relocatable Load Modules

RELOCATABLE LOADING

The disadvantage of binding memory references to specific addresses prior to loading is that the
resulting load module can only be placed in one region of main memory. However, when many
programs share main memory, it may not be desirable to decide ahead of time into which region of
memory a particular module should be loaded. It is better to make that decision at load time. Thus we
need a load module that can be located anywhere in main memory.

To satisfy this new requirement, the assembler or compiler produces not actual main memory
addresses (absolute addresses) but addresses that are relative to some known point, such as the
start of the program. This technique is illustrated in Figure 15.13c. The start of the load module is
assigned the relative address 0, and all other memory references within the module are expressed
relative to the beginning of the module.

With all memory references expressed in relative format, it becomes a simple task for the loader to
place the module in the desired location. If the module is to be loaded beginning at location x, then the
loader must simply add x to each memory reference as it loads the module into memory. To assist in
this task, the load module must include information that tells the loader where the address references
are and how they are to be interpreted (usually relative to the program origin, but also possibly relative
to some other point in the program, such as the current location). This set of information is prepared
by the compiler or assembler, and is usually referred to as the relocation dictionary.

DYNAMIC RUN-TIME LOADING

Relocatable loaders are common and provide obvious benefits relative to absolute loaders. However,
in a multiprogramming environment, even one that does not depend on virtual memory, the
relocatable loading scheme is inadequate. We have referred to the need to swap process images in
and out of main memory to maximize the utilization of the processor. To maximize main memory
utilization, we would like to be able to swap the process image back into different locations at different
times. Thus, a program, once loaded, may be swapped out to disk and then swapped back in at a
different location. This would be impossible if memory references had been bound to absolute
addresses at the initial load time.

The alternative is to defer the calculation of an absolute address until it is actually needed at run time.
For this purpose, the load module is loaded into main memory with all memory references in relative
form (Figure 15.13c). It is not until an instruction is actually executed that the absolute address is
calculated. To assure that this function does not degrade performance, it must be done by special
processor hardware rather than software. This hardware is described in Chapter 9.

Dynamic address calculation provides complete flexibility. A program can be loaded into any region of
main memory. Subsequently, the execution of the program can be interrupted and the program can be
swapped out of main memory, to be later swapped back in at a different location.

Linking

The function of a linker is to take as input a collection of object modules and produce a load module,
consisting of an integrated set of program and data modules, to be passed to the loader. In each
object module, there may be address references to locations in other modules. Each such reference
can only be expressed symbolically in an unlinked object module. The linker creates a single load
module that is the contiguous joining of all of the object modules. Each intramodule reference must be
changed from a symbolic address, to a reference to a location within the overall load module. For
example, module A in Figure 15.14a contains a procedure invocation of module 15. When these
modules are combined in the load module, this symbolic reference to module B is changed to a
specific reference to the location of the entry point of B within the load module.

Figure 15.14 The Linking Function

LINKAGE EDITOR

The nature of this address linkage will depend on the type of load module to be created and when the
linkage occurs (Table 15.4b). If, as is usually the case, a relocatable load module is desired, then
linkage is usually done in the following fashion. Each compiled or assembled object module is created
with references relative to the beginning of the object module. All of these modules are put together
into a single relocatable load module with all references relative to the origin of the load module. This
module can be used as input for relocatable loading or dynamic run-time loading.

A linker that produces a relocatable load module is often referred to as a linkage editor. Figure 15.14
illustrates the linkage editor function.

DYNAMIC LINKER

As with loading, it is possible to defer some linkage functions. The term dynamic linking is used to
refer to the practice of deferring the linkage of some external modules until after the load module has
been created. Thus, the load module contains unresolved references to other programs. These
references can be resolved either at load time or run time.

For load-time dynamic linking (involving the upper dynamic library in Figure 15.11), the following
steps occur. The load module (application module) to be loaded is read into memory. Any reference to
an external module (target module) causes the loader to find the target module, load it, and alter the
reference to a relative address in memory from the beginning of the application module. There are
several advantages to this approach over what might be called static linking:

It becomes easier to incorporate changed or upgraded versions of the target module, which may
be an operating system utility or some other general-purpose routine. With static linking, a change
to such a supporting module would require the relinking of the entire application module. Not only
is this inefficient, but it may be impossible in some circumstances. For example, in the personal
computer field, most commercial software is released in load module form; source and object
versions are not released.
Having target code in a dynamic link file paves the way for automatic code sharing. The operating
system can recognize that more than one application is using the same target code because it
loaded and linked that code. It can use that information to load a single copy of the target code and
link it to both applications, rather than having to load one copy for each application.
It becomes easier for independent software developers to extend the functionality of a widely-used
operating system such as Linux. A developer can come up with a new function that may be useful
to a variety of applications and package it as a dynamic link module.

With run-time dynamic linking (involving the lower dynamic library in Figure 15.11), some of the
linking is postponed until execution time. External references to target modules remain in the loaded
program. When a call is made to the absent module, the operating system locates the module, loads
it, and links it to the calling module. Such modules are typically shareable. In the Windows
environment, these are called dynamic-link libraries (DLLs) Thus, if one process is already making use
of a dynamically linked shared module, then that module is in main memory and a new process can
simply link to the already-loaded module.

The use of DLLs can lead to a problem commonly referred to as DLL hell. DLL hell occurs if two or
more processes are sharing a DLL module, but expect different versions of the module. For example,
an application or system function might be re-installed and bring in with it an older version of a DLL
file.

We have seen that dynamic loading allows an entire load module to be moved around; however, the
structure of the module is static, being unchanged throughout the execution of the process and from
one execution to the next. However, in some cases, it is not possible to determine prior to execution
which object modules will be required. This situation is typified by transaction-processing applications,
such as an airline reservation system or a banking application. The nature of the transaction dictates
which program modules are required, and they are loaded as appropriate and linked with the main
program. The advantage of the use of such a dynamic linker is that it is not necessary to allocate
memory for program units unless those units are referenced. This capability is used in support of
segmentation systems.

One additional refinement is possible: An application need not know the names of all the modules or
entry points that may be called. For example, a charting program may be written to work with a variety
of plotters, each of which is driven by a different driver package. The application can learn the name of
the plotter that is currently installed on the system from another process or by looking it up in a
configuration file. This allows the user of the application to install a new plotter that did not exist at the
time the application was written.

15.8 Key Terms, Review Questions, and Problems

Key Terms

Assembler

assembly language

comment

directive

dynamic linker

instruction

label

linkage editor

linking

load-time dynamic linking

loading

macro

mnemonic

one-pass assembler

operand

relocation

run-time dynamic linking

two-pass assembler

Review Questions

Problems

15.1 List some reasons why it is worthwhile to study assembly language programming.
15.2 What is an assembly language?
15.3 List some disadvantages of assembly language compared to high-level languages.
15.4 List some advantages of assembly language compared to high-level languages.
15.5 What are the typical elements of an assembly language statement?
15.6 List and briefly define four different kinds of assembly language statements.
15.7 What is the difference between a one-pass assembler and a two-pass assembler?

15.1 Core War is a programming game introduced to the public in the early 1980s [DEWD84],
which was popular for a period of 15 years or so. Core War has four main components: a
memory array of 8000 addresses; a simplified assembly language Redcode; an executive
program called MARS (an acronym for Memory Array Redcode Simulator); and the set of

contending battle programs. Two battle programs are entered into the memory array at
randomly chosen positions; neither program knows where the other one is. MARS executes the
programs in a simple version of time-sharing. The two programs take turns; a single instruction
of the first program is executed, then a single instruction of the second, and so on. What a battle
program does during the execution cycles allotted to it is entirely up to the programmer. The aim
is to destroy the other program by ruining its instructions. In this problem and the next several,
we use an even simpler language, called CodeBlue, to explore some Core War concepts.
CodeBlue contains only five assembly language statements and uses three addressing modes
(Table 15.5). Addresses wrap around, so that for the last location in memory, the relative
address of refers to the first location in memory. For example, ADD #4, 6 adds 4 to the
contents of relative location 6 and stores the results in location 6; JUMP @5 transfers execution
to the memory address contained in the location five slots past the location of the current JUMP
instruction.

Table 15.5 CodeBlue Assembly Language

(a) Instruction Set

Format Meaning

DATA  <value> <value> set at current location

COPY  A, B copies source A to destination B

ADD   A, B adds A to B, putting result in B

JUMP  A transfer execution to A

JUMPZ A, B if transfer to A

(b) Addressing Modes

Mode Format Meaning

Literal #
followed
by value

This is an immediate mode, the operand value is in the instruction.

Relative Value The value represents an offset from the current location, which
contains the operand.

Indirect @
followed
by value

The value represents an offset from the current location; the offset
location contains the relative address of the location that contains the
operand.

Loop COPY #0, −1

+1

B = 0,

 JUMP −1

Hint: Remember that instruction execution alternates between the two opposing programs.

a. The program Imp is the single instruction COPY 0, 1 . What does it do?
b. The program Dwarf is the following sequence of instructions:

ADD #4, 3
COPY 2, @2
JUMP –2
DATA 0

What does it do?
c. Rewrite Dwarf using symbols, so that it looks more like a typical assembly language

program.

15.2 What happens if we pit Imp against Dwarf?
15.3 Write a “carpet bombing” program in CodeBlue that zeros out all of memory (with the
possible exception of the program locations).
15.4 How would the previous program fare against Imp?
15.5

a. What is the value of the C status flag after the following sequence:

mov al, 3
add al, 4

b. What is the value of the C status flag after the following sequence:

mov al, 3
sub al, 4

15.6 Consider the following NAMS instruction:

cmp vleft, vright

For signed integers, there are three status flags that are relevant. If then ZF is set.
If ZF is unset (set to 0) and If ZF is unset and .
Why does if
15.7 Consider the following NASM code fragment:

mov al, 0
cmp al, al
je next

vleft = vright,
vleft > vright, SF = OF. vleft < vright, SF ≠ OF

SF = OF vleft > vright?

Write an equivalent program consisting of a single instruction.
15.8 Consider the following C program:

/* a simple C program to average 3 integers */
main ()
{ int avg;
 int i1 = 20;
 int i2 = 13;
 int i3 = 82;
 avg = (i1 + i2 + i3)/3;
}

Write an NASM version of this program.
15.9 Consider the following C code fragment:

if (EAX == 0) EBX = 1;
else EBX = 2;

Write an equivalent NASM code fragment.
15.10 The initialize data directives can be used to initialize multiple locations. For example,

db 0x55,0x56,0x57

reserves three bytes and initializes their values.
NASM supports the special token $ to allow calculations to involve the current assembly
position. That is, $ evaluates to the assembly position at the beginning of the line containing the
expression. With the preceding two facts in mind, consider the following sequence of directives:

message db ‘hello, world’
msglen equ $-message

What value is assigned to the symbol msglen?
15.11 Assume the three symbolic variables V1, V2, V3 contain integer values. Write an NASM
code fragment that moves the smallest value into integer ax. Use only the instructions mov ,
cmp , and jbe .
15.12 Describe the effect of this instruction: cmp eax , 1 Assume that the immediately
preceding instruction updated the contents of eax.
 15.13 The xchg instruction can be used to exchange the contents of two registers. Suppose
that the x86 instruction set did not support this instruction.

a. Implement xchg ax , bx using only push and pop instructions.
b. Implement xchg ax , bx using only the xor instruction (do not involve other registers).

15.14 In the following program, assume that a, b, x, y are symbols for main memory locations.
What does the program do? You can answer the question by writing the equivalent logic in C.

 mov eax,a
 mov ebx,b
 xor eax,x
 xor ebx,y

 or eax,ebx
 jnz L2
L1: ;sequence of instructions…
 jmp L3
L2: ;another sequence of instructions…
L3:

15.15 Section 15.4 includes a C program that calculates the greatest common divisor of two
integers.

a. Describe the algorithm in words and show how the program does implement the Euclid
algorithm approach to calculating the greatest common divisor.

b. Add comments to the assembly program of Figure 15.4a to clarify that it implements the
same logic as the C program.

c. Repeat part (b) for the program of Figure 15.4b.

15.16
a. A 2-pass assembler can handle future symbols and an instruction can therefore use a

future symbol as an operand. This is not always true for directives. The EQU directive, for
example, cannot use a future symbol. The directive “ ” is easy to execute if B
is previously defined, but impossible if B is a future symbol. What’s the reason for this?

b. Suggest a way for the assembler to eliminate this limitation such that any source line
could use future symbols.

15.17 Consider a symbol directive MAX of the following form: symbol MAX list of expressions
The label is mandatory and is assigned the value of the largest expression in the operand field.
Example:

MSGLEN MAX A, B, C ;where A, B, C are defined symbols

How is MAX executed by the Assembler and in what pass?

A EQU B + 1

Part Five The Central Processing Unit

Chapter 16 Processor Structure and Function

16.8 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Distinguish between user-visible and control/status registers, and discuss the purposes of
registers in each category.
Summarize the instruction cycle.
Discuss the principle behind instruction pipelining and how it works in practice.

16.1 Processor Organization
16.2 Register Organization

User- ​Visible Registers
Control and Status Registers
Example Microprocessor Register Organizations

16.3 Instruction Cycle
The Indirect Cycle
Data Flow

16.4 Instruction Pipelining
Pipelining Strategy
Pipeline Performance
Pipeline Hazards
Dealing with Branches
Intel 80486 Pipelining

16.5 Processor Organization for Pipelining
16.6 The x86 Processor Family

Register Organization
Interrupt Processing

16.7 The Arm Processor
Processor Organization
Processor Modes
Register Organization
Interrupt Processing

Compare and contrast the various forms of pipeline hazards.
Present an overview of the x86 processor structure.
Present an overview of the ARM processor structure.

This chapter discusses aspects of the processor not covered in Part Four and sets
the stage for the discussion of RISC and superscalar architecture in Chapters 17
and 18.

We begin with a summary of processor organization. Registers, which form the
internal memory of the processor, are then analyzed. We are then in a position to
return to the discussion (begun in Section 3.2) of the instruction cycle. A
description of the instruction cycle and a common technique known as instruction
pipelining complete our description. The chapter concludes with an examination of
some aspects of the x86 and ARM organizations.

16.1 Processor Organization
To understand the organization of the processor, let us consider the requirements placed on the
processor, the things that it must do:

Fetch instruction: The processor reads an instruction from memory (register, cache, main
memory).
Interpret instruction: The instruction is decoded to determine what action is required.
Fetch data: The execution of an instruction may require reading data from memory or an I/O
module.
Process data: The execution of an instruction may require performing some arithmetic or logical
operation on data.
Write data: The results of an execution may require writing data to memory or an I/O module.

To do these things, it should be clear that the processor needs to store some data temporarily. It must
remember the location of the last instruction so that it can know where to get the next instruction. It
needs to store instructions and data temporarily while an instruction is being executed. In other words,
the processor needs a small internal memory.

Figure 16.1 is a simplified view of the internal structure of a processor. The reader will recall that the
major components of the processor are an arithmetic and logic unit (ALU) and a control unit (CU). The
ALU does the actual computation or processing of data. The control unit controls the movement of
data and instructions into and out of the processor, and controls the operation of the ALU. In addition,
the figure shows a minimal internal memory, consisting of a set of storage locations, called registers.
The data transfer and logic control paths are indicated, including an element labeled internal
processor bus. This element is needed to transfer data between the various registers and the ALU,
because the ALU in fact operates only on data in the internal processor memory. The figure also
shows typical basic elements of the ALU. Note the similarity between the internal structure of the
computer as a whole, and the internal structure of the processor. In both cases, there is a small
collection of major elements (computer: processor, I/O, memory; processor: control unit, ALU,
registers) connected by data paths.

Figure 16.1 Internal Structure of the CPU

16.2 Register Organization
As we discussed in Chapter 4, aA computer system employs a memory hierarchy. At higher levels of
the hierarchy, memory is faster, smaller, and more expensive (per bit). Within the processor, there is a
set of registers that function as a level of memory above main memory and cache in the hierarchy.
The registers in the processor perform two roles:

User-visible registers: Enable the machine- or assembly language programmer to minimize main
memory references by optimizing use of registers.
Control and status registers: Used by the control unit to control the operation of the processor
and by privileged, operating system programs to control the execution of programs.

There is not a clean separation of registers into these two categories. For example, on some
machines the program counter is user visible (e.g., x86), but on many it is not. For purposes of the
following discussion, however, we will use these categories.

User-Visible Registers

A user-visible register is one that may be referenced by means of the machine language that the
processor executes. We can characterize these in the following categories:

General purpose
Data
Address
Condition codes

General-purpose registers can be assigned to a variety of functions by the programmer.
Sometimes their use within the instruction set is orthogonal to the operation. That is, any general-
purpose register can contain the operand for any opcode. This provides true general-purpose register
use. Often, however, there are restrictions. For example, there may be dedicated registers for floating-
point and stack operations.

In some cases, general-purpose registers can be used for addressing functions (e.g., register indirect,
displacement). In other cases, there is a partial or clean separation between data registers and
address registers. Data registers may be used only to hold data and cannot be employed in the
calculation of an operand address. Address registers may themselves be somewhat general
purpose, or they may be devoted to a particular addressing mode. Examples include the following:

Segment pointers: In a machine with segmented addressing (see Section 9.3), a segment
register holds the address of the base of the segment. There may be multiple registers: for
example, one for the operating system and one for the current process.
Index registers: These are used for indexed addressing and may be autoindexed.
Stack pointer: If there is user-visible stack addressing, then typically there is a dedicated register
that points to the top of the stack. This allows implicit addressing; that is, push, pop, and other
stack instructions need not contain an explicit stack operand.

There are several design issues to be addressed here. An important issue is whether to use
completely general-purpose registers or to specialize their use. We have already touched on this issue
in the preceding chapter because it affects instruction set design. With the use of specialized
registers, it can generally be implicit in the opcode which type of register a certain operand specifier
refers to. The operand specifier must only identify one of a set of specialized registers rather than one
out of all the registers, thus saving bits. On the other hand, this specialization limits the programmer’s
flexibility.

Another design issue is the number of registers, either general purpose or data plus address, to be
provided. Again, this affects instruction set design because more registers require more operand
specifier bits. As we previously discussed, somewhere between 8 and 32 registers appears optimum
[LUND77]. Fewer registers result in more memory references; more registers do not noticeably reduce
memory references (e.g., see [WILL90]). However, a new approach, which finds advantage in the use
of hundreds of registers, is exhibited in some RISC systems and is discussed in Chapter 17.

Finally, there is the issue of register length. Registers that must hold addresses obviously must be at
least long enough to hold the largest address. Data registers should be able to hold values of most
data types. Some machines allow two contiguous registers to be used as one for holding double-
length values.

A final category of registers, which is at least partially visible to the user, holds condition codes
(also referred to as flags). Condition codes are bits set by the processor hardware as the result of
operations. For example, an arithmetic operation may produce a positive, negative, zero, or overflow
result. In addition to the result itself being stored in a register or memory, a condition code is also set.
The code may subsequently be tested as part of a conditional branch operation.

Condition code bits are collected into one or more registers. Usually, they form part of a control
register. Generally, machine instructions allow these bits to be read by implicit reference, but the
programmer cannot alter them.

Many processors, including those based on the IA-64 architecture and the MIPS processors, do not
use condition codes at all. Rather, conditional branch instructions specify a comparison to be made
and act on the result of the comparison, without storing a condition code. Table 16.1, based on
[DERO87], lists key advantages and disadvantages of condition codes.

Table 16.1 Condition Codes

Advantages Disadvantages

1. Because condition codes are set by
normal arithmetic and data
movement instructions, they should
reduce the number of COMPARE
and TEST instructions needed.

2. Conditional instructions such as
BRANCH are simplified relative to
composite instructions, such as
TEST and BRANCH.

3. Condition codes facilitate multiway
branches. For example, a TEST
instruction can be followed by two
branches, one on less than or equal
to zero and one on greater than
zero.

4. Condition codes can be saved on
the stack during subroutine calls

1. Condition codes add complexity, both to the
hardware and software. Condition code bits are
often modified in different ways by different
instructions, making life more difficult for both
the microprogrammer and compiler writer.

2. Condition codes are irregular; they are typically
not part of the main data path, so they require
extra hardware connections.

3. Often condition code machines must add
special non-condition-code instructions for
special situations anyway, such as bit checking,
loop control, and atomic semaphore operations.

4. In a pipelined implementation, condition codes
require special synchronization to avoid
conflicts.

along with other register
information.

In some machines, a subroutine call will result in the automatic saving of all user-visible registers, to
be restored on return. The processor performs the saving and restoring as part of the execution of call
and return instructions. This allows each subroutine to use the user-visible registers independently.
On other machines, it is the responsibility of the programmer to save the contents of the relevant user-
visible registers prior to a subroutine call, by including instructions for this purpose in the program.

Control and Status Registers

There are a variety of processor registers that are employed to control the operation of the processor.
Most of these, on most machines, are not visible to the user. Some of them may be visible to machine
instructions executed in a control or operating system mode.

Of course, different machines will have different register organizations and use different terminology.
We list here a reasonably complete list of register types, with a brief description.

Four registers are essential to instruction execution:

Program counter (PC): Contains the address of an instruction to be fetched.
Instruction register (IR): Contains the instruction most recently fetched.
Memory address register (MAR): Contains the address of a location in memory.
Memory buffer register (MBR): Contains a word of data to be written to memory or the word most
recently read.

Not all processors have internal registers designated as MAR and MBR, but some equivalent buffering
mechanism is needed whereby the bits to be transferred to the system bus are staged, and the bits to
be read from the data bus are temporarily stored.

Typically, the processor updates the PC after each instruction fetch so that the PC always points to
the next instruction to be executed. A branch or skip instruction will also modify the contents of the
PC. The fetched instruction is loaded into an IR, where the opcode and operand specifiers are
analyzed. Data are exchanged with memory using the MAR and MBR. In a bus-organized system, the
MAR connects directly to the address bus, and the MBR connects directly to the data bus. User-visible
registers, in turn, exchange data with the MBR.

The four registers just mentioned are used for the movement of data between the processor and
memory. Within the processor, data must be presented to the ALU for processing. The ALU may have
direct access to the MBR and user-visible registers. Alternatively, there may be additional buffering
registers at the boundary to the ALU; these registers serve as input and output registers for the ALU
and exchange data with the MBR and user-visible registers.

Many processor designs include a register or set of registers, often known as the program status word
(PSW), that contain status information. The PSW typically contains condition codes plus other status
information. Common fields or flags include the following:

Sign: Contains the sign bit of the result of the last arithmetic operation.
Zero: Set when the result is 0.
Carry: Set if an operation resulted in a carry (addition) into or borrow (subtraction) out of a high-
order bit. Used for multiword arithmetic operations.
Equal: Set if a logical compare result is equality.

Overflow: Used to indicate arithmetic overflow.
Interrupt Enable/Disable: Used to enable or disable interrupts.
Supervisor: Indicates whether the processor is executing in supervisor or user mode. Certain
privileged instructions can be executed only in supervisor mode, and certain areas of memory can
be accessed only in supervisor mode.

A number of other registers related to status and control might be found in a particular processor
design. There may be a pointer to a block of memory containing additional status information (e.g.,
process control blocks). In machines using vectored interrupts, an interrupt vector register may be
provided. If a stack is used to implement certain functions (e.g., subroutine call), then a system stack
pointer is needed. A page table pointer is used with a virtual memory system. Finally, registers may be
used in the control of I/O operations.

A number of factors go into the design of the control and status register organization. One key issue is
operating system support. Certain types of control information are of specific utility to the operating
system. If the processor designer has a functional understanding of the operating system to be used,
then the register organization can to some extent be tailored to the operating system.

Another key design decision is the allocation of control information between registers and memory. It
is common to dedicate the first (lowest) few hundred or thousand words of memory for control
purposes. The designer must decide how much control information should be in registers and how
much in memory. The usual trade-off of cost versus speed arises.

Example Microprocessor Register Organizations

It is instructive to examine and compare the register organization of comparable systems. In this
section, we look at two 16-bit microprocessors that were designed at about the same time: the
Motorola MC68000 [STRI79] and the Intel 8086 [MORS78]. Figures 16.2a and b depict the register
organization of each; purely internal registers, such as a memory address register, are not shown.

Figure 16.2 Example Microprocessor Register Organizations

The MC68000 partitions its 32-bit registers into eight data registers and nine address registers. The
eight data registers are used primarily for data manipulation and are also used in addressing as index
registers. The width of the registers allows 8-, 16-, and 32-bit data operations, determined by opcode.
The address registers contain 32-bit (no segmentation) addresses; two of these registers are also
used as stack pointers, one for users and one for the operating system, depending on the current
execution mode. Both registers are numbered 7, because only one can be used at a time. The
MC68000 also includes a 32-bit program counter and a 16-bit status register.

The Motorola team wanted a very regular instruction set, with no special-purpose registers. A concern
for code efficiency led them to divide the registers into two functional components, saving one bit on
each register specifier. This seems a reasonable compromise between complete generality and code
compaction.

The Intel 8086 takes a different approach to register organization. Every register is special purpose,
although some registers are also usable as general purpose. The 8086 contains four 16-bit data
registers that are addressable on a byte or 16-bit basis, and four 16-bit pointer and index registers.
The data registers can be used as general purpose in some instructions. In others, the registers are
used implicitly. For example, a multiply instruction always uses the accumulator. The four pointer
registers are also used implicitly in a number of operations; each contains a segment offset. There are
also four 16-bit segment registers. Three of the four segment registers are used in a dedicated,
implicit fashion, to point to the segment of the current instruction (useful for branch instructions), a
segment containing data, and a segment containing a stack, respectively. These dedicated and
implicit uses provide for compact encoding at the cost of reduced flexibility. The 8086 also includes an

instruction pointer and a set of 1-bit status and control flags.

The point of this comparison should be clear. There is no universally accepted philosophy concerning
the best way to organize processor registers [TOON81]. As with overall instruction set design and so
many other processor design issues, it is still a matter of judgment and taste.

A second instructive point concerning register organization design is illustrated in Figure 16.2c. This
figure shows the user-visible register organization for the Intel 80386 [ELAY85], which is a 32-bit
microprocessor designed as an extension of the 8086. The 80386 uses 32-bit registers. However, to
provide upward compatibility for programs written on the earlier machine, the 80386 retains the
original register organization embedded in the new organization. Given this design constraint, the
architects of the 32-bit processors had limited flexibility in designing the register organization.

 Because the MC68000 already uses 32-bit registers, the MC68020 [MACD84], which is a full 32-bit architecture,

uses the same register organization.

1

1

16.3 Instruction Cycle
In Section 3.2, we described the processor’s instruction cycle (Figure 3.9).
To recall, an instruction cycle includes the following stages:

Fetch: Read the next instruction from memory into the processor.
Execute: Interpret the opcode and perform the indicated operation.
Interrupt: If interrupts are enabled and an interrupt has occurred, save the current process state
and service the interrupt.

We are now in a position to elaborate somewhat on the instruction cycle. First, we must introduce one
additional stage, known as the indirect cycle.

The Indirect Cycle

We have seen in Chapter 14 that the execution of an instruction may involve one or more operands in
memory, each of which requires a memory access. Further, if indirect addressing is used, then
additional memory accesses are required.

We can think of the fetching of indirect addresses as one or more instruction stages. The result is
shown in Figure 16.3. The main line of activity consists of alternating instruction fetch and instruction
execution activities. After an instruction is fetched, it is examined to determine if any indirect
addressing is involved. If so, the required operands are fetched using indirect addressing. Following
execution, an interrupt may be processed before the next instruction fetch.

Figure 16.3 The Instruction Cycle

Another way to view this process is shown in Figure 16.4, which is a revised version of Figure 3.12.
This illustrates more correctly the nature of the instruction cycle. Once an instruction is fetched, its
operand specifiers must be identified. Each input operand in memory is then fetched, and this process
may require indirect addressing. Register-based operands need not be fetched. Once the opcode is
executed, a similar process may be needed to store the result in main memory.

Figure 16.4 Instruction Cycle State Diagram

Data Flow

The exact sequence of events during an instruction cycle depends on the design of the processor. We
can, however, indicate in general terms what must happen. Let us assume a processor that employs a
memory address register (MAR), a memory buffer register (MBR), a program counter (PC), and an
instruction register (IR).

During the fetch cycle, an instruction is read from memory. Figure 16.5 shows the flow of data during
this cycle. The PC contains the address of the next instruction to be fetched. This address is moved to
the MAR and placed on the address bus. The control unit requests a memory read, and the result is
placed on the data bus and copied into the MBR and then moved to the IR. Meanwhile, the PC is
incremented by 1, preparatory for the next fetch.

Figure 16.5 Data Flow, Fetch Cycle

Once the fetch cycle is over, the control unit examines the contents of the IR to determine if it contains
an operand specifier using indirect addressing. If so, an indirect cycle is performed. As shown in
Figure 16.6, this is a simple cycle. The right-most N bits of the MBR, which contain the address
reference, are transferred to the MAR. Then the control unit requests a memory read, to get the
desired address of the operand into the MBR.

Figure 16.6 Data Flow, Indirect Cycle

The fetch and indirect cycles are simple and predictable. The execute cycle takes many forms,
depending on which of the various machine instructions is in the IR. This cycle may involve
transferring data among registers, read or write from memory or I/O, and/or the invocation of the ALU.

Like the fetch and indirect cycles, the interrupt cycle is simple and predictable (Figure 16.7). The

current contents of the PC must be saved so that the processor can resume normal activity after the
interrupt. Thus, the contents of the PC are transferred to the MBR to be written into memory. The
special memory location reserved for this purpose is loaded into the MAR from the control unit. It
might, for example, be a stack pointer. The PC is loaded with the address of the interrupt routine. As a
result, the next instruction cycle will begin by fetching the appropriate instruction.

Figure 16.7 Data Flow, Interrupt Cycle

16.4 Instruction Pipelining
As computer systems evolve, greater performance can be achieved by taking advantage of
improvements in technology, such as faster circuitry. In addition, organizational enhancements to the
processor can improve performance. We have already seen some examples of this, such as the use
of multiple registers rather than a single accumulator, and the use of a cache memory. Another
organizational approach, which is quite common, is instruction pipelining.

Pipelining Strategy

Instruction pipelining is similar to the use of an assembly line in a manufacturing plant. An assembly
line takes advantage of the fact that a product goes through various stages of production. By laying
the production process out in an assembly line, products at various stages can be worked on
simultaneously. This process is also referred to as pipelining because, as in a pipeline, new inputs are
accepted at one end before previously accepted inputs appear as outputs at the other end.

To apply this concept to instruction execution, we must recognize that, in fact, an instruction has a
number of stages. Figure 16.4 for example breaks the instruction cycle up into 10 tasks, which occur
in sequence. Clearly, there should be some opportunity for pipelining.

As a simple approach, consider subdividing instruction processing into two stages: fetch instruction
and execute instruction. There are times during the execution of an instruction when main memory is
not being accessed. This time could be used to fetch the next instruction in parallel with the execution
of the current one. Figure 16.8a depicts this approach. The pipeline has two independent stages. The
first stage fetches an instruction and buffers it. When the second stage is free, the first stage passes it
the buffered instruction. While the second stage is executing the instruction, the first stage takes
advantage of any unused memory cycles to fetch and buffer the next instruction. This is called
instruction prefetch or fetch overlap. Note that this approach, which involves instruction buffering,
requires more registers.

Figure 16.8 Two-Stage Instruction Pipeline

In general, pipelining requires fast registers, called latches, that store intermediate values between
stages. Figure 16.9 illustrates this in simplified form for a three-stage pipeline. The latches serve to
decouple the stages from each other. Information flows between adjacent stages under the control of
a common clock applied to all the latches simultaneously. As each clock cycle ends, the latches gate
in their inputs and forward them into the next stage, where the required operation is performed. This
simplified picture omits several details. Each stage may consist of multiple execution units that
cooperate in performing the required operations. In addition, the latches may be extended with
multiplexers that allow the input to a latch to come from a subsequent stage (feed back) or from a
stage prior to the just preceding stage (feed forward).

It should be clear that this process will speed up instruction execution. If the fetch and execute stages
were of equal duration, the instruction cycle time would be halved. However, if we look more closely at
this pipeline (Figure 16.8b), we will see that this doubling of execution rate is unlikely for two reasons:

Figure 16.9 Simplified Pipeline Architecture

1. The execution time will generally be longer than the fetch time. Execution will involve reading
and storing operands and the performance of some operation. Thus, the fetch stage may have
to wait for some time before it can empty its buffer.

2. A conditional branch instruction makes the address of the next instruction to be fetched
unknown. Thus, the fetch stage must wait until it receives the next instruction address from the
execute stage. The execute stage may then have to wait while the next instruction is fetched.

Guessing can reduce the time loss from the second reason. A simple rule is the following: When a
conditional branch instruction is passed on from the fetch to the execute stage, the fetch stage fetches
the next instruction in memory after the branch instruction. Then, if the branch is not taken, no time is
lost. If the branch is taken, the fetched instruction must be discarded and a new instruction fetched.

While these factors reduce the potential effectiveness of the two-stage pipeline, some speedup
occurs. To gain further speedup, the pipeline must have more stages. Let us consider the following
decomposition of the instruction processing.

Fetch instruction (FI): Read the next expected instruction into a buffer.
Decode instruction (DI): Determine the opcode and the operand specifiers.
Calculate operands (CO): Calculate the effective address of each source operand. This may
involve displacement, register indirect, indirect, or other forms of address calculation.
Fetch operands (FO): Fetch each operand from memory. Operands in registers need not be
fetched.
Execute instruction (EI): Perform the indicated operation and store the result, if any, in the
specified destination operand location.
Write operand (WO): Store the result in memory.

With this decomposition, the various stages will be of more nearly equal duration. For the sake of

illustration, let us assume equal duration. Using this assumption, Figure 16.10 shows that a six-stage
pipeline can reduce the execution time for 9 instructions from 54 time units to 14 time units.

Figure 16.10 Timing Diagram for Instruction Pipeline Operation

Several comments are in order: The diagram assumes that each instruction goes through all six
stages of the pipeline. This will not always be the case. For example, a load instruction does not need
the WO stage. However, to simplify the pipeline hardware, the timing is set up assuming that each
instruction requires all six stages. Also, the diagram assumes that all of the stages can be performed
in parallel. In particular, it is assumed that there are no memory conflicts. For example, the FI, FO, and
WO stages involve a memory access. The diagram implies that all these accesses can occur
simultaneously. Most memory systems will not permit that. However, the desired value may be in
cache, or the FO or WO stage may be null. Thus, much of the time, memory conflicts will not slow
down the pipeline.

Several other factors serve to limit the performance enhancement. If the six stages are not of equal
duration, there will be some waiting involved at various pipeline stages, as discussed before for the
two-stage pipeline. Another difficulty is the conditional branch instruction, which can invalidate several
instruction fetches. A similar unpredictable event is an interrupt. Figure 16.11 illustrates the effects of
the conditional branch, using the same program as Figure 16.10. Assume that instruction 3 is a
conditional branch to instruction 15. Until the instruction is executed, there is no way of knowing which
instruction will come next. The pipeline, in this example, simply loads the next instruction in sequence
(instruction 4) and proceeds. In Figure 16.10, the branch is not taken, and we get the full performance
benefit of the enhancement. In Figure 16.11, the branch is taken. This is not determined until the end
of time unit 7. At this point, the pipeline must be cleared of instructions that are not useful. During time
unit 8, instruction 15 enters the pipeline. No instructions complete during time units 9 through 12; this
is the performance penalty incurred because we could not anticipate the branch. Figure 16.12
indicates the logic needed for pipelining to account for branches and interrupts.

Figure 16.11 The Effect of a Conditional Branch on Instruction Pipeline Operation

Figure 16.12 Six-Stage CPU Instruction Pipeline

Other problems arise that did not appear in our simple two-stage organization. The CO stage may
depend on the contents of a register that could be altered by a previous instruction that is still in the
pipeline. Other such register and memory conflicts could occur. The system must contain logic to
account for this type of conflict.

To clarify pipeline operation, it might be useful to look at an alternative depiction. Figures 16.10 and
16.11 show the progression of time horizontally across the figures, with each row showing the

progress of an individual instruction. Figure 16.13 shows the same sequence of events with time
progressing vertically down the figure, and each row showing the state of the pipeline at a given point
in time. In Figure 16.13a (which corresponds to Figure 16.10), the pipeline is full at time 6, with 6
different instructions in various stages of execution, and remains full through time 9; we assume that
instruction I9 is the last instruction to be executed. In Figure 16.13b, (which corresponds to Figure
16.11), the pipeline is full at times 6 and 7. At time 7, instruction 3 is in the execute stage and
executes a branch to instruction 15. At this point, instructions I4 through I7 are flushed from the
pipeline, so that at time 8, only two instructions are in the pipeline, I3 and I15.

Figure 16.13 An Alternative Pipeline Depiction

From the preceding discussion, it might appear that the greater the number of stages in the pipeline,
the faster the execution rate. Some of the IBM S/360 designers pointed out two factors that frustrate
this seemingly simple pattern for high-performance design [ANDE67a], and they remain elements that
designer must still consider:

1. At each stage of the pipeline, there is some overhead involved in moving data from buffer to
buffer and in performing various preparation and delivery functions. This overhead can
appreciably lengthen the total execution time of a single instruction. This is significant when
sequential instructions are logically dependent, either through heavy use of branching or
through memory access dependencies.

2. The amount of control logic required to handle memory and register dependencies and to
optimize the use of the pipeline increases enormously with the number of stages. This can lead
to a situation where the logic controlling the gating between stages is more complex than the

stages being controlled.

Another consideration is latching delay: It takes time for pipeline buffers to operate, and this adds to
instruction cycle time.

Instruction pipelining is a powerful technique for enhancing performance, but requires careful design
to achieve optimum results with reasonable complexity.

Pipeline Performance

In this subsection, we develop some simple measures of pipeline performance and relative speedup
(based on a discussion in [HWAN93]). The cycle time of an instruction pipeline is the time needed
to advance a set of instructions one stage through the pipeline; each column in Figures 16.10 and
16.11 represents one cycle time. The cycle time can be determined as

where

In general, the time delay d is equivalent to a clock pulse and . Now suppose that n instructions

are processed, with no branches. Let be the total time required for a pipeline with k stages to
execute n instructions. Then

A total of k cycles are required to complete the execution of the first instruction, and the remaining
 instructions require cycles. This equation is easily verified from Figure 16.10. The ninth

instruction completes at time cycle 14:

 We are being a bit sloppy here. The cycle time will only equal the maximum value of τ when all the stages are full.

At the beginning, the cycle time may be less for the first one or few cycles.

Now consider a processor with equivalent functions but no pipeline, and assume that the instruction
cycle time is . The speedup factor for the instruction pipeline compared to execution without the
pipeline is defined as

Figure 16.14a plots the speedup factor as a function of the number of instructions that are executed
without a branch. As might be expected, at the limit , we have a k-fold speedup. Figure

τ

τ = max
i

[τi] + d = τm + d1≤i≤k

τi = time delay of the circuitry in the ith stage of the pipeline
τm = maximum stage delay (delay through stage which experiences the largest

delay)
k = number of stages in the instruction pipeline
d = time delay of a latch, needed to advance signals and data from one stage

to the next

τm ≫ d

Tk , n

Tk , n = [k + (n − 1)] τ
(16.1)

n − 1 n − 1 2

2

14 = [6 + (9 − 1)]

k τ

Sk =
T1 , n
Tk , n =

nkτ
[k + (n − 1)] τ =

nk
k + (n − 1) (16.2)

(n →∞)

16.14b shows the speedup factor as a function of the number of stages in the instruction pipeline. In
this case, the speedup factor approaches the number of instructions that can be fed into the pipeline
without branches. Thus, the larger the number of pipeline stages, the greater the potential for
speedup. However, as a practical matter, the potential gains of additional pipeline stages are
countered by increases in cost, delays between stages, and the fact that branches will be encountered
requiring the flushing of the pipeline.

 Note that the x-axis is logarithmic in Figure 16.14a and linear in Figure 16.14b.

Figure 16.14 Speedup Factors with Instruction Pipelining

Pipeline Hazards

In the previous subsection, we mentioned some of the situations that can result in less than optimal

3

3

pipeline performance. In this subsection, we examine this issue in a more systematic way. Chapter 18
revisits this issue in more detail, after we have introduced the complexities found in superscalar
pipeline organizations.

A pipeline hazard occurs when the pipeline, or some portion of the pipeline, must stall because
conditions do not permit continued execution. Such a pipeline stall is also referred to as a pipeline
bubble. There are three types of hazards: resource, data, and control.

RESOURCE HAZARDS

A resource hazard occurs when two (or more) instructions that are already in the pipeline need the
same resource. The result is that the instructions must be executed in serial rather than parallel for a
portion of the pipeline. A resource hazard is sometime referred to as a structural hazard.

Let us consider a simple example of a resource hazard. Assume a simplified five-stage pipeline, in
which each stage takes one clock cycle. Figure 16.15a shows the ideal case, in which a new
instruction enters the pipeline each clock cycle. Now assume that main memory has a single port and
that all instruction fetches and data reads and writes must be performed one at a time. Further, ignore
the cache. In this case, an operand read to or write from memory cannot be performed in parallel with
an instruction fetch. This is illustrated in Figure 16.15b, which assumes that the source operand for
instruction I1 is in memory, rather than a register. Therefore, the fetch instruction stage of the pipeline
must idle for one cycle before beginning the instruction fetch for instruction I3. The figure assumes
that all other operands are in registers.

Figure 16.15 Example of Resource Hazard

Another example of a resource conflict is a situation in which multiple instructions are ready to enter
the execute instruction phase and there is a single ALU. One solutions to such resource hazards is to
increase available resources, such as having multiple ports into main memory and multiple ALU units.

Aleksandr Lukin/123RF

Reservation Table Analyzer

One approach to analyzing resource conflicts and aiding in the design of pipelines is the reservation
table. We examine reservation tables in Appendix I.

DATA HAZARDS

A data hazard occurs when there is a conflict in the access of an operand location. In general terms,
we can state the hazard in this form: Two instructions in a program are to be executed in sequence
and both access a particular memory or register operand. If the two instructions are executed in strict
sequence, no problem occurs. However, if the instructions are executed in a pipeline, then it is
possible for the operand value to be updated in such a way as to produce a different result than would
occur with strict sequential execution. In other words, the program produces an incorrect result
because of the use of pipelining.

As an example, consider the following x86 machine instruction sequence:

ADD EAX, EBX /* EAX = EAX + EBX
SUB ECX, EAX /* ECX = ECX – EAX

The first instruction adds the contents of the 32-bit registers EAX and EBX, and stores the result in
EAX. The second instruction subtracts the contents of EAX from ECX and stores the result in ECX.
Figure 16.16 shows the pipeline behavior. The ADD instruction does not update register EAX until the
end of stage 5, which occurs at clock cycle 5. But the SUB instruction needs that value at the
beginning of its stage 2, which occurs at clock cycle 4. To maintain correct operation, the pipeline
must stall for two clocks cycles. Thus, in the absence of special hardware and specific avoidance
algorithms, such a data hazard results in inefficient pipeline usage.

Figure 16.16 Example of Data Hazard

There are three types of data hazards:

Read after write (RAW), or true dependency: An instruction modifies a register or memory
location, and a succeeding instruction reads the data in that memory or register location. A hazard
occurs if the read takes place before the write operation is complete. This type of hazard is referred
to as a true dependency because it is a real data dependency that is not just due to a shortage of
registers. It can occur whether or not the first instruction stalls, and cannot be avoided by
reassigning or renaming registers.
Write after read (WAR), or antidependency: An instruction reads a register or memory location
and a succeeding instruction writes to the location. A hazard occurs if the write operation
completes before the read operation takes place.
Write after write (WAW), or output dependency: Two instructions both write to the same
location. A hazard occurs if the write operations take place in the reverse order of the intended
sequence.

The example of Figure 16.16 is a RAW hazard. The other two hazards are best discussed in the
context of superscalar organization, discussed in Chapter 18.

CONTROL HAZARDS

A control hazard, also known as a branch hazard, occurs when the pipeline makes the wrong decision
on a branch prediction and therefore brings instructions into the pipeline that must subsequently be
discarded. We discuss approaches to dealing with control hazards next.

Dealing with Branches

One of the major problems in designing an instruction pipeline is assuring a steady flow of instructions
to the initial stages of the pipeline. The primary impediment, as we have seen, is the conditional
branch instruction. Until the instruction is actually executed, it is impossible to determine whether the
branch will be taken or not.

A variety of approaches have been taken for dealing with conditional branches:

Multiple streams
Prefetch branch target
Loop buffer
Branch prediction
Delayed branch

MULTIPLE STREAMS

A simple pipeline suffers a penalty for a branch instruction because it must choose one of two
instructions to fetch next and may make the wrong choice. A brute-force approach is to replicate the
initial portions of the pipeline and allow the pipeline to fetch both instructions, making use of two
streams. There are two problems with this approach:

With multiple pipelines there are contention delays for access to the registers and to memory.
Additional branch instructions may enter the pipeline (either stream) before the original branch
decision is resolved. Each such instruction needs an additional stream.

Despite these drawbacks, this strategy can improve performance. Examples of machines with two or

more pipeline streams are the IBM 370/168 and the IBM 3033.

PREFETCH BRANCH TARGET

When a conditional branch is recognized, the target of the branch is prefetched, in addition to the
instruction following the branch. This target is then saved until the branch instruction is executed. If the
branch is taken, the target has already been prefetched.

The IBM 360/91 uses this approach.

LOOP BUFFER

A loop buffer is a small, very-high-speed memory maintained by the instruction fetch stage of the
pipeline and containing the n most recently fetched instructions, in sequence. If a branch is to be
taken, the hardware first checks whether the branch target is within the buffer. If so, the next
instruction is fetched from the buffer. The loop buffer has three benefits:

1. With the use of prefetching, the loop buffer will contain some instruction sequentially ahead of
the current instruction fetch address. Thus, instructions fetched in sequence will be available
without the usual memory access time.

2. If a branch occurs to a target just a few locations ahead of the address of the branch instruction,
the target will already be in the buffer. This is useful for the rather common occurrence of IF–
THEN and IF–THEN–ELSE sequences.

3. This strategy is particularly well suited to dealing with loops, or iterations; hence the name loop
buffer. If the loop buffer is large enough to contain all the instructions in a loop, then those
instructions need to be fetched from memory only once, for the first iteration. For subsequent
iterations, all the needed instructions are already in the buffer.

The loop buffer is similar in principle to a cache dedicated to instructions. The differences are that the
loop buffer only retains instructions in sequence and is much smaller in size and hence lower in cost.

Figure 16.17 gives an example of a loop buffer. If the buffer contains 256 bytes, and byte addressing
is used, then the least significant 8 bits are used to index the buffer. The remaining most significant
bits are checked to determine if the branch target lies within the environment captured by the buffer.

Figure 16.17 Loop Buffer

Among the machines using a loop buffer are some of the CDC machines (Star-100, 6600, 7600) and

the CRAY-1. A specialized form of loop buffer is available on the Motorola 68010, for executing a
three-instruction loop involving the DBcc (decrement and branch on condition) instruction (see
Problem 16.14). A three-word buffer is maintained, and the processor executes these instructions
repeatedly until the loop condition is satisfied.

Aleksandr Lukin/123RF

Branch Prediction Simulator

Branch Target Buffer

BRANCH PREDICTION

Various techniques can be used to predict whether a branch will be taken. Among the more common
are the following:

Predict never taken
Predict always taken
Predict by opcode
Taken/not taken switch
Branch history table

The first three approaches are static: they do not depend on the execution history up to the time of the
conditional branch instruction. The latter two approaches are dynamic: They depend on the execution
history.

The first two approaches are the simplest. These either always assume that the branch will not be
taken and continue to fetch instructions in sequence, or they always assume that the branch will be
taken and always fetch from the branch target. The predict-never-taken approach is the most popular
of all the branch prediction methods.

Studies analyzing program behavior have shown that conditional branches are taken more than 50%
of the time [LILJ88], and so if the cost of prefetching from either path is the same, then always
prefetching from the branch target address should give better performance than always prefetching
from the sequential path. However, in a paged machine, prefetching the branch target is more likely to
cause a page fault than prefetching the next instruction in sequence, and so this performance penalty
should be taken into account. An avoidance mechanism may be employed to reduce this penalty.

The final static approach makes the decision based on the opcode of the branch instruction. The
processor assumes that the branch will be taken for certain branch opcodes and not for others.
[LILJ88] reports success rates of greater than 75% with this strategy.

Dynamic branch strategies attempt to improve the accuracy of prediction by recording the history of
conditional branch instructions in a program. For example, one or more bits can be associated with
each conditional branch instruction that reflect the recent history of the instruction. These bits are
referred to as a taken/not taken switch that directs the processor to make a particular decision the
next time the instruction is encountered. Typically, these history bits are not associated with the
instruction in main memory. Rather, they are kept in temporary high-speed storage. One possibility is
to associate these bits with any conditional branch instruction that is in a cache. When the instruction

is replaced in the cache, its history is lost. Another possibility is to maintain a small table for recently
executed branch instructions with one or more history bits in each entry. The processor could access
the table associatively, like a cache, or by using the low-order bits of the branch instruction’s address.

With a single bit, all that can be recorded is whether the last execution of this instruction resulted in a
branch or not. A shortcoming of using a single bit appears in the case of a conditional branch
instruction that is almost always taken, such as a loop instruction. With only one bit of history, an error
in prediction will occur twice for each use of the loop: once on entering the loop, and once on exiting.

If two bits are used, they can be used to record the result of the last two instances of the execution of
the associated instruction, or to record a state in some other fashion. Figure 16.18 shows a typical
approach (see Problem 16.13 for other possibilities). Assume that the algorithm starts at the upper-
left-hand corner of the flowchart. As long as each succeeding conditional branch instruction that is
encountered is taken, the decision process predicts that the next branch will be taken. If a single
prediction is wrong, the algorithm continues to predict that the next branch is taken. Only if two
successive branches are not taken does the algorithm shift to the right-hand side of the flowchart.
Subsequently, the algorithm will predict that branches are not taken until two branches in a row are
taken. Thus, the algorithm requires two consecutive wrong predictions to change the prediction
decision.

Figure 16.18 Branch Prediction Flowchart

The decision process can be represented more compactly by a finite-state machine, shown in Figure
16.19. The finite-state machine representation is commonly used in the literature.

Figure 16.19 Branch Prediction State Diagram

The use of history bits, as just described, has one drawback: If the decision is made to take the
branch, the target instruction cannot be fetched until the target address, which is an operand in the
conditional branch instruction, is decoded. Greater efficiency could be achieved if the instruction fetch
could be initiated as soon as the branch decision is made. For this purpose, more information must be
saved, in what is known as a branch target buffer, or a branch history table.

The branch history table is a small cache memory associated with the instruction fetch stage of the
pipeline. Each entry in the table consists of three elements: the address of a branch instruction, some
number of history bits that record the state of use of that instruction, and information about the target
instruction. In most proposals and implementations, this third field contains the address of the target
instruction. Another possibility is for the third field to actually contain the target instruction. The trade-
off is clear: Storing the target address yields a smaller table but a greater instruction fetch time
compared with storing the target instruction [RECH98].

Figure 16.20 contrasts this scheme with a predict-never-taken strategy. With the former strategy, the
instruction fetch stage always fetches the next sequential address. If a branch is taken, some logic in
the processor detects this and instructs that the next instruction be fetched from the target address (in
addition to flushing the pipeline). The branch history table is treated as a cache. Each prefetch triggers
a lookup in the branch history table. If no match is found, the next sequential address is used for the
fetch. If a match is found, a prediction is made based on the state of the instruction: Either the next
sequential address or the branch target address is fed to the select logic.

Figure 16.20 Dealing with Branches

When the branch instruction is executed, the execute stage signals the branch history table logic with
the result. The state of the instruction is updated to reflect a correct or incorrect prediction. If the
prediction is incorrect, the select logic is redirected to the correct address for the next fetch. When a
conditional branch instruction is encountered that is not in the table, it is added to the table and one of
the existing entries is discarded, using one of the cache replacement algorithms discussed in Chapter
5.

A refinement of the branch history approach is referred to as two-level or correlation-based branch
history [YEH91]. This approach is based on the assumption that whereas in loop-closing branches,
the past history of a particular branch instruction is a good predictor of future behavior, with more
complex control-flow structures the direction of a branch is frequently correlated with the direction of
related branches. An example is an if-then-else or case structure. There are a number of possible
strategies. Typically, recent global branch history (i.e., the history of the most recent branches, not just
of this branch instruction) is used in addition to the history of the current branch instruction. The
general structure is defined as an (m, n) correlator, which uses the behavior of the last m branches to
choose from n-bit branch predictors for the current branch instruction. In other words, an n-bit
history is kept for a given branch for each possible combination of branches taken by the most recent
m branches.

DELAYED BRANCH

It is possible to improve pipeline performance by automatically rearranging instructions within a
program, so that branch instructions occur later than actually desired. This intriguing approach is
examined in Chapter 17.

Intel 80486 Pipelining

An instructive example of an instruction pipeline is that of the Intel 80486. The 80486 implements a
five-stage pipeline:

Fetch: Instructions are fetched from the cache or from external memory and placed into one of the
two 16-byte prefetch buffers. The objective of the fetch stage is to fill the prefetch buffers with new
data as soon as the old data have been consumed by the instruction decoder. Because
instructions are of variable length (from 1 to 11 bytes not counting prefixes), the status of the
prefetcher relative to the other pipeline stages varies from instruction to instruction. On average,
about five instructions are fetched with each 16-byte load [CRAW90]. The fetch stage operates
independently of the other stages to keep the prefetch buffers full.
Decode stage 1: All opcode and addressing-mode information is decoded in the D1 stage. The
required information, as well as instruction-length information, is included in at most the first 3
bytes of the instruction. Hence, 3 bytes are passed to the D1 stage from the prefetch buffers. The
D1 decoder can then direct the D2 stage to capture the rest of the instruction (displacement and
immediate data), which is not involved in the D1 decoding.
Decode stage 2: The D2 stage expands each opcode into control signals for the ALU. It also
controls the computation of the more complex addressing modes.
Execute: This stage includes ALU operations, cache access, and register update.
Write back: This stage, if needed, updates registers and status flags modified during the
preceding execute stage. If the current instruction updates memory, the computed value is sent to
the cache and to the bus-interface write buffers at the same time.

With the use of two decode stages, the pipeline can sustain a throughput of close to one instruction
per clock cycle. Complex instructions and conditional branches can slow down this rate.

Figure 16.21 shows examples of the operation of the pipeline. Figure 16.21a shows that there is no
delay introduced into the pipeline when a memory access is required. However, as Figure 16.21b
shows, there can be a delay for values used to compute memory addresses. That is, if a value is
loaded from memory into a register and that register is then used as a base register in the next
instruction, the processor will stall for one cycle. In this example, the processor accesses the cache in
the EX stage of the first instruction and stores the value retrieved in the register during the WB stage.
However, the next instruction needs this register in its D2 stage. When the D2 stage lines up with the
WB stage of the previous instruction, bypass signal paths allow the D2 stage to have access to the

2
m

same data being used by the WB stage for writing, saving one pipeline stage.

Figure 16.21 80486 Instruction Pipeline Examples

Figure 16.21c illustrates the timing of a branch instruction, assuming that the branch is taken. The
compare instruction updates condition codes in the WB stage, and bypass paths make this available
to the EX stage of the jump instruction at the same time. In parallel, the processor runs a speculative
fetch cycle to the target of the jump during the EX stage of the jump instruction. If the processor
determines a false branch condition, it discards this prefetch and continues execution with the next
sequential instruction (already fetched and decoded).

16.5 Processor Organization for Pipelining
This section looks at some of the enhancements to a simple pipeline that can be used to improve
performance. Consider a five-stage pipeline:

Instruction fetch (IF): Load instruction from cache.
Instruction decode (ID): Determine the opcode and the operand specifiers.
Operand fetch (OF): Read and buffer any register operands.
Execute (EX): Perform the indicated operation. For a memory load or store, this involves memory
access through the cache.
Write back (WB): Write back instruction result to its destination register.

Figure 16.22a indicates a simple organization for this pipeline. Two contention problems are
apparent. The WB and OF stages both need access to the register file, and the IF and EX stages both
need access to the cache. Figure 16.22b shows modifications to the organization to alleviate these
conflicts. Increasing the number of register ports and busses enables simultaneous read and write.
Separating the L1 cache into an I-cache and a D-cache removes the conflict between the IF and EX
stages.

Figure 16.23 shows a more complex organization that further enhances performance. The following
are the changes:

Figure 16.22 Approaches to Pipeline Organization

Figure 16.23 Improved Pipeline Organization

Dedicated execution units for each function: Different units can have different time delays,
allowing for more flexible pipelining.
Pipelining a functional unit: Because different functional (EX) units have different time delays, it
is possible to pipeline executions in a longer unit. For example, an integer multiply unit may take
multiple clock cycles, compared to only one clock cycle for add/subtract and control transfer.
Instead of having to stall the pipeline until the entire multiply operation is complete, a new EX stage
can be started as soon as the first EX stage of the multiply is complete.
Reservation station: A buffer used to hold operations and operands for an EX unit until the
operands are available.

The purpose of the reservation station is to relieve a bottleneck at the OF stage. The OF can issue an
instruction as soon as a functional unit is available and hazards are resolved. The problem this
creates is that the OF stage cannot receive a new instruction until the previous instruction has been
issued. The reservation stations provide a buffer that enables the OF stage to issue instructions as
soon as possible. Then, the reservation station will dispatch each instruction to its functional unit when
the latter is available.

Figure 16.24 shows the typical contents of a reservation station for a machine that has up to two
operands per instruction. Each slot (shown vertically in the figure) holds information for one instruction
consisting of one or more tag/value pairs and an OP field. The OP field is the instruction operation
command for a functional unit. The Tag field indicates “valid” if the corresponding Value field contains
an operand. Otherwise the Tag field indicates the identity of the desired operand, such as by using a
register number. If the desired operand is available, it is copied from a register to the Value field;
otherwise, the slot is in a waiting state until the operand is available.

Figure 16.24 Reservation Station Contents

16.6 The x86 Processor Family
The x86 organization has evolved dramatically over the years. In this section we examine some of the
details of the most recent processor organizations, concentrating on common elements in single
processors. Chapter 18 looks at superscalar aspects of the x86, and Chapter 20 examines the
multicore organization. An overview of the Pentium 4 processor organization is depicted in Figure
5.17.

Register Organization

The register organization includes the following types of registers (Table 16.2):

Table 16.2 x86 Processor Registers

(a) Integer Unit in 32-bit Mode

Type Number Length (bits) Purpose

General 8 32 General-purpose user registers

Segment 6 16 Contain segment selectors

EFLAGS 1 32 Status and control bits

Instruction Pointer 1 32 Instruction pointer

(b) Integer Unit in 64-bit Mode

Type Number Length (bits) Purpose

General 16 32 General-purpose user registers

Segment 6 16 Contain segment selectors

RFLAGS 1 64 Status and control bits

Instruction Pointer 1 64 Instruction pointer

(c) Floating-Point Unit

Type Number Length (bits) Purpose

Numeric 8 80 Hold floating-point numbers

Control 1 16 Control bits

Status 1 16 Status bits

Tag Word 1 16 Specifies contents of numeric registers

Instruction Pointer 1 48 Points to instruction interrupted by exception

Data Pointer 1 48 Points to operand interrupted by exception

General: There are eight 32-bit general-purpose registers (see Figure 16.3c). These may be used
for all types of x86 instructions; they can also hold operands for address calculations. In addition,
some of these registers also serve special purposes. For example, string instructions use the
contents of the ECX, ESI, and EDI registers as operands without having to reference these
registers explicitly in the instruction. As a result, a number of instructions can be encoded more
compactly. In 64-bit mode, there are sixteen 64-bit general-purpose registers.
Segment: The six 16-bit segment registers contain segment selectors, which index into segment
tables, as discussed in Chapter 9. The code segment (CS) register references the segment
containing the instruction being executed. The stack segment (SS) register references the segment
containing a user-visible stack. The remaining segment registers (DS, ES, FS, GS) enable the user
to reference up to four separate data segments at a time.
Flags: The 32-bit EFLAGS register contains condition codes and various mode bits. In 64-bit
mode, this register is extended to 64 bits and referred to as RFLAGS. In the current architecture
definition, the upper 32 bits of RFLAGS are unused.
Instruction pointer: Contains the address of the current instruction.

There are also registers specifically devoted to the floating-point unit:

Numeric: Each register holds an extended-precision 80-bit floating-point number. There are eight
registers that function as a stack, with push and pop operations available in the instruction set.
Control: The 16-bit control register contains bits that control the operation of the floating-point unit,
including the type of rounding control; single, double, or extended precision; and bits to enable or
disable various exception conditions.
Status: The 16-bit status register contains bits that reflect the current state of the floating-point
unit, including a 3-bit pointer to the top of the stack; condition codes reporting the outcome of the
last operation; and exception flags.
Tag word: This 16-bit register contains a 2-bit tag for each floating-point numeric register, which
indicates the nature of the contents of the corresponding register. The four possible values are
valid, zero, special (NaN, infinity, denormalized), and empty. These tags enable programs to check
the contents of a numeric register without performing complex decoding of the actual data in the
register. For example, when a context switch is made, the processor need not save any floating-
point registers that are empty.

The use of most of the aforementioned registers is easily understood. Let us elaborate briefly on
several of the registers.

EFLAGS REGISTER

The EFLAGS register (Figure 16.25) indicates the condition of the processor and helps to control its
operation. It includes the six condition codes defined inTable 13.8 (carry, parity, auxiliary, zero, sign,
overflow), which report the results of an integer operation. In addition, there are bits in the register that
may be referred to as control bits:

Figure 16.25 x86 EFLAGS Register

Trap flag (TF): When set, causes an interrupt after the execution of each instruction. This is used
for debugging.
Interrupt enable flag (IF): When set, the processor will recognize external interrupts.
Direction flag (DF): Determines whether string processing instructions increment or decrement
the 16-bit half-registers SI and DI (for 16-bit operations) or the 32-bit registers ESI and EDI (for 32-
bit operations).
I/O privilege flag (IOPL): When set, causes the processor to generate an exception on all
accesses to I/O devices during protected-mode operation.
Resume flag (RF): Allows the programmer to disable debug exceptions so that the instruction can
be restarted after a debug exception without immediately causing another debug exception.
Alignment check (AC): Activates if a word or doubleword is addressed on a nonword or
nondoubleword boundary.
Identification flag (ID): If this bit can be set and cleared, then this processor supports the
processorID instruction. This instruction provides information about the vendor, family, and model.

In addition, there are 4 bits that relate to operating mode. The Nested Task (NT) flag indicates that the
current task is nested within another task in protected-mode operation. The Virtual Mode (VM) bit
allows the programmer to enable or disable virtual 8086 mode, which determines whether the
processor runs as an 8086 machine. The Virtual Interrupt Flag (VIF) and Virtual Interrupt Pending
(VIP) flag are used in a multitasking environment.

CONTROL REGISTERS

The x86 employs four control registers (register CR1 is unused) to control various aspects of
processor operation (Figure 16.26). All of the registers except CR0 are either 32 bits or 64 bits long,
depending on whether the implementation supports the x86 64-bit architecture. The CR0 register
contains system control flags, which control modes or indicate states that apply generally to the

processor rather than to the execution of an individual task. The flags are as follows:

Figure 16.26 x86 Control Registers

Protection Enable (PE): Enable/disable protected mode of operation.
Monitor Coprocessor (MP): Only of interest when running programs from earlier machines on the
x86; it relates to the presence of an arithmetic coprocessor.
Emulation (EM): Set when the processor does not have a floating-point unit, and causes an
interrupt when an attempt is made to execute floating-point instructions.
Task Switched (TS): Indicates that the processor has switched tasks.
Extension Type (ET): Not used on the Pentium and later machines; used to indicate support of
math coprocessor instructions on earlier machines.
Numeric Error (NE): Enables the standard mechanism for reporting floating-point errors on
external bus lines.

Write Protect (WP): When this bit is clear, read-only user-level pages can be written by a
supervisor process. This feature is useful for supporting process creation in some operating
systems.
Alignment Mask (AM): Enables/disables alignment checking.
Not Write Through (NW): Selects mode of operation of the data cache. When this bit is set, the
data cache is inhibited from cache write-through operations.
Cache Disable (CD): Enables/disables the internal cache fill mechanism.
Paging (PG): Enables/disables paging.

When paging is enabled, the CR2 and CR3 registers are valid. The CR2 register holds the 32-bit
linear address of the last page accessed before a page fault interrupt. The leftmost 20 bits of CR3
hold the 20 most significant bits of the base address of the page directory; the remainder of the
address contains zeros. Two bits of CR3 are used to drive pins that control the operation of an
external cache. The page-level cache disable (PCD) enables or disables the external cache, and the
page-level writes transparent (PWT) bit controls write through in the external cache. CR4 contains
additional control bits.

MMX REGISTERS

Recall from Section 13.3 that theThe x86 MMX capability makes use of several 64-bit data types. The
MMX instructions make use of 3-bit register address fields, so that eight MMX registers are supported.
In fact, the processor does not include specific MMX registers. Rather, the processor uses an aliasing
technique (Figure 16.27). The existing floating-point registers are used to store MMX values.
Specifically, the low-order 64 bits (mantissa) of each floating-point register are used to form the eight
MMX registers. Thus, the older 32-bit x86 architecture is easily extended to support the MMX
capability. Some key characteristics of the MMX use of these registers are as follows:

Figure 16.27 Mapping of MMX Registers to Floating-Point Registers

Recall that the floating-point registers are treated as a stack for floating- point operations. For MMX

operations, these same registers are accessed directly.
The first time that an MMX instruction is executed after any floating-point operations, the FP tag
word is marked valid. This reflects the change from stack operation to direct register addressing.
The EMMS (Empty MMX State) instruction sets bits of the FP tag word to indicate that all registers
are empty. It is important that the programmer insert this instruction at the end of an MMX code
block so that subsequent floating-point operations function properly.
When a value is written to an MMX register, bits [79:64] of the corresponding FP register (sign and
exponent bits) are set to all ones. This sets the value in the FP register to NaN (not a number) or
infinity when viewed as a floating-point value. This ensures that an MMX data value will not look
like a valid floating-point value.

Interrupt Processing

Interrupt processing within a processor is a facility provided to support the operating system. It allows
an application program to be suspended, in order that a variety of interrupt conditions can be serviced
and later resumed.

INTERRUPTS AND EXCEPTIONS

Two classes of events cause the x86 to suspend execution of the current instruction stream and
respond to the event: interrupts and exceptions. In both cases, the processor saves the context of the
current process and transfers to a predefined routine to service the condition. An interrupt is
generated by a signal from hardware, and it may occur at random times during the execution of a
program. An exception is generated from software, and it is provoked by the execution of an
instruction. There are two sources of interrupts and two sources of exceptions:

1. Interrupts
Maskable interrupts: Received on the processor’s INTR pin. The processor does not
recognize a maskable interrupt unless the interrupt enable flag (IF) is set.
Nonmaskable interrupts: Received on the processor’s NMI pin. Recognition of such
interrupts cannot be prevented.

2. Exceptions
Processor-detected exceptions: Results when the processor encounters an error while
attempting to execute an instruction.
Programmed exceptions: These are instructions that generate an exception (e.g., INTO,
INT3, INT, and BOUND).

INTERRUPT VECTOR TABLE

Interrupt processing on the x86 uses the interrupt vector table. Every type of interrupt is assigned a
number, and this number is used to index into the interrupt vector table. This table contains 256 32-bit
interrupt vectors, which is the address (segment and offset) of the interrupt service routine for that
interrupt number.

Table 16.3 shows the assignment of numbers in the interrupt vector table; shaded entries represent
interrupts, while nonshaded entries are exceptions. The NMI hardware interrupt is type 2. INTR
hardware interrupts are assigned numbers in the range of 32 to 255; when an INTR interrupt is
generated, it must be accompanied on the bus with the interrupt vector number for this interrupt. The
remaining vector numbers are used for exceptions.

Table 16.3 x86 Exception and Interrupt Vector Table
Unshaded: exceptions

Shaded: interrupts

Vector
Number

Description

0 Divide error; division overflow or division by zero

1 Debug exception; includes various faults and traps related to debugging

2 NMI pin interrupt; signal on NMI pin

3 Breakpoint; caused by INT 3 instruction, which is a 1-byte instruction useful for
debugging

4 INTO-detected overflow; occurs when the processor executes INTO with the OF flag set

5 BOUND range exceeded; the BOUND instruction compares a register with boundaries
stored in memory and generates an interrupt if the contents of the register is out of
bounds

6 Undefined opcode

7 Device not available; attempt to use ESC or WAIT instruction fails due to lack of external
device

8 Double fault; two interrupts occur during the same instruction and cannot be handled
serially

9 Reserved

10 Invalid task state segment; segment describing a requested task is not initialized or not
valid

11 Segment not present; required segment not present

12 Stack fault; limit of stack segment exceeded or stack segment not present

13 General protection; protection violation that does not cause another exception (e.g.,
writing to a read-only segment)

14 Page fault

15 Reserved

16 Floating-point error; generated by a floating-point arithmetic instruction

17 Alignment check; access to a word stored at an odd byte address or a doubleword stored
at an address not a multiple of 4

18 Machine check; model specific

19–31 Reserved

32–255 User interrupt vectors; provided when INTR signal is activated

If more than one exception or interrupt is pending, the processor services them in a predictable order.
The location of vector numbers within the table does not reflect priority. Instead, priority among
exceptions and interrupts is organized into five classes. In descending order of priority, these are

Class 1: Traps on the previous instruction (vector number 1)
Class 2: External interrupts (2, 32–255)
Class 3: Faults from fetching next instruction (3, 14)
Class 4: Faults from decoding the next instruction (6, 7)
Class 5: Faults on executing an instruction (0, 4, 5, 8, 10–14, 16, 17)

INTERRUPT HANDLING

Just as with a transfer of execution using a CALL instruction, a transfer to an interrupt-handling routine
uses the system stack to store the processor state. When an interrupt occurs and is recognized by the
processor, a sequence of events takes place:

1. If the transfer involves a change of privilege level, then the current stack segment register and
the current extended stack pointer (ESP) register are pushed onto the stack.

2. The current value of the EFLAGS register is pushed onto the stack.
3. Both the interrupt (IF) and trap (TF) flags are cleared. This disables INTR interrupts and the trap

or single-step feature.
4. The current code segment (CS) pointer and the current instruction pointer (IP or EIP) are

pushed onto the stack.
5. If the interrupt is accompanied by an error code, then the error code is pushed onto the stack.
6. The interrupt vector contents are fetched and loaded into the CS and IP or EIP registers.

Execution continues from the interrupt service routine.

To return from an interrupt, the interrupt service routine executes an IRET instruction. This causes all
of the values saved on the stack to be restored; execution resumes from the point of the interrupt.

16.7 The ARM Processor
In this section, we look at some of the key elements of the ARM architecture and organization. We
defer a discussion of more complex aspects of organization and pipelining until Chapter 18. For the
discussion in this section and in Chapter 18, it is useful to keep in mind key characteristics of the
ARM architecture. ARM is primarily a RISC system with the following notable attributes:

A moderate array of uniform registers, more than are found on some CISC systems but fewer than
are found on many RISC systems.
A load/store model of data processing, in which operations only perform on operands in registers
and not directly in memory. All data must be loaded into registers before an operation can be
performed; the result can then be used for further processing or stored into memory.
A uniform fixed-length instruction of 32 bits for the standard set and 16 bits for the Thumb
instruction set.
To make each data processing instruction more flexible, either a shift or rotation can preprocess
one of the source registers. To efficiently support this feature, there are separate arithmetic logic
unit (ALU) and shifter units.
A small number of addressing modes with all load/store addressees determined from registers and
instruction fields. Indirect or indexed addressing involving values in memory are not used.
Auto-increment and auto-decrement addressing modes are used to improve the operation of
program loops.
Conditional execution of instructions minimizes the need for conditional branch instructions,
thereby improving pipeline efficiency, because pipeline flushing is reduced.

Processor Organization

The ARM processor organization varies substantially from one implementation to the next, particularly
when based on different versions of the ARM architecture. However, it is useful for the discussion in
this section to present a simplified, generic ARM organization, which is illustrated in Figure 16.28. In
this figure, the arrows indicate the flow of data. Each box represents a functional hardware unit or a
storage unit.

Figure 16.28 Simplified ARM Organization

Data are exchanged with the processor from external memory through a data bus. The value
transferred is either a data item, as a result of a load or store instruction, or an instruction fetch.
Fetched instructions pass through an instruction decoder before execution, under control of a control
unit. The latter includes pipeline logic and provides control signals (not shown) to all the hardware
elements of the processor. Data items are placed in the register file, consisting of a set of 32-bit
registers. Byte or halfword items treated as twos-complement numbers are sign-extended to 32 bits.

ARM data processing instructions typically have two source registers, Rn and Rm, and a single result
or destination register, Rd. The source register values feed into the ALU or a separate multiply unit
that makes use of an additional register to accumulate partial results. The ARM processor also
includes a hardware unit that can shift or rotate the Rm value before it enters the ALU. This shift or
rotate occurs within the cycle time of the instruction and increases the power and flexibility of many
data processing operations.

The results of an operation are fed back to the destination register. Load/store instructions may also
use the output of the arithmetic units to generate the memory address for a load or store.

Processor Modes

It is quite common for a processor to support only a small number of processor modes. For example,
many operating systems make use of just two modes: a user mode and a kernel mode, with the latter
mode used to execute privileged system software. In contrast, the ARM architecture provides a
flexible foundation for operating systems to enforce a variety of protection policies.

The ARM architecture supports seven execution modes. Most application programs execute in user
mode. While the processor is in user mode, the program being executed is unable to access
protected system resources or to change mode, other than by causing an exception to occur.

The remaining six execution modes are referred to as privileged modes. These modes are used to run
system software. There are two principal advantages to defining so many different privileged modes:
(1) The OS can tailor the use of system software to a variety of circumstances, and (2) certain
registers are dedicated for use for each of the privileged modes, allowing swifter changes in context.

The exception modes have full access to system resources and can change modes freely. Five of
these modes are known as exception modes. These are entered when specific exceptions occur.
Each of these modes has some dedicated registers that substitute for some of the user mode
registers, and which are used to avoid corrupting user mode state information when the exception
occurs. The exception modes are as follows:

Supervisor mode: Usually what the OS runs in. It is entered when the processor encounters a
software interrupt instruction. Software interrupts are a standard way to invoke operating system
services on ARM.
Abort mode: Entered in response to memory faults.
Undefined mode: Entered when the processor attempts to execute an instruction that is supported
neither by the main integer core nor by one of the coprocessors.
Fast interrupt mode: Entered whenever the processor receives an interrupt signal from the
designated fast interrupt source. A fast interrupt cannot be interrupted, but a fast interrupt may
interrupt a normal interrupt.
Interrupt mode: Entered whenever the processor receives an interrupt signal from any other
interrupt source (other than fast interrupt). An interrupt may only be interrupted by a fast interrupt.

The remaining privileged mode is the System mode. This mode is not entered by any exception and
uses the same registers available in User mode. The System mode is used for running certain
privileged operating system tasks. System mode tasks may be interrupted by any of the five exception
categories.

Register Organization

Figure 16.29 depicts the user-visible registers for the ARM. The ARM processor has a total of 37 32-
bit registers, classified as follows:

Thirty-one registers referred to in the ARM manual as general-purpose registers. In fact, some of
these, such as the program counters, have special purposes.
Six program status registers.

Registers are arranged in partially overlapping banks, with the current processor mode determining
which bank is available. At any time, sixteen numbered registers and one or two program status

registers are visible, for a total of 17 or 18 software-visible registers. Figure 16.29 is interpreted as
follows:

Registers R0 through R7, register R15 (the program counter) and the current program status
register (CPSR) are visible in and shared by all modes.
Registers R8 through R12 are shared by all modes except fast interrupt, which has its own
dedicated registers R8_fiq through R12_fiq.
All the exception modes have their own versions of registers R13 and R16.
All the exception modes have a dedicated saved program status register (SPSR).

Figure 16.29 ARM Register Organization

GENERAL-PURPOSE REGISTERS

Register R13 is normally used as a stack pointer and is also known as the SP. Because each
exception mode has a separate R13, each exception mode can have its own dedicated program
stack. R14 is known as the link register (LR) and is used to hold subroutine return addresses and
exception mode returns. Register R15 is the program counter (PC).

PROGRAM STATUS REGISTERS

The CPSR is accessible in all processor modes. Each exception mode also has a dedicated SPSR
that is used to preserve the value of the CPSR when the associated exception occurs.

The 16 most significant bits of the CPSR contain user flags visible in user mode, and which can be
used to affect the operation of a program (Figure 16.30). These are as follows:

Condition code flags: The N, Z, C, and V flags,They are the N, Z, C, and V flags which are
discussed in Chapter 13.
Q flag: used to indicate whether overflow and/or saturation has occurred in some SIMD-oriented
instructions.
J bit: indicates the use of special 8-bit instructions, known as Jazelle instructions, which are
beyond the scope of our discussion.
GE[3:0] bits: SIMD instructions use bits [19:16] as Greater than or Equal (GE) flags for individual
bytes or halfwords of the result.

The 16 least significant bits of the CPSR contain system control flags that can only be altered when
the processor is in a privileged mode. The fields are as follows:

E bit: Controls load and store endianness for data; ignored for instruction fetches.
Interrupt disable bits: The A bit disables imprecise data aborts when set; the I bit disables IRQ
interrupts when set; and the F bit disables FIQ interrupts when set.
T bit: Indicates whether instructions should be interpreted as normal ARM instructions or Thumb
instructions.
Mode bits: Indicates the processor mode.

Figure 16.30 Format of ARM CPSR and SPSR

Interrupt Processing

As with any processor, the ARM includes a facility that enables the processor to interrupt the currently
executing program to deal with exception conditions. Exceptions are generated by internal and
external sources to cause the processor to handle an event. The processor state just before handling
the exception is normally preserved so that the original program can be resumed when the exception
routine has completed. More than one exception can arise at the same time. The ARM architecture
supports seven types of exceptions. Table 16.4 lists the types of exception and the processor mode
that is used to process each type. When an exception occurs, execution is forced from a fixed memory
address corresponding to the type of exception. These fixed addresses are called the exception
vectors.

Table 16.4 ARM Interrupt Vector

Exception
type

Mode Normal
entry
address

Description

Reset Supervisor 0x00000000 Occurs when the system is initialized.

Data abort Abort 0x00000010 Occurs when an invalid memory address has been
accessed, such as if there is no physical memory for an
address or the correct access permission is lacking.

FIQ (fast
interrupt)

FIQ 0x0000001C Occurs when an external device asserts the FIQ pin on
the processor. An interrupt cannot be interrupted except
by an FIQ. FIQ is designed to support a data transfer or
channel process, and has sufficient private registers to
remove the need for register saving in such applications,
therefore minimizing the overhead of context switching.
A fast interrupt cannot be interrupted.

IRQ
(interrupt)

IRQ 0x00000018 Occurs when an external device asserts the IRQ pin on
the processor. An interrupt cannot be interrupted except
by an FIQ.

Prefetch
abort

Abort 0x0000000C Occurs when an attempt to fetch an instruction results in
a memory fault. The exception is raised when the
instruction enters the execute stage of the pipeline.

Undefined
instructions

Undefined 0x00000004 Occurs when an instruction not in the instruction set
reaches the execute stage of the pipeline.

Software
interrupt

Supervisor 0x00000008 Generally used to allow user mode programs to call the
OS. The user program executes a SWI instruction with
an argument that identifies the function the user wishes
to perform.

If more than one interrupt is outstanding, they are handled in priority order. Table 16.4 lists the
exceptions in priority order from highest to lowest.

When an exception occurs, the processor halts execution after the current instruction. The state of the
processor is preserved in the SPSR that corresponds to the type of exception, so that the original
program can be resumed when the exception routine has completed. The address of the instruction
the processor was just about to execute is placed in the link register of the appropriate processor
mode. To return after handling the exception, the SPSR is moved into the CPSR and R14 is moved

into the PC.

16.8 Key Terms, Review Questions, and Problems

Key Terms

branch prediction

condition code

delayed branch

flag

functional unit

instruction cycle

instruction pipeline

instruction prefetch

program status word (PSW)

reservation station

Review Questions

Problems

16.1 What general roles are performed by processor registers?
16.2 What categories of data are commonly supported by user-visible registers?
16.3 What is the function of condition codes?
16.4 What is a program status word?
16.5 Why is a two-stage instruction pipeline unlikely to cut the instruction cycle time in half,
compared with the use of no pipeline?
16.6 List and briefly explain various ways in which an instruction pipeline can deal with
conditional branch instructions.
16.7 How are history bits used for branch prediction?

16.1
a. If the last operation performed on a computer with an 8-bit word was an addition in which

the two operands were 00000010 and 00000011, what would be the value of the
following flags?

Carry
Zero
Overflow
Sign
Even Parity
Half-Carry

b. Repeat for the addition of (twos complement) and .

16.2 Repeat Problem 16.1 for the operation , where A contains 11110000 and B contains
0010100.

−1 +1

A − B

16.3 A microprocessor is clocked at a rate of 5 GHz.
a. How long is a clock cycle?
b. What is the duration of a particular type of machine instruction consisting of three clock

cycles?

16.4 A microprocessor provides an instruction capable of moving a string of bytes from one
area of memory to another. The fetching and initial decoding of the instruction takes 10 clock
cycles. Thereafter, it takes 15 clock cycles to transfer each byte. The microprocessor is clocked
at a rate of 10 GHz.

a. Determine the length of the instruction cycle for the case of a string of 64 bytes.
b. What is the worst-case delay for acknowledging an interrupt if the instruction is

noninterruptible?
c. Repeat part (b) assuming the instruction can be interrupted at the beginning of each byte

transfer.

16.5 The Intel 8088 consists of a bus interface unit (BIU) and an execution unit (EU), which form
a 2-stage pipeline. The BIU fetches instructions into a 4-byte instruction queue. The BIU also
participates in address calculations, fetches operands, and writes results in memory as
requested by the EU. If no such requests are outstanding and the bus is free, the BIU fills any
vacancies in the instruction queue. When the EU completes execution of an instruction, it
passes any results to the BIU (destined for memory or I/O) and proceeds to the next instruction.

a. Suppose the tasks performed by the BIU and EU take about equal time. By what factor
does pipelining improve the performance of the 8088? Ignore the effect of branch
instructions.

b. Repeat the calculation assuming that the EU takes twice as long as the BIU.

16.6 Assume an 8088 is executing a program in which the probability of a program jump is 0.1.
For simplicity, assume that all instructions are 2 bytes long.

a. What fraction of instruction fetch bus cycles is wasted?
b. Repeat if the instruction queue is 8 bytes long.

16.7 Consider the timing diagram of Figures 16.10 . Assume that there is only a two-stage
pipeline (fetch, execute). Redraw the diagram to show how many time units are now needed for
four instructions.
16.8 Assume a pipeline with four stages: fetch instruction (FI), decode instruction and calculate
addresses (DA), fetch operand (FO), and execute (EX). Draw a diagram similar to Figure 16.10
for a sequence of 7 instructions, in which the third instruction is a branch that is taken and in
which there are no data dependencies.
16.9 A pipelined processor has a clock rate of 2.5 GHz and executes a program with 1.5 million
instructions. The pipeline has five stages, and instructions are issued at a rate of one per clock
cycle. Ignore penalties due to branch instructions and out-of-sequence executions.

a. What is the speedup of this processor for this program compared to a nonpipelined
processor, making the same assumptions used in Section 16.4 ?

b. What is throughput (in MIPS) of the pipelined processor?

16.10 A nonpipelined processor has a clock rate of 2.5 GHz and an average CPI (cycles per
instruction) of 4. An upgrade to the processor introduces a five-stage pipeline. However, due to
internal pipeline delays, such as latch delay, the clock rate of the new processor has to be
reduced to 2 GHz.

a. What is the speedup achieved for a typical program?
b. What is the MIPS rate for each processor?

16.11 Consider an instruction sequence of length n that is streaming through the instruction
pipeline. Let p be the probability of encountering a conditional or unconditional branch
instruction, and let q be the probability that execution of a branch instruction I causes a jump to
a nonconsecutive address. Assume that each such jump requires the pipeline to be cleared,
destroying all ongoing instruction processing, when I emerges from the last stage. Revise
Equations (16.1) and (16.2) to take these probabilities into account.
16.12 One limitation of the multiple-stream approach to dealing with branches in a pipeline is
that additional branches will be encountered before the first branch is resolved. Suggest two
additional limitations or drawbacks.
16.13 Consider the state diagrams of Figure 16.31 .

a. Describe the behavior of each.
b. Compare these with the branch prediction state diagram in Section 16.4 . Discuss the

relative merits of each of the three approaches to branch prediction.

Figure 16.31 Two Branch Prediction State Diagrams

16.14 The Motorola 680x0 machines include the instruction Decrement and Branch According
to Condition, which has the following form:
DBcc Dn, displacement
where cc is one of the testable conditions, Dn is a general-purpose register, and displacement
specifies the target address relative to the current address. The instruction can be defined as
follows:

if (cc = False)
then begin
 Dn: = (Dn) -1;
 if Dn Z -1 then PC: = (PC) + displacement end
else PC: = (PC) + 2;

When the instruction is executed, the condition is first tested to determine whether the
termination condition for the loop is satisfied. If so, no operation is performed and execution
continues at the next instruction in sequence. If the condition is false, the specified data register
is decremented and checked to see if it is less than zero. If it is less than zero, the loop is
terminated and execution continues at the next instruction in sequence. Otherwise, the program
branches to the specified location. Now consider the following assembly-language program
fragment:

AGAIN CMPM.L

DBNE D1, AGAIN

NOP

Two strings addressed by A0 and A1 are compared for equality; the string pointers are
incremented with each reference. D1 initially contains the number of longwords (4 bytes) to be
compared.

a. The initial contents of the registers are and
 (the $ indicates hexadecimal notation). Memory between $4000 and

$6000 is loaded with words $AAAA. If the foregoing program is run, specify the number of
times the DBNE loop is executed and the contents of the three registers when the NOP
instruction is reached.

b. Repeat (a), but now assume that memory between $4000 and $4FEE is loaded with
$0000 and between $5000 and $6000 is loaded with $AAA.

16.15 Redraw Figure 16.19c , assuming that the conditional branch is not taken.
16.16 Table 16.5 summarizes statistics from [MACD84] concerning branch behavior for various
classes of applications. With the exception of type 1 branch behavior, there is no noticeable
difference among the application classes. Determine the fraction of all branches that go to the
branch target address for the scientific environment. Repeat for commercial and systems
environments.

Table 16.5 Branch Behavior in Sample Applications

Occurrence of branch classes:

Type 1: Branch 72.5%

Type 2: Loop control  9.8%

Type 3: Procedure call, return 17.7%

Type 1 branch: where it goes Scientific Commercial Systems

Unconditional—100% go to target 20% 40% 35%

Conditional—went to target   43.2%   24.3%   32.5%

(A0) + , (A1) +

A0 = $00004000 , A1 = $00005000
D1 = $000000FF

Conditional—did not go to target (inline)   36.8%   35.7%   32.5%

Type 2 branch (all environments)

That go to target 91%

That go inline 9%

Type 3 branch

100% go to target

16.17 Pipelining can be applied within the ALU to speed up floating-point operations. Consider
the case of floating-point addition and subtraction. In simplified terms, the pipeline could have
four stages: (1) Compare the exponents; (2) Choose the exponent and align the significands;
(3) Add or subtract significands; (4) Normalize the results. The pipeline can be considered to
have two parallel threads, one handling exponents and one handling significands, and could
start out like this:

In this figure, the boxes labeled R refer to a set of registers used to hold temporary results.
Complete the block diagram that shows at a top level the structure of the pipeline.

Chapter 17 Reduced Instruction Set Computers

17.10 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Provide an overview of the research results on instruction execution characteristics that motivated

17.1 Instruction Execution Characteristics
Operations
Operands
Procedure Calls
Implications

17.2 The Use of a Large Register File
Register Windows
Global Variables
Large Register File versus Cache

17.3 Compiler-​Based Register Optimization
17.4 Reduced Instruction Set Architecture

Why CISC
Characteristics of Reduced Instruction Set Architectures
CISC versus RISC Characteristics

17.5 RISC Pipelining
Pipelining with Regular Instructions
Optimization of Pipelining

17.6 MIPS R4000
Instruction Set
Instruction Pipeline

17.7 SPARC
SPARC Register Set
Instruction Set
Instruction Format

17.8 Processor Organization for Pipelining
17.9 CISC, RISC, and Contemporary Systems

the development of the RISC approach.
Summarize the key characteristics of RISC machines.
Understand the design and performance implications of using a large register file.
Understand the use of compiler- ​based register optimization to improve performance.
Discuss the implication of a RISC architecture for pipeline design and performance.
List and explain key approaches to pipeline optimization on a RISC machine.

Since the development of the stored- ​program computer around 1950, there have
been remarkably few true innovations in the areas of computer organization and
architecture. The following are some of the major advances since the birth of the
computer:

The family concept: Introduced by IBM with its System/360 in 1964, followed
shortly thereafter by DEC, with its PDP-​8. The family concept decouples the
architecture of a machine from its implementation. A set of computers is
offered, with different price/performance characteristics, that presents the same
architecture to the user. The differences in price and performance are due to
different implementations of the same architecture.
Microprogrammed control unit: Suggested by Wilkes in 1951 and introduced
by IBM on the S/360 line in 1964. Microprogramming eases the task of
designing and implementing the control unit and provides support for the family
concept.
Cache memory: First introduced commercially on IBM S/360 Model 85 in
1968. The insertion of this element into the memory hierarchy dramatically
improves performance.
Pipelining: A means of introducing parallelism into the essentially sequential
nature of a machine- ​instruction program. Examples are instruction pipelining
and vector processing.
Multiple processors: This category covers a number of different organizations
and objectives.
Reduced instruction set computer (RISC) architecture: This is the focus of
this chapter.

When it appeared, RISC architecture was a dramatic departure from the historical
trend in processor architecture. An analysis of the RISC architecture brings into
focus many of the important issues in computer organization and architecture.

Although RISC architectures have been defined and designed in a variety of ways
by different groups, the key elements shared by most designs are these:

A large number of general- ​purpose registers, and/or the use of compiler
technology to optimize register usage.
A limited and simple instruction set.
An emphasis on optimizing the instruction pipeline.

Table 17.1 compares several RISC and non- ​RISC systems.

Table 17.1 Characteristics of Some CISCs, RISCs, and Superscalar
Processors

Complex Instruction Set
(CISC)Computer

Reduced Instruction Set
(RISC) Computer

Characteristic IBM
370/168

VAX
11/780

Intel
80486

SPARC MIPS R4000

Year developed 1973 1978 1989 1987 1991

Number of
instructions

208 303 235 69 94

Instruction size
(bytes)

2–6 2–57 1–11 4 4

Addressing modes 4 22 11 1 1

Number of
general-​purpose
registers

16 16 8 40–520 32

Control memory size
(kbits)

420 480 246 — —

Cache size (kB) 64 64 8 32 128

Superscalar

Characteristic PowerPC Ultra
SPARC

MIPS
R10000

Year developed 1993 1996 1996

Number of instructions 225

Instruction size (bytes) 4 4 4

Addressing modes 2 1 1

Number of general-​purpose
registers

32 40–520 32

Control memory size (kbits) — — —

Cache size (kB) 16–32 32 64

We begin this chapter with a brief survey of some results on instruction sets, and
then examine each of the three topics just listed. This is followed by a description
of two of the best-​documented RISC designs.

17.1 Instruction Execution Characteristics
One of the most visible forms of evolution associated with computers is that of programming
languages. As the cost of hardware has dropped, the relative cost of software has risen. Along with
that, a chronic shortage of programmers has driven up software costs in absolute terms. Thus, the
major cost in the life cycle of a system is software, not hardware. Adding to the cost, and to the
inconvenience, is the element of unreliability: it is common for programs, both system and application,
to continue to exhibit new bugs after years of operation.

The response from researchers and industry has been to develop ever more powerful and complex
high- ​level programming languages. These high-​level languages (HLLs): (1) allow the programmer to
express algorithms more concisely; (2) allow the compiler to take care of details that are not important
in the programmer’s expression of algorithms; and (3) often support naturally the use of structured
programming and/or object- ​oriented design.

Alas, this solution gave rise to a perceived problem, known as the semantic gap, the difference
between the operations provided in HLLs and those provided in computer architecture. Symptoms of
this gap are alleged to include execution inefficiency, excessive machine program size, and compiler
complexity. Designers responded with architectures intended to close this gap. Key features include
large instruction sets, dozens of addressing modes, and various HLL statements implemented in
hardware. An example of the latter is the CASE machine instruction on the VAX. Such complex
instruction sets are intended to:

Ease the task of the compiler writer.
Improve execution efficiency, because complex sequences of operations can be implemented in
microcode.
Provide support for even more complex and sophisticated HLLs.

Meanwhile, a number of studies have been done over the years to determine the characteristics and
patterns of execution of machine instructions generated from HLL programs. The results of these
studies inspired some researchers to look for a different approach: namely, to make the architecture
that supports the HLL simpler, rather than more complex.

To understand the line of reasoning of the RISC advocates, we begin with a brief review of instruction
execution characteristics. The aspects of computation of interest are as follows:

Operations performed: These determine the functions to be performed by the processor and its
interaction with memory.
Operands used: The types of operands and the frequency of their use determine the memory
organization for storing them and the addressing modes for accessing them.
Execution sequencing: This determines the control and pipeline organization.

In the remainder of this section, we summarize the results of a number of studies of
high- ​level- ​language programs. All of the results are based on dynamic measurements. That is,
measurements are collected by executing the program and counting the number of times some
feature has appeared or a particular property has held true. In contrast, static measurements merely
perform these counts on the source text of a program. They give no useful information on
performance, because they are not weighted relative to the number of times each statement is
executed.

Operations

A variety of studies have been made to analyze the behavior of HLL programs, with the following

general conclusions. There is quite good agreement in the results of this mixture of languages and
applications. Assignment statements predominate, suggesting that the simple movement of data is of
high importance. There is also a preponderance of conditional statements (IF, LOOP). These
statements are implemented in machine language with some sort of compare and branch instruction.
This suggests that the sequence control mechanism of the instruction set is important.

These results are instructive to the machine instruction set designer, indicating which types of
statements occur most often and therefore should be supported in an “optimal” fashion. However,
these results do not reveal which statements use the most time in the execution of a typical program.
That is, we want to answer the question: Given a compiled machine- ​language program, which
statements in the source language cause the execution of the most machine- ​language instructions
and what is the execution time of these instructions?

To get at this underlying phenomenon, Patterson and Sequin [PATT82a] analyzed a set of
measurements taken from compilers and programs for typesetting, computer-aided design (CAD),
sorting, and file comparison. The programming languages C and Pascal compiled on the VAX, PDP-
11, and Motorola 68000 to determine the average number of machine instructions and memory
references per statement type. The second and third columns in Table 17.2 show the relative
frequency of occurrence of various HLL statements in a variety of programs; the data were obtained
by observing the occurrences in running programs rather than just the number of times that
statements occur in the source code. Hence these metrics capture dynamic behavior. To obtain the
data in columns four and five (machine- ​instruction weighted), each value in the second and third
columns is multiplied by the number of machine instructions produced by the compiler. These results
are then normalized so that columns four and five show the relative frequency of occurrence, weighted
by the number of machine instructions per HLL statement. Similarly, the sixth and seventh columns
are obtained by multiplying the frequency of occurrence of each statement type by the relative number
of memory references caused by each statement. The data in columns four through seven provide
surrogate measures of the actual time spent executing the various statement types. The results
suggest that the procedure call/return is the most time- ​consuming operation in typical HLL programs.

Table 17.2 Weighted Relative Dynamic Frequency of HLL Operations [PATT82a]

Dynamic Occurrence Machine- ​Instruction Weighted Memory-​Reference Weighted

Pascal C Pascal C Pascal C

ASSIGN 45% 38% 13% 13% 14% 15%

LOOP 5% 3% 42% 32% 33% 26%

CALL 15% 12% 31% 33% 44% 45%

IF 29% 43% 11% 21% 7% 13%

GOTO — 3% — — — —

OTHER 6% 1% 3% 1% 2% 1%

The reader should be clear on the significance of Table 17.2. This table indicates the relative

performance impact of various statement types in an HLL, when that HLL is compiled for a typical
contemporary instruction set architecture. Some other architecture could conceivably produce different
results. However, this study produces results that are representative for contemporary complex
instruction set computer (CISC) architectures. Thus, they can provide guidance to those looking
for more efficient ways to support HLLs.

Operands

Much less work has been done on the occurrence of types of operands, despite the importance of this
topic. There are several aspects that are significant.

The Patterson study already referenced [PATT82a] also looked at the dynamic frequency of
occurrence of classes of variables (Table 17.3). The results, consistent between Pascal and C
programs, show that most references are to simple scalar variables. Further, more than 80% of the
scalars were local (to the procedure) variables. In addition, each reference to an array or a structure
requires a reference to an index or pointer, which again is usually a local scalar. Thus, there is a
preponderance of references to scalars, and these are highly localized.

Table 17.3 Dynamic Percentage of Operands

Pascal C Average

Integer constant 16% 23% 20%

Scalar variable 58% 53% 55%

Array/Structure 26% 24% 25%

The Patterson study examined the dynamic behavior of HLL programs, independent of the underlying
architecture. As discussed before, it is necessary to deal with actual architectures to examine program
behavior more deeply. One study, [LUND77], examined DEC- ​10 instructions dynamically and found
that each instruction on the average references 0.5 operand in memory and 1.4 registers. Similar
results are reported in [HUCK83] for C, Pascal, and FORTRAN programs on S/370, PDP- ​11, and
VAX. Of course, these figures depend highly on both the architecture and the compiler, but they do
illustrate the frequency of operand accessing.

These latter studies suggest the importance of an architecture that lends itself to fast operand
accessing, because this operation is performed so frequently. The Patterson study suggests that a
prime candidate for optimization is the mechanism for storing and accessing local scalar variables.

Procedure Calls

We have seen that procedure calls and returns are an important aspect of HLL programs. The
evidence (Table 17.2) suggests that these are the most time-​consuming operations in compiled HLL
programs. Thus, it will be profitable to consider ways of implementing these operations efficiently. Two
aspects are significant: the number of parameters and variables that a procedure deals with, and the
depth of nesting.

A study by Tanenbaum [TANE78] found that 98% of dynamically called procedures were passed
fewer than six arguments and that 92% of them used fewer than six local scalar variables. Similar

results were reported by the Berkeley RISC team [KATE83], as shown in Table 17.4. These results
show that the number of words required per procedure activation is not large. The studies reported
earlier indicated that a high proportion of operand references is to local scalar variables. These
studies show that those references are in fact confined to relatively few variables.

Table 17.4 Procedure Arguments and Local Scalar Variables

Percentage of Executed Procedure
Calls With

Compiler, Interpreter, and
Typesetter

Small Nonnumeric
Programs

 arguments 0–7% 0–5%

 arguments 0–3% 0%

 words of arguments and local
scalars

1–20% 0–6%

 words of arguments and local
scalars

1–6% 0–3%

The same Berkeley group also looked at the pattern of procedure calls and returns in HLL programs.
They found that it is rare to have a long uninterrupted sequence of procedure calls followed by the
corresponding sequence of returns. Rather, they found that a program remains confined to a rather
narrow window of procedure- ​invocation depth. These results reinforce the conclusion that operand
references are highly localized.

Implications

A number of groups have looked at results such as those just reported and have concluded that the
attempt to make the instruction set architecture close to HLLs is not the most effective design strategy.
Rather, the HLLs can best be supported by optimizing performance of the most time- ​consuming
features of typical HLL programs.

Generalizing from the work of a number of researchers, three elements emerge that, by and large,
characterize RISC architectures. First, use a large number of registers or use a compiler to optimize
register usage. This is intended to optimize operand referencing. The studies just discussed show that
there are several references per HLL statement and that there is a high proportion of move
(assignment) statements. This, coupled with the locality and predominance of scalar references,
suggests that performance can be improved by reducing memory references at the expense of more
register references. Because of the locality of these references, an expanded register set seems
practical.

Second, careful attention needs to be paid to the design of instruction pipelines. Because of the high
proportion of conditional branch and procedure call instructions, a straightforward instruction pipeline
will be inefficient. This manifests itself as a high proportion of instructions that are prefetched but
never executed.

Finally, an instruction set consisting of high- ​performance primitives is indicated. Instructions should

>3

>5

>8

>12

have predictable costs (measured in execution time, code size, and increasingly, in energy
dissipation) and be consistent with a high- ​performance implementation (which harmonizes with
predictable execution- ​time cost).

17.2 The Use of a Large Register File
The results summarized in Section 17.1 point out the desirability of quick access to operands. We
have seen that there is a large proportion of assignment statements in HLL programs, and many of
these are of the simple form . Also, there are a significant number of operand accesses per HLL

statement. If we couple these results with the fact that most accesses are to local scalars, heavy
reliance on register storage is suggested.

The reason that register storage is indicated is that it is the fastest available storage device, faster
than both main memory and cache. The register file is physically small, on the same chip as the ALU
and control unit, and employs much shorter addresses than addresses for cache and memory. Thus,
a strategy is needed that will allow the most frequently accessed operands to be kept in registers and
minimize register- ​memory operations.

Two basic approaches are possible, one based on software and the other on hardware. The software
approach is to rely on the compiler to maximize register usage. The compiler will attempt to assign
registers to those variables that will be used the most in a given time period. This approach requires
the use of sophisticated program- ​analysis algorithms. The hardware approach is simply to use more
registers so that more variables can be held in registers for longer periods of time.

In this section, we will discuss the hardware approach. This approach has been pioneered by the
Berkeley RISC group [PATT82a]; was used in the first commercial RISC product, the Pyramid
[RAGA83]; and is currently used in the popular SPARC architecture.

Register Windows

On the face of it, the use of a large set of registers should decrease the need to access memory. The
design task is to organize the registers in such a fashion that this goal is realized.

Because most operand references are to local scalars, the obvious approach is to store these in
registers, with perhaps a few registers reserved for global variables. The problem is that the definition
of local changes with each procedure call and return, operations that occur frequently. On every call,
local variables must be saved from the registers into memory, so that the registers can be reused by
the called procedure. Furthermore, parameters must be passed. On return, the variables of the calling
procedure must be restored (loaded back into registers) and results must be passed back to the
calling procedure.

The solution is based on two other results reported in Section 17.1. First, a typical procedure employs
only a few passed parameters and local variables (Table 17.4). Second, the depth of procedure
activation fluctuates within a relatively narrow range. To exploit these properties, multiple small sets of
registers are used, each assigned to a different procedure. A procedure call automatically switches
the processor to use a different fixed- ​size window of registers, rather than saving registers in memory.
Windows for adjacent procedures are overlapped to allow parameter passing.

The concept is illustrated in Figure 17.1. At any time, only one window of registers is visible and is
addressable as if it were the only set of registers (e.g., addresses 0 through). The window is
divided into three fixed- ​size areas. Parameter registers hold parameters passed down from the
procedure that called the current procedure and hold results to be passed back up. Local registers are
used for local variables, as assigned by the compiler. Temporary registers are used to exchange
parameters and results with the next lower level (procedure called by current procedure). The
temporary registers at one level are physically the same as the parameter registers at the next lower

A ← B

N − 1

level. This overlap permits parameters to be passed without the actual movement of data. Keep in
mind that, except for the overlap, the registers at two different levels are physically distinct. That is, the
parameter and local registers at level J are disjoint from the local and temporary registers at level

.

Figure 17.1 Overlapping Register Windows

To handle any possible pattern of calls and returns, the number of register windows would have to
be unbounded. Instead, the register windows can be used to hold the few most recent procedure
activations. Older activations must be saved in memory and later restored when the nesting depth
decreases. Thus, the actual organization of the register file is as a circular buffer of overlapping
windows. Two notable examples of this approach are Sun’s SPARC architecture, described in
Section 17.7, and the IA-​64 architecture used in Intel’s Itanium processor.

The circular organization is shown in Figure 17.2, which depicts a circular buffer of six windows. The
buffer is filled to a depth of 4 (A called B; B called C; C called D) with procedure D active. The
current-​window pointer (CWP) points to the window of the currently active procedure. Register
references by a machine instruction are offset by this pointer to determine the actual physical register.
The saved-​window pointer (SWP) identifies the window most recently saved in memory. If procedure
D now calls procedure E, arguments for E are placed in D’s temporary registers (the overlap between
w3 and w4) and the CWP is advanced by one window.

J + 1

Figure 17.2 Circular-​Buffer Organization of Overlapped Windows

If procedure E then makes a call to procedure F, the call cannot be made with the current status of the
buffer. This is because F’s window overlaps A’s window. If F begins to load its temporary registers,
preparatory to a call, it will overwrite the parameter registers of A (A.in). Thus, when CWP is
incremented (modulo 6) so that it becomes equal to SWP, an interrupt occurs, and A’s window is
saved. Only the first two portions (A.in and A.loc) need be saved. Then, the SWP is incremented and
the call to F proceeds. A similar interrupt can occur on returns. For example, subsequent to the
activation of F, when B returns to A, CWP is decremented and becomes equal to SWP. This causes
an interrupt that results in the restoration of A’s window.

From the preceding, it can be seen that an N ﻿-​window register file can hold only procedure
activations. The value of N need not be large. One study [TAMI83] found that, with 8 windows, a save
or restore is needed on only 1% of the calls or returns. The Berkeley RISC computers use 8 windows
of 16 registers each. The Pyramid computer employs 16 windows of 32 registers each.

Global Variables

The window scheme just described provides an efficient organization for storing local scalar variables

N − 1

in registers. However, this scheme does not address the need to store global variables, those
accessed by more than one procedure. Two options suggest themselves. First, variables declared as
global in an HLL can be assigned memory locations by the compiler, and all machine instructions that
reference these variables will use memory- ​reference operands. This is straightforward, from both the
hardware and software (compiler) points of view. However, for frequently accessed global variables,
this scheme is inefficient.

An alternative is to incorporate a set of global registers in the processor. These registers would be
fixed in number and available to all procedures. A unified numbering scheme can be used to simplify
the instruction format. For example, references to registers 0 through 7 could refer to unique global
registers, and references to registers 8 through 31 could be offset to refer to physical registers in the
current window. There is an increased hardware burden to accommodate the split in register
addressing. In addition, the linker must decide which global variables should be assigned to registers.

Large Register File versus Cache

The register file, organized into windows, acts as a small, fast buffer for holding a subset of all
variables that are likely to be used the most heavily. From this point of view, the register file acts much
like a cache memory, although a much faster memory. The question therefore arises as to whether it
would be simpler and better to use a cache and a small traditional register file.

Table 17.5 compares characteristics of the two approaches. The window- ​based register file holds all
the local scalar variables (except in the rare case of window overflow) of the most recent
procedure activations. The cache holds a selection of recently used scalar variables. The register file
should save time, because all local scalar variables are retained. On the other hand, the cache may
make more efficient use of space, because it is reacting to the situation dynamically. Furthermore,
caches generally treat all memory references alike, including instructions and other types of data.
Thus, savings in these other areas are possible with a cache and not a register file.

Table 17.5 Characteristics of Large- ​Register-​File and Cache Organizations

Large Register File Cache

All local scalars

Individual variables

Compiler- ​assigned global variables

Save/Restore based on procedure nesting depth

Register addressing

Multiple operands addressed and accessed in
one cycle

Recently- ​used local scalars

Blocks of memory

Recently- ​used global variables

Save/Restore based on cache replacement
algorithm

Memory addressing

One operand addressed and accessed per
cycle

A register file may make inefficient use of space, because not all procedures will need the full window

N − 1

space allotted to them. On the other hand, the cache suffers from another sort of inefficiency: Data are
read into the cache in blocks. Whereas the register file contains only those variables in use, the cache
reads in a block of data, some or much of which will not be used.

The cache is capable of handling global as well as local variables. There are usually many global
scalars, but only a few of them are heavily used [KATE83]. A cache will dynamically discover these
variables and hold them. If the window- ​based register file is supplemented with global registers, it too
can hold some global scalars. However, when program modules are separately compiled, it is
impossible for the compiler to assign global values to registers; the linker must perform this task.

With the register file, the movement of data between registers and memory is determined by the
procedure nesting depth. Because this depth usually fluctuates within a narrow range, the use of
memory is relatively infrequent. Most cache memories are set associative with a small set size. Thus,
there is the danger that other data or instructions will compete for cache residency.

Based on the discussion so far, the choice between a large window- ​based register file and a cache is
not clear-​cut. There is one characteristic, however, in which the register approach is clearly superior
and which suggests that a cache- ​based system will be noticeably slower. This distinction shows up in
the amount of addressing overhead experienced by the two approaches.

Figure 17.3 illustrates the difference. To reference a local scalar in a window- ​based register file, a
“virtual” register number and a window number are used. These can pass through a relatively simple
decoder to select one of the physical registers. To reference a memory location in cache, a full- ​width
memory address must be generated. The complexity of this operation depends on the addressing
mode. In a set associative cache, a portion of the address is used to read a number of words and tags
equal to the set size. Another portion of the address is compared with the tags, and one of the words
that were read is selected. It should be clear that even if the cache is as fast as the register file, the
access time will be considerably longer. Thus, from the point of view of performance, the
window- ​based register file is superior for local scalars. Further performance improvement could be
achieved by the addition of a cache for instructions only.

Figure 17.3 Referencing a Scalar

17.3 Compiler- ​Based Register Optimization
Let us assume now that only a small number (e.g., 16–32) of registers is available on the target RISC
machine. In this case, optimized register usage is the responsibility of the compiler. A program written
in a high- ​level language has, of course, no explicit references to registers (the C- ​language keyword
register notwithstanding). Rather, program quantities are referred to symbolically. The objective of the
compiler is to keep the operands for as many computations as possible in registers rather than main
memory, and to minimize load- ​and-​store operations.

In general, the approach taken is as follows. Each program quantity that is a candidate for residing in
a register is assigned to a symbolic or virtual register. The compiler then maps the unlimited number
of symbolic registers into a fixed number of real registers. Symbolic registers whose usage does not
overlap can share the same real register. If, in a particular portion of the program, there are more
quantities to deal with than real registers, then some of the quantities are assigned to memory
locations. Load- ​and-​store instructions are used to position quantities in registers temporarily for
computational operations.

The essence of the optimization task is to decide which quantities are to be assigned to registers at
any given point in the program. The technique most commonly used in RISC compilers is known as
graph coloring, which is a technique borrowed from the discipline of topology [CHAI82, CHOW86,
COUT86, CHOW90].

The graph coloring problem is this. Given a graph consisting of nodes and edges, assign colors to
nodes such that adjacent nodes have different colors, and do this in such a way as to minimize the
number of different colors. This problem is adapted to the compiler problem in the following way. First,
the program is analyzed to build a register interference graph. The nodes of the graph are the
symbolic registers. If two symbolic registers are “live” during the same program fragment, then they
are joined by an edge to depict interference. An attempt is then made to color the graph with n colors,
where n is the number of registers. Nodes that share the same color can be assigned to the same
register. If this process does not fully succeed, then those nodes that cannot be colored must be
placed in memory, and loads and stores must be used to make space for the affected quantities when
they are needed.

Figure 17.4 is a simple example of the process. Assume a program with six symbolic registers to be
compiled into three actual registers. Figure 17.4a shows the time sequence of active use of each
symbolic register. The dashed horizontal lines indicate successive instruction executions. Figure
17.4b shows the register interference graph (shading and stripes are used instead of colors). A
possible coloring with three colors is indicated. Because symbolic registers A and D do not interfere,
the compiler can assign both of these to physical register R1. Similarly, symbolic registers C and E
can be assigned to register R3. One symbolic register, F, is left uncolored and must be dealt with
using loads and stores.

Figure 17.4 Graph Coloring Approach

In general, there is a trade- ​off between the use of a large set of registers and compiler- ​based register
optimization. For example, [BRAD91a] reports on a study that modeled a RISC architecture with
features similar to the Motorola 88000 and the MIPS R2000. The researchers varied the number of
registers from 16 to 128, and they considered both the use of all general- ​purpose registers and
registers split between integer and floating- ​point use. Their study showed that with even simple
register optimization, there is little benefit to the use of more than 64 registers. With reasonably
sophisticated register optimization techniques, there is only marginal performance improvement with
more than 32 registers. Finally, they noted that with a small number of registers (e.g., 16), a machine
with a shared register organization executes faster than one with a split organization. Similar
conclusions can be drawn from [HUGU91], which reports on a study that is primarily concerned with
optimizing the use of a small number of registers rather than comparing the use of large register sets
with optimization efforts.

17.4 Reduced Instruction Set Architecture
In this section, we look at some of the general characteristics of and the motivation for a reduced instruction set architecture. Specific
examples will be seen later in this chapter. We begin with a discussion of motivations for contemporary complex instruction set
architectures.

Why CISC

We have noted the trend to richer instruction sets, which include a larger number of instructions and more complex instructions. Two
principal reasons have motivated this trend: a desire to simplify compilers and a desire to improve performance. Underlying both of
these reasons was the shift to HLLs on the part of programmers; architects attempted to design machines that provided better support
for HLLs.

It is not the intent of this chapter to say that the CISC designers took the wrong direction. Indeed, because technology continues to
evolve and because architectures exist along a spectrum rather than in two neat categories, a black- ​and-​white assessment is unlikely
ever to emerge. Thus, the comments that follow are simply meant to point out some of the potential pitfalls in the CISC approach and
to provide some understanding of the motivation of the RISC adherents.

The first of the reasons cited, compiler simplification, seems obvious, but it is not. The task of the compiler writer is to build a compiler
that generates good (fast, small, fast and small) sequences of machine instructions for HLL programs (i.e., the compiler views
individual HLL statements in the context of surrounding HLL statements). If there are machine instructions that resemble HLL
statements, this task is simplified. This reasoning has been disputed by the RISC researchers ([HENN82], [RADI83], [PATT82b]). They
have found that complex machine instructions are often hard to exploit because the compiler must find those cases that exactly fit the
construct. The task of optimizing the generated code to minimize code size, reduce instruction execution count, and enhance
pipelining is much more difficult with a complex instruction set. As evidence of this, studies cited earlier in this chapter indicate that
most of the instructions in a compiled program are the relatively simple ones.

The other major reason cited is the expectation that a CISC will yield smaller, faster programs. Let us examine both aspects of this
assertion: that programs will be smaller and that they will execute faster.

There are two advantages to smaller programs. Because the program takes up less memory, there is a savings in that resource. With
memory today being so inexpensive, this potential advantage is no longer compelling. More importantly, smaller programs should
improve performance, and this will happen in three ways. First, fewer instructions means fewer instruction bytes to be fetched.
Second, in a paging environment, smaller programs occupy fewer pages, reducing page faults. Third, more instructions fit in cache(s).

The problem with this line of reasoning is that it is far from certain that a CISC program will be smaller than a corresponding RISC
program. In many cases, the CISC program, expressed in symbolic machine language, may be shorter (i.e., fewer instructions), but
the number of bits of memory occupied may not be noticeably smaller
. Table 17.6 shows results from three studies that compared the
size of compiled C programs on a variety of machines, including RISC I, which has a reduced instruction set architecture. Note that
there is little or no savings using a CISC over a RISC. It is also interesting to note that the VAX, which has a much more complex
instruction set than the PDP-​11, achieves very little savings over the latter. These results were confirmed by IBM researchers
[RADI83], who found that the IBM 801 (a RISC) produced code that was 0.9 times the size of code on an IBM S/370. The study used a
set of PL/I programs.

Table 17.6 Code Size Relative to RISC I

[PATT82a] 11 C Programs [KATE83] 12 C Programs [HEAT84] 5 C Programs

RISC I 1.0 1.0 1.0

VAX-​11/780 0.8 0.67

M68000 0.9 0.9

Z8002 1.2 1.12

PDP-​11/70 0.9 0.71

There are several reasons for these rather surprising results. We have already noted that compilers on CISCs tend to favor simpler
instructions, so that the conciseness of the complex instructions seldom comes into play. Also, because there are more instructions on
a CISC, longer opcodes are required, producing longer instructions. Finally, RISCs tend to emphasize register rather than memory
references, and the former require fewer bits. An example of this last effect is discussed presently.

So the expectation that a CISC will produce smaller programs, with the attendant advantages, may not be realized. The second
motivating factor for increasingly complex instruction sets was that instruction execution would be faster. It seems to make sense that
a complex HLL operation will execute more quickly as a single machine instruction rather than as a series of more primitive
instructions. However, because of the bias toward the use of those simpler instructions, this may not be so. The entire control unit
must be made more complex, and/or the microprogram control store must be made larger, to accommodate a richer instruction set.
Either factor increases the execution time of the simple instructions.

In fact, some researchers have found that the speedup in the execution of complex functions is due not so much to the power of the
complex machine instructions as to their residence in high- ​speed control store [RADI83]. In effect, the control store acts as an
instruction cache. Thus, the hardware architect is in the position of trying to determine which subroutines or functions will be used
most frequently and assigning those to the control store by implementing them in microcode. The results have been less than
encouraging. On S/390 systems, instructions such as Translate and Extended- ​Precision- ​Floating- ​Point-​Divide reside in high- ​speed
storage, while the sequence involved in setting up procedure calls or initiating an interrupt handler are in slower main memory.

Thus, it is far from clear that a trend to increasingly complex instruction sets is appropriate. This has led a number of groups to pursue
the opposite path.

Characteristics of Reduced Instruction Set Architectures

Although a variety of different approaches to reduced instruction set architecture have been taken, certain characteristics are common
to all of them:

One instruction per cycle
Register- ​to-​register operations
Simple addressing modes
Simple instruction formats

Here, we provide a brief discussion of these characteristics. Specific examples are explored later in this chapter.

The first characteristic listed is that there is one machine instruction per machine cycle. A machine cycle is defined to be the time it
takes to fetch two operands from registers, perform an ALU operation, and store the result in a register. Thus, RISC machine
instructions should be no more complicated than, and execute about as fast as, microinstructions on CISC machines (discussed in
Part Four). With simple, one-​cycle instructions, there is little or no need for microcode; the machine instructions can be hardwired.
Such instructions should execute faster than comparable machine instructions on other machines, because it is not necessary to
access a microprogram control store during instruction execution.

A second characteristic is that most operations should be register to register, with only simple LOAD and STORE operations
accessing memory. This design feature simplifies the instruction set and therefore the control unit. For example, a RISC instruction set
may include only one or two ADD instructions (e.g., integer add, add with carry); the VAX has 25 different ADD instructions. Another
benefit is that such an architecture encourages the optimization of register use, so that frequently accessed operands remain in
high- ​speed storage.

This emphasis on register- ​to-​register operations is notable for RISC designs. Contemporary CISC machines provide such instructions,
but also include memory- ​to-​memory and mixed register/memory operations. Attempts to compare these approaches were made in the
1970s, before the appearance of RISCs. Figure 17.5a illustrates the approach taken. Hypothetical architectures were evaluated on
program size and the number of bits of memory traffic. Results such as this one led one researcher to suggest that future architectures
should contain no registers at all [MYER78]. One wonders what he would have thought, at the time, of the RISC machine once
produced by Pyramid, which contained no less than 528 registers!

Figure 17.5 Two Comparisons of Register-​to-​Register and Memory-​to-​Memory Approaches

What was missing from those studies was a recognition of the frequent access to a small number of local scalars and that, with a large
bank of registers or an optimizing compiler, most operands could be kept in registers for long periods of time. Thus, Figure 17.5b may
be a fairer comparison.

A third characteristic is the use of simple addressing modes. Almost all RISC instructions use simple register addressing. Several
additional modes, such as displacement and PC- ​relative, may be included. Other, more complex modes can be synthesized in
software from the simple ones. Again, this design feature simplifies the instruction set and the control unit.

A final common characteristic is the use of simple instruction formats. Generally, only one or a few formats are used. Instruction
length is fixed and aligned on word boundaries. Field locations, especially the opcode, are fixed. This design feature has a number of
benefits. With fixed fields, opcode decoding and register operand accessing can occur simultaneously. Simplified formats simplify the
control unit. Instruction fetching is optimized because word- ​length units are fetched. Alignment on a word boundary also means that a
single instruction does not cross page boundaries.

Taken together, these characteristics can be assessed to determine the potential performance benefits of the RISC approach. A
certain amount of “circumstantial evidence” can be presented. First, more effective optimizing compilers can be developed. With
more-​primitive instructions, there are more opportunities for moving functions out of loops, reorganizing code for efficiency, maximizing
register utilization, and so forth. It is even possible to compute parts of complex instructions at compile time. For example, the S/390

Move Characters (MVC) instruction moves a string of characters from one location to another. Each time it is executed, the move will
depend on the length of the string, whether and in which direction the locations overlap, and what the alignment characteristics are. In
most cases, these will all be known at compile time. Thus, the compiler could produce an optimized sequence of primitive instructions
for this function.

A second point, already noted, is that most instructions generated by a compiler are relatively simple anyway. It would seem
reasonable that a control unit built specifically for those instructions and using little or no microcode could execute them faster than a
comparable CISC.

A third point relates to the use of instruction pipelining. RISC researchers feel that the instruction pipelining technique can be applied
much more effectively with a reduced instruction set. We examine this point in some detail presently.

A final, and somewhat less significant, point is that RISC processors are more responsive to interrupts because interrupts are checked
between rather elementary operations. Architectures with complex instructions either restrict interrupts to instruction boundaries or
must define specific interruptible points and implement mechanisms for restarting an instruction.

The case for improved performance for a reduced instruction set architecture is strong, but one could perhaps still make an argument
for CISC. A number of studies have been done, but not on machines of comparable technology and power. Further, most studies have
not attempted to separate the effects of a reduced instruction set and the effects of a large register file. The “circumstantial evidence,”
however, is suggestive.

CISC versus RISC Characteristics

After the initial enthusiasm for RISC machines, there has been a growing realization that (1) RISC designs may benefit from the
inclusion of some CISC features and that (2) CISC designs may benefit from the inclusion of some RISC features. The result is that
the more recent RISC designs, notably the PowerPC, are no longer “pure” RISC and the more recent CISC designs, notably the
Pentium II and later Pentium models, do incorporate some RISC characteristics.

An interesting comparison in [MASH95] provides some insight into this issue. Table 17.7 lists a number of processors and compares
them across a number of characteristics. For purposes of this comparison, the following are considered typical of a classic RISC:

1. A single instruction size.
2. That size is typically 4 bytes.
3. A small number of data addressing modes, typically less than five. This parameter is difficult to pin down. In the table, register

and literal modes are not counted and different formats with different offset sizes are counted separately.
4. No indirect addressing that requires you to make one memory access to get the address of another operand in memory.
5. No operations that combine load/store with arithmetic (e.g., add from memory, add to memory).
6. No more than one memory- ​addressed operand per instruction.
7. Does not support arbitrary alignment of data for load/store operations.
8. Maximum number of uses of the memory management unit (MMU) for a data address in an instruction.
9. Number of bits for integer register specifier equal to five or more. This means that at least 32 integer registers can be explicitly

referenced at a time.
10. Number of bits for floating- ​point register specifier equal to four or more. This means that at least 16 floating- ​point registers can

be explicitly referenced at a time.

Table 17.7 Characteristics of Some Processors
Notes:

 RISC that does not conform to this characteristic.
 CISC that does not conform to this characteristic.

Processor Number
of

Max
instruction

Number of
addressing

Indirect
addressing

Load/store
combined

Max
number

Unaligned
addressing

Max
number

Number
of bits

Number
of bits

a

b

instruction
sizes

size in
bytes

modes with
arithmetic

of
memory

operands

allowed of
MMU
uses

for
integer
register
specifier

for FP
register
specifier

AMD29000 1 4 1 no no 1 no 1 8 3

MIPS
R2000

1 4 1 no no 1 no 1 5 4

SPARC 1 4 2 no no 1 no 1 5 4

MC88000 1 4 3 no no 1 no 1 5 4

HP PA 1 4 10 no no 1 no 1 5 4

IBM RT/PC 2 4 1 no no 1 no 1 4 3

IBM
RS/6000

1 4 4 no no 1 yes 1 5 5

Intel i860 1 4 4 no no 1 no 1 5 4

IBM 3090 4 8 2 yes 2 yes 4 4 2

Intel 80486 12 12 15 yes 2 yes 4 3 3

NSC
32016

21 21 23 yes yes 2 yes 4 3 3

MC68040 11 22 44 yes yes 2 yes 8 4 3

VAX 56 56 22 yes yes 6 yes 24 4 0

Clipper 4 8 9 no no 1 0 2 4 3

Intel 80960 2 8 9 no no 1 — 5 3

Items 1 through 3 are an indication of instruction decode complexity. Items 4 through 8 suggest the ease or difficulty of pipelining,
especially in the presence of virtual memory requirements. Items 9 and 10 are related to the ability to take good advantage of
compilers.

In the table, the first eight processors are clearly RISC architectures, the next five are clearly CISC, and the last two are processors
often thought of as RISC that in fact have many CISC characteristics.

a

a

a a a

b nob

nob

a a a a a

a a a yesa
a

17.5 Risc Pipelining

Pipelining with Regular Instructions

As we discussed in Section 16.4, instruction pipelining is often used to enhance performance. Let us
reconsider this in the context of a RISC architecture. Most instructions are register to register, and an
instruction cycle has the following two stages:

I: Instruction fetch.
E: Execute. Performs an ALU operation with register input and output.

For load and store operations, three stages are required:

I: Instruction fetch.
E: Execute. Calculates memory address.
D: Memory. Register-​to-​memory or memory-​to-​register operation.

Figure 17.6a depicts the timing of a sequence of instructions using no pipelining. Clearly, this is a
wasteful process. Even very simple pipelining can substantially improve performance. Figure 17.6b
shows a two-​stage pipelining scheme, in which the I and E stages of two different instructions are
performed simultaneously. The two stages of the pipeline are an instruction fetch stage, and an
execute/memory stage that executes the instruction, including register- ​to-​memory and
memory-​to-​register operations. Thus we see that the instruction fetch stage of the second instruction
can be performed in parallel with the first part of the execute/memory stage. However, the
execute/memory stage of the second instruction must be delayed until the first instruction clears the
second stage of the pipeline. This scheme can yield up to twice the execution rate of a serial scheme.
Two problems prevent the maximum speedup from being achieved. First, we assume that a
single- ​port memory is used and that only one memory access is possible per stage. This requires the
insertion of a wait state in some instructions. Second, a branch instruction interrupts the sequential
flow of execution. To accommodate this with minimum circuitry, a NOOP instruction can be inserted
into the instruction stream by the compiler or assembler.

Figure 17.6 The Effects of Pipelining

Pipelining can be improved further by permitting two memory accesses per stage. This yields the
sequence shown in Figure 17.6c. Now, up to three instructions can be overlapped, and the
improvement is as much as a factor of 3. Again, branch instructions cause the speedup to fall short of
the maximum possible. Also, note that data dependencies have an effect. If an instruction needs an
operand that is altered by the preceding instruction, a delay is required. Again, this can be
accomplished by a NOOP.

The pipelining discussed so far works best if the three stages are of approximately equal duration.
Because the E stage usually involves an ALU operation, it may be longer. In this case, we can divide
into two substages:

 Register file read
 ALU operation and register write

Because of the simplicity and regularity of a RISC instruction set, the design of the phasing into three
or four stages is easily accomplished. Figure 17.6d shows the result with a four- ​stage pipeline. Up to
four instructions at a time can be under way, and the maximum potential speedup is a factor of 4. Note
again the use of NOOPs to account for data and branch delays.

Optimization of Pipelining

Because of the simple and regular nature of RISC instructions, it is easier for a hardware designer to
implement a simple, fast pipeline. There are few variations in instruction execution duration, and the
pipeline can be tailored to reflect this. However, we have seen that data and branch dependencies
reduce the overall execution rate.

DELAYED BRANCH

To compensate for these dependencies, code reorganization techniques have been developed. First,
let us consider branching instructions. Delayed branch, a way of increasing the efficiency of the
pipeline, makes use of a branch that does not take effect until after execution of the following
instruction (hence the term delayed). The instruction location immediately following the branch is
referred to as the delay slot. This strange procedure is illustrated in Table 17.8. In the column labeled
“normal branch,” we see a normal symbolic instruction machine- ​language program. After 102 is
executed, the next instruction to be executed is 105. To regularize the pipeline, a NOOP is inserted
after this branch. However, increased performance is achieved if the instructions at 101 and 102 are
interchanged.

Table 17.8 Normal and Delayed Branch

Address Normal Branch Delayed Branch Optimized Delayed Branch

100 LOAD X, rA LOAD X, rA LOAD X, rA

101 ADD 1, rA ADD 1, rA JUMP 105

102 JUMP 105 JUMP 106 ADD 1, rA

103 ADD rA, rB NOOP ADD rA, rB

E1:
E2:

104 SUB rC, rB ADD rA, rB SUB rC, rB

105 STORE rA, Z SUB rC, rB STORE rA, Z

106 STORE rA, Z

Figure 17.7 shows the result. Figure 17.7a shows the traditional approach to pipelining, of the type
discussed in Chapter 16 (e.g., see Figures 16.11 and 16.12). The JUMP instruction is fetched at time
4. At time 5, the JUMP instruction is executed at the same time that instruction 103 (ADD instruction)
is fetched. Because a JUMP occurs, which updates the program counter, the pipeline must be cleared
of instruction 103; at time 6, instruction 105, which is the target of the JUMP, is loaded. Figure 17.7b
shows the same pipeline handled by a typical RISC organization. The timing is the same. However,
because of the insertion of the NOOP instruction, we do not need special circuitry to clear the pipeline;
the NOOP simply executes with no effect. Figure 17.7c shows the use of the delayed branch. The
JUMP instruction is fetched at time 2, before the ADD instruction, which is fetched at time 3. Note,
however, that the ADD instruction is fetched before the execution of the JUMP instruction has a
chance to alter the program counter. Therefore, during time 4, the ADD instruction is executed at the
same time that instruction 105 is fetched. Thus, the original semantics of the program are retained but
two fewer clock cycles are required for execution.

Figure 17.7 Use of the Delayed Branch

This interchange of instructions will work successfully for unconditional branches, calls, and returns.
For conditional branches, this procedure cannot be blindly applied. If the condition that is tested for the
branch can be altered by the immediately preceding instruction, then the compiler must refrain from
doing the interchange and instead insert a NOOP. Otherwise, the compiler can seek to insert a useful
instruction after the branch. The experience with both the Berkeley RISC and IBM 801 systems is that
the majority of conditional branch instructions can be optimized in this fashion ([PATT82a], [RADI83]).

DELAYED LOAD

A similar sort of tactic, called the delayed load, can be used on LOAD instructions. On LOAD
instructions, the register that is to be the target of the load is locked by the processor. The processor
then continues execution of the instruction stream until it reaches an instruction requiring that register,
at which point it idles until the load is complete. If the compiler can rearrange instructions so that
useful work can be done while the load is in the pipeline, efficiency is increased.

Aleksandr Lukin/123RF

Loop Unrolling Simulator

LOOP UNROLLING

Another compiler technique to improve instruction parallelism is loop unrolling [BACO94]. Unrolling
replicates the body of a loop some number of times called the unrolling factor (u) and iterates by step
u instead of step 1.

Unrolling can improve the performance by

reducing loop overhead
increasing instruction parallelism by improving pipeline performance
improving register, data cache, or TLB locality

Figure 17.8 illustrates all three of these improvements in an example. Loop overhead is cut in half
because two iterations are performed before the test and branch at the end of the loop. Instruction
parallelism is increased because the second assignment can be performed while the results of the first
are being stored and the loop variables are being updated. If array elements are assigned to registers,
register locality will improve because a[i] and are used twice in the loop body, reducing the
number of loads per iteration from three to two.

Figure 17.8 Loop Unrolling

a[i + 1]

As a final note, we should point out that the design of the instruction pipeline should not be carried out
in isolation from other optimization techniques applied to the system. For example, [BRAD91b] shows
that the scheduling of instructions for the pipeline and the dynamic allocation of registers should be
considered together to achieve the greatest efficiency.

17.6 MIPS R4000
One of the first commercially available RISC chip sets was developed by MIPS Technology Inc. The
system was inspired by an experimental system, also using the name MIPS, developed at Stanford
[HENN84]. In this section we look at the MIPS R4000. It has substantially the same architecture and
instruction set of the earlier MIPS designs: the R2000 and R3000. The most significant difference is
that the R4000 uses 64 rather than 32 bits for all internal and external data paths and for addresses,
registers, and the ALU.

The use of 64 bits has a number of advantages over a 32-bit architecture. It allows a bigger address
space—​large enough for an operating system to map more than a terabyte of files directly into virtual
memory for easy access. With 1-terabyte and larger disk drives now common, the 4-gigabyte address
space of a 32-bit machine becomes limiting. Also, the 64-bit capacity allows the R4000 to process
data such as IEEE double- ​precision floating- ​point numbers and character strings, up to eight
characters in a single action.

The R4000 processor chip is partitioned into two sections, one containing the CPU and the other
containing a coprocessor for memory management. The processor has a very simple architecture.
The intent was to design a system in which the instruction execution logic was as simple as possible,
leaving space available for logic to enhance performance (e.g., the entire memory- ​management unit).

The processor supports thirty- ​two 64-bit registers. It also provides for up to 128 Kbytes of high- ​speed
cache, half each for instructions and data. The relatively large cache (the IBM 3090 provides 128 to
256 Kbytes of cache) enables the system to keep large sets of program code and data local to the
processor, off-​loading the main memory bus and avoiding the need for a large register file with the
accompanying windowing logic.

Instruction Set

All MIPS R series instructions are encoded in a single 32-bit word format. All data operations are
register to register; the only memory references are pure load/store operations.

The R4000 makes no use of condition codes. If an instruction generates a condition, the
corresponding flags are stored in a general- ​purpose register. This avoids the need for special logic to
deal with condition codes, as they affect the pipelining mechanism and the reordering of instructions
by the compiler. Instead, the mechanisms already implemented to deal with register- ​value
dependencies are employed. Further, conditions mapped onto the register files are subject to the
same compile- ​time optimizations in allocation and reuse as other values stored in registers.

As with most RISC-​based machines, the MIPS uses a single 32-bit instruction length. This single
instruction length simplifies instruction fetch and decode, and it also simplifies the interaction of
instruction fetch with the virtual memory management unit (i.e., instructions do not cross word or page
boundaries). The three instruction formats (Figure 17.9) share common formatting of opcodes and
register references, simplifying instruction decode. The effect of more complex instructions can be
synthesized at compile time.

Figure 17.9 MIPS Instruction Formats

Only the simplest and most frequently used memory- ​addressing mode is implemented in hardware. All
memory references consist of a 16-bit offset from a 32-bit register. For example, the “load word”
instruction is of the form

lw r2, 128(r3)
 /* load word at address 128 offset from register 3 into register 2

Each of the 32 general- ​purpose registers can be used as the base register. One register, r0, always
contains 0.

The compiler makes use of multiple machine instructions to synthesize typical addressing modes in
conventional machines. Here is an example from [CHOW87], which uses the instruction lui (load
upper immediate). This instruction loads the upper half of a register with a 16-bit immediate value,
setting the lower half to zero. Consider an assembly- ​language instruction that uses a 32-bit immediate
argument

lw r2, #imm(r4)
/* load word at address using a 32-bit immediate offset #imm

/* offset from register 4 into register 2

This instruction can be compiled into the following MIPS instructions

lui r1, #imm- ​hi
/* where #imm- ​hi is the high- ​order 16 bits of #imm

addu r1, r1, r4
/* add unsigned #imm- ​hi to r4 and put in r1

lw r2, #imm- ​lo(r1)
/* where #imm- ​lo is the low- ​order 16 bits of #imm

Instruction Pipeline

With its simplified instruction architecture, the MIPS can achieve very efficient pipelining. It is
instructive to look at the evolution of the MIPS pipeline, as it illustrates the evolution of RISC pipelining
in general.

The initial experimental RISC systems and the first generation of commercial RISC processors
achieve execution speeds that approach one instruction per system clock cycle. To improve on this
performance, two classes of processors have evolved to offer execution of multiple instructions per
clock cycle: superscalar and superpipelined architectures. In essence, a superscalar architecture
replicates each of the pipeline stages so that two or more instructions at the same stage of the
pipeline can be processed simultaneously. A superpipelined architecture is one that makes use of
more, and more fine- ​grained, pipeline stages. With more stages, more instructions can be in the
pipeline at the same time, increasing parallelism.

Both approaches have limitations. With superscalar pipelining, dependencies between instructions in
different pipelines can slow down the system. Also, over- ​head logic is required to coordinate these
dependencies. With superpipelining, there is overhead associated with transferring instructions from
one stage to the next.

Chapter 18 is devoted to a study of superscalar architecture. The MIPS R4000 is a good example of a
RISC-​based superpipeline architecture.

Aleksandr Lukin/123RF

MIPS R3000 Five-Stage Pipeline Simulator

Figure 17.10a shows the instruction pipeline of the R3000. In the R3000, the pipeline advances once
per clock cycle. The MIPS compiler is able to reorder instructions to fill delay slots with code 70 to
90% of the time. All instructions follow the same sequence of five pipeline stages:

Instruction fetch;
Source operand fetch from register file;
ALU operation or data operand address generation;
Data memory reference;
Write back into register file.

As illustrated in Figure 17.10a, there is not only parallelism due to pipelining, but also parallelism
within the execution of a single instruction. The 60-ns clock cycle is divided into two 30-ns stages. The
external instruction and data access operations to the cache each require 60 ns, as do the major
internal operations (OP, DA, IA). Instruction decode is a simpler operation, requiring only a single 30-
ns stage, overlapped with register fetch in the same instruction. Calculation of an address for a branch
instruction also overlaps instruction decode and register fetch, so that a branch at instruction i can
address the ICACHE access of instruction . Similarly, a load at instruction i fetches data that are
immediately used by the OP of instruction , while an ALU/shift result gets passed directly into
instruction with no delay. This tight coupling between instructions makes for a highly efficient
pipeline.

Figure 17.10 Enhancing the R3000 Pipeline

In detail, then, each clock cycle is divided into separate stages, denoted as and . The functions
performed in each stage are summarized in Table 17.9.

Table 17.9 R3000 Pipeline Stages

Pipeline Phase Function

i + 2
i + 1

i + 1

ϕ1 ϕ2

Stage

IF Using the TLB, translate an instruction virtual address to a physical address
(after a branching decision).

IF Send the physical address to the instruction address.

RD Return instruction from instruction cache.

Compare tags and validity of fetched instruction.

RD Decode instruction.

Read register file.

If branch, calculate branch target address.

ALU If register-​to-​register operation, the arithmetic or logical operation is
performed.

ALU If a branch, decide whether the branch is to be taken or not.

If a memory reference (load or store), calculate data virtual address.

ALU If a memory reference, translate data virtual address to physical using TLB.

MEM If a memory reference, send physical address to data cache.

MEM If a memory reference, return data from data cache, and check tags.

WB Write to register file.

The R4000 incorporates a number of technical advances over the R3000. The use of more advanced
technology allows the clock cycle time to be cut in half, to 30 ns, and for the access time to the
register file to be cut in half. In addition, there is greater density on the chip, which enables the
instruction and data caches to be incorporated on the chip. Before looking at the final R4000 pipeline,
let us consider how the R3000 pipeline can be modified to improve performance using R4000
technology.

Figure 17.10b shows a first step. Remember that the cycles in this figure are half as long as those in
Figure 17.10a. Because they are on the same chip, the instruction and data cache stages take only
half as long; so they still occupy only one clock cycle. Again, because of the speedup of the register
file access, register read and write still occupy only half of a clock cycle.

Because the R4000 caches are on- ​chip, the virtual- ​to-​physical address translation can delay the
cache access. This delay is reduced by implementing virtually indexed caches and going to a parallel
cache access and address translation. Figure 17.10c shows the optimized R3000 pipeline with this

ϕ1

ϕ2

ϕ1

ϕ2

ϕ1 + ϕ2

ϕ1

ϕ2

ϕ1

ϕ2

ϕ1

improvement. Because of the compression of events, the data cache tag check is performed
separately on the next cycle after cache access. This check determines whether the data item is in the
cache.

In a superpipelined system, existing hardware is used several times per cycle by inserting pipeline
registers to split up each pipe stage. Essentially, each superpipeline stage operates at a multiple of
the base clock frequency, the multiple depending on the degree of superpipelining. The R4000
technology has the speed and density to permit superpipelining of degree 2. Figure 17.11a shows the
optimized R3000 pipeline using this superpipelining. Note that this is essentially the same dynamic
structure as Figure 17.10c.

Figure 17.11 Theoretical R3000 and Actual R4000 Superpipelines

Further improvements can be made. For the R4000, a much larger and specialized adder was
designed. This makes it possible to execute ALU operations at twice the rate. Other improvements
allow the execution of loads and stores at twice the rate. The resulting pipeline is shown in Figure
17.11b.

The R4000 has eight pipeline stages, meaning that as many as eight instructions can be in the
pipeline at the same time. The pipeline advances at the rate of two stages per clock cycle. The eight
pipeline stages are as follows:

Instruction fetch first half: Virtual address is presented to the instruction cache and the
translation lookaside buffer.
Instruction fetch second half: Instruction cache outputs the instruction and the TLB generates
the physical address.
Register file: Three activities occur in parallel:
—Instruction is decoded and check made for interlock conditions (i.e., this instruction depends on

the result of a preceding instruction).

—Instruction cache tag check is made.

—Operands are fetched from the register file.

Instruction execute: One of three activities can occur:
—If the instruction is a register-​to-​register operation, the ALU performs the arithmetic or logical
operation.

—If the instruction is a load or store, the data virtual address is calculated.

—If the instruction is a branch, the branch target virtual address is calculated and branch
conditions are checked.

Data cache first: Virtual address is presented to the data cache and TLB.
Data cache second: The TLB generates the physical address, and the data cache outputs the
data.
Tag check: Cache tag checks are performed for loads and stores.
Write back: Instruction result is written back to register file.

17.7 SPARC
SPARC (Scalable Processor Architecture) refers to an architecture defined by Sun Microsystems. Sun
developed its own SPARC implementation but also licenses the architecture to other vendors to
produce SPARC- ​compatible machines. The SPARC architecture is inspired by the Berkeley RISC I
machine, and its instruction set and register organization is based closely on the Berkeley RISC
model.

SPARC Register Set

As with the Berkeley RISC, the SPARC makes use of register windows. Each window gives
addressability to 24 registers, and the total number of windows is implementation dependent and
ranges from 2 to 32 windows. Figure 17.12 illustrates an implementation that supports 8 windows,
using a total of 136 physical registers; as the discussion in Section 17.2 indicates, this seems a
reasonable number of windows. Physical registers 0 through 7 are global registers shared by all
procedures. Each procedure sees logical registers 0 through 31. Logical registers 24 through 31,
referred to as ins, are shared with the calling (parent) procedure; and logical registers 8 through 15,
referred to as outs, are shared with any called (child) procedure. These two portions overlap with other
windows. Logical registers 16 through 23, referred to as locals, are not shared and do not overlap with
other windows. Again, as the discussion of Section 16.1 indicates, the availability of 8 registers for
parameter passing should be adequate in most cases (e.g., see Table 17.4).

Figure 17.12 SPARC Register Window Layout with Three Procedures

Figure 17.13 is another view of the register overlap. The calling procedure places any parameters to
be passed in its outs registers; the called procedure treats these same physical registers as its ins
registers. The processor maintains a current window pointer (CWP), located in the processor status
register (PSR), that points to the window of the currently executing procedure. The window invalid
mask (WIM), also in the PSR, indicates which windows are invalid.

Figure 17.13 Eight Register Windows Forming a Circular Stack in SPARC

With the SPARC register architecture, it is usually not necessary to save and restore registers for a
procedure call. The compiler is simplified because the compiler need be concerned only with
allocating the local registers for a procedure in an efficient manner, and need not be concerned with
register allocation between procedures.

Instruction Set

Most of the SPARC instructions reference only register operands. Register- ​to-​register instructions
have three operands and can be expressed in the form

where and are register references; S2 can refer either to a register or to a 13-bit immediate
operand. Register zero is hardwired with the value 0. This form is well suited to typical programs,
which have a high proportion of local scalars and constants.

The available ALU operations can be grouped as follows:

Integer addition (with or without carry).

Rd → RS1op S2

Rd RS1

(R0)

Integer subtraction (with or without carry).
Bitwise Boolean AND, OR, XOR and their negations.
Shift left logical, right logical, or right arithmetic.

All of these instructions, except the shifts, can optionally set the four condition codes (ZERO,
NEGATIVE, OVERFLOW, CARRY). Signed integers are represented in 32-bit twos complement form.

Only simple load and store instructions reference memory. There are separate load and store
instructions for word (32 bits), doubleword, halfword, and byte. For the latter two cases, there are
instructions for loading these quantities as signed or unsigned numbers. Signed numbers are sign
extended to fill out the 32-bit destination register. Unsigned numbers are padded with zeros.

The only available addressing mode, other than register, is a displacement mode. That is, the effective
address (EA) of an operand consists of a displacement from an address contained in a register:

depending on whether the second operand is immediate or a register reference. To perform a load or
store, an extra stage is added to the instruction cycle. During the second stage, the memory address
is calculated using the ALU; the load or store occurs in a third stage. This single addressing mode is
quite versatile and can be used to synthesize other addressing modes, as indicated in Table 17.10.

Table 17.10 Synthesizing Other Addressing Modes with SPARC Addressing Modes
Note: a register operand or a 13-bit immediate operand.

Instruction Type Addressing Mode Algorithm SPARC Equivalent

Register- ​to-​register Immediate S2

Load, store Direct

Register- ​to-​register Register

Load, store Register Indirect

Load, store Displacement

It is instructive to compare the SPARC addressing capability with that of the MIPS. The MIPS makes
use of a 16-bit offset, compared with a 13-bit offset on the SPARC. On the other hand, the MIPS does
not permit an address to be constructed from the contents of two registers.

Instruction Format

As with the MIPS R4000, SPARC uses a simple set of 32-bit instruction formats (Figure 17.14). All
instructions begin with a 2-bit opcode. For most instructions, this is extended with additional opcode
bits elsewhere in the format. For the Call instruction, a 30-bit immediate operand is extended with two
zero bits to the right to form a 32-bit PC-​relative address in twos complement form. Instructions are
aligned on a 32-bit boundary so that this form of addressing suffices.

EA = (RS1) + S2
or EA = (RS1) + (RS2)

S2 = either

operand = A

EA = A R0 + S2

EA = R RS1 , SS2

EA = (R) RS1 + 0

EA = (R) + A RS1 + S2

Figure 17.14 SPARC Instruction Formats

The Branch instruction includes a 4-bit condition field that corresponds to the four standard condition
code bits, so that any combination of conditions can be tested. The 22-bit PC- ​relative address is
extended with two zero bits on the right to form a 24-bit twos complement relative address. An
unusual feature of the Branch instruction is the annul bit. When the annul bit is not set, the instruction
after the branch is always executed, regardless of whether the branch is taken. This is the typical
delayed branch operation found on many RISC machines and described in Section 17.5 (see Figure
17.7). However, when the annul bit is set, the instruction following the branch is executed only if the
branch is taken. The processor suppresses the effect of that instruction even though it is already in the
pipeline. This annul bit is useful because it makes it easier for the compiler to fill the delay slot
following a conditional branch. The instruction that is the target of the branch can always be put in the
delay slot, because if the branch is not taken, the instruction can be annulled. The reason this
technique is desirable is that conditional branches are generally taken more than half the time.

The SETHI instruction is a special instruction used to form a 32-bit constant. This feature is needed to
form large data constants; for example, it can be used to form a large offset for a load or store
instruction. The SETHI instruction sets the 22 high- ​order bits of a register with its 22-bit immediate
operand, and zeros out the low- ​order 10 bits. An immediate constant of up to 13 bits can be specified
in one of the general formats, and such an instruction could be used to fill in the remaining 10 bits of
the register. A load or store instruction can also be used to achieve a direct addressing mode. To load
a value from location K in memory, we could use the following SPARC instructions:

sethi %hi(K), %r8 ;load high- ​order 22 bits of address of location

;K into register r8

Ld ;load contents of location K into r8

The macros %hi and %lo are used to define immediate operands consisting of the appropriate
address bits of a location. This use of SETHI is similar to the use of the lui instruction on the MIPS.

The floating- ​point format is used for floating- ​point operations. Two source and one destination
registers are designated.

Finally, all other operations, including loads, stores, arithmetic, and logical operations use one of the
last two formats shown in Figure 17.14. One of the formats makes use of two source registers and a
destination register, while the other uses one source register, one 13-bit immediate operand, and one
destination register.

[%r8 + %lo (K)] , %r8

17.8 Processor Organization For Pipelining
This section looks at some of the enhancements to the pipeline illustrated in Figure 16.23 that can be
used to improve performance. To begin, we merge the instruction decode (ID) and operand fetch (OF)
stages into a single ID stage, with the ID stage responsible for instruction decode and register
operand fetch. This is appropriate for a RISC machine, in which most operands are register. It can
also be used in CISC machines. In either case, memory operand fetch is deferred to the load/store
unit (LSU).

Figure 17.15 shows the addition of three enhancements: the instruction buffer, the store buffer, and
the predecoder. All are designed to smooth out and enhance the flow of instructions through the
pipeline. The instruction buffer supports the function of instruction prefetching. The objective is to
prevent, or at least minimize, delays in issuing instructions due to L1 instruction cache misses.
Without instruction prefetching, when a cache miss occurs in the L1 instruction cache, the pipeline
freezes until new instructions are brought from the L2 cache into the L1 cache. To counter this, the IF
stage can fetch multiple instructions to keep the instruction buffer full, so that when a miss occurs, the
ID stage still has instructions to draw upon from the instruction buffer. Occasionally, when branches
occur, instructions will need to be flushed from the instruction buffer. But overall performance is
improved.

Figure 17.15 Pipeline Organization with Buffers and Pre-Decoding

The predecoder (PD) off-loads some of the tasks of the instruction decode (ID) stage to avoid the ID
stage becoming a bottleneck. As previously discussed, the functions of the instruction decoder include
decoding the opcode and operand fields and evaluating dependencies and hazards. As the pipeline

structure becomes more complex, these functions take more time, especially for a CISC machine
such as the x86 architecture. However, as we move to a superscalar architecture in the next chapter,
in which multiple instructions are decoded in parallel, even RISC architectures require substantial
decoding time. The objective with the predecoder is to perform some of the decoding ahead of time to
reduce the burden on the ID stage. The PD stage is inserted between the L2 cache and the L1
instruction cache. Because of the relatively slow L2 cache time, there is spare time here to perform
the PD function. The PD may add a few bits to the instruction to designate the type of instruction and
the resources required. For a CISC instruction architecture the PD may also determine instruction
length and decode instruction prefixes.

Another buffer, the store buffer, improves performance on store operations. In essence, the store
buffer allows a load to bypass the completion of a store to access a memory location. Thus, the load
instruction can make use of a data item as soon as it is created (finished) and does not have to wait
for the data item to be stored in the data cache (completed). This feature is especially useful for loop
instructions, in which data created in one iteration is used immediately in the next iteration. On loads,
the LSU examines the store buffer as a lookaside buffer and extracts the data from there if available;
otherwise, it queries the data cache as normal.

Figure 17.15 shows the pipeline structure with the addition of the instruction buffer, the store buffer,
and the predecoder to the organization shown in Figure 16.23. Next, we consider three more features
to enhance performance: multiple reservation stations, forwarding, and the reorder buffer.

The reservation station was described in Section 16.5 (see Figure 16.24). It overcomes the
bottleneck problem that the ID cannot receive a new instruction until the preceding instruction is
issued. If the corresponding functional unit (ALU, CTU, LSU, etc.) is not available, then the ID stage
stalls. The reservation station allows the ID to issue the instruction into the reservation station, which
can buffer multiple instructions pending their dispatch to the appropriate functional unit (FU). Figure
16.23 shows a single reservation station that serves all the FUs. The control of such an arrangement
is relatively complex and is rarely used. The Pentium is an example of a system that used a single
reservation station. An improvement both in performance and simplicity is the use of a dedicated
reservation station for each individual FU. The process of dispatching an instruction to a functional
unit proceeds in two parts:

Issue from ID to reservation station: Each slot in the reservation station serves the role of a
virtual FU, to which the ID issues an instruction. There is no stall unless all the slots in the
reservation station for a given FU are in use (buffer full).
Dispatch from reservation station to FU: Dispatch occurs when the corresponding FU is
available and all operand values are available. However, dispatch does not have to be FIFO, but
rather different priorities can be assigned to different instructions.

The reservation station is also referred to as an instruction window, particularly in the superscalar
literature, and we use this latter term in Chapter 18.

Data forwarding addresses the problem of read-after-write (RAW) delays due to WB delays. As with
the store buffer, data forwarding makes data available as soon as it is created. The forwarded data
becomes input to the reservation stations, going to an operand field.

The reorder buffer supports out-of order execution. Out-of-order execution (OoOE) is an approach to
processing that allows instructions for high-performance microprocessors to begin execution as soon
as their operands are ready. Although instructions are issued in order, they can proceed out-of-order
(OoO) with respect to each other. The goal of OoO processing is to allow the processor to avoid a
class of stalls that occur when the data needed to perform an operation are unavailable. OoOE is
discussed in Chapter 18. The reorder buffer ensures that instructions complete in order. Reorder
buffers are discussed in Appendix G.

Figure 17.16 adds multiple reservation stations, forwarding, and the reorder buffer to the organization
shown in Figure 17.15. Note that the forwarding function occurs at finishing time, prior to the reorder
buffer and completion of write back.

Figure 17.16 Pipeline Organization with Forwarding, Reorder Buffer, and Multiple Reservation
Stations

17.9 CISC, RISC, And Contemporary Systems
During the 1980s, there was quite a RISC versus CISC controversy concerning the relative
performance of each approach, with no clear-cut resolution of the issue. In more recent years, the
RISC versus CISC controversy has died down to a great extent. This is because there has been a
gradual convergence of the technologies. As chip densities and raw hardware speeds increase, RISC
systems have become more complex. At the same time, in an effort to squeeze out maximum
performance, CISC designs have focused on issues traditionally associated with RISC, such as an
increased number of general-purpose registers and increased emphasis on instruction pipeline
design.

At the time of the introduction of RISC, the focus of computer architecture design were desktops and
servers, the primary design objective was performance, and the primary design constraints were chip
area and processor design complexity. This situation has dramatically changed with the proliferation of
embedded devices built on ARM, primarily a RISC-based architecture, while the primarily CISC x86
continues to dominate larger systems, including laptops, desktops, and servers. There is much more
emphasis on power consumption as a design constraint. A study reported in [BLEM15] found that the
details of implementation plus the presence or absence of specializations such as floating point and
SIMD support were major factors in both performance and power consumption, but that the use of a
CISC or RISC instruction set architecture was not a significant factor.

A major conclusion that can be deduced is that differences in the instruction set architecture (RISC vs.
CISC) do affect implementation choices, but because of modern microarchitecture techniques, these
differences do not drive performance or power consumption. An example of modern microarchitecture
techniques is the translation of machine instructions into microinstructions on contemporary x86
implementations.

17.10 Key Terms, Review Questions, and Problems

Key Terms

complex instruction set computer (CISC)

data forwarding

dedicated reservation station

delayed branch

delayed load

high-​level language (HLL)

instruction buffer

predecoder

reduced instruction set computer (RISC)

register file

register window

reorder buffer

SPARC

store buffer

Review Questions

Problems

17.1 What are some typical distinguishing characteristics of RISC organization?
17.2 Briefly explain the two basic approaches used to minimize register- ​memory operations on
RISC machines.
17.3 If a circular register buffer is used to handle local variables for nested procedures, describe
two approaches for handling global variables.
17.4 What are some typical characteristics of a RISC instruction set architecture?
17.5 What is a delayed branch?

17.1 In the discussion of Figure 17.2 , it was stated that only the first two portions of a window
are saved or restored. Why is it not necessary to save the temporary registers?
17.2 We wish to determine the execution time for a given program using the various pipelining
schemes discussed in Section 17.5 . Let

For the simple sequential scheme (Figure 17.6a), the execution time is stages. Derive
formulas for two-​stage, three-​stage, and four-​stage pipelining.

N = number of executed instructions
D = number of memory accesses
J = number of jump instructions

2N + D

17.3 Reorganize the code sequence in Figure 17.6d to reduce the number of NOOPs.
17.4 Consider the following code fragment in a high- ​level language:

for I in 1…100 loop
 S ← S + Q(I). VAL
end loop;

Assume that Q is an array of 32-byte records and the VAL field is in the first 4 bytes of each
record. Using x86 code, we can compile this program fragment as follows:

MOV ECX,1 ;use register ECX to hold I

LP: IMUL EAX, ECX, 32 ;get offset in EAX

MOV EBX, Q[EAX] ;load VAL field

ADD S, EBX ;add to S

INC ECX ;increment I

CMP ECX, 101 :compare to 101

JNE LP ;loop until

This program makes use of the IMUL instruction, which multiplies the second operand by the
immediate value in the third operand and places the result in the first operand (see Problem
10.13). A RISC advocate would like to demonstrate that a clever compiler can eliminate
unnecessarily complex instructions such as IMUL. Provide the demonstration by rewriting the
above x86 program without using the IMUL instruction.
17.5 Consider the following loop:

S := 0;
for K:=1 to 100 do
 S:=S - K;

A straightforward translation of this into a generic assembly language would look something like
this:

LD R1, 0 ;keep value of S in R1

LD R2,1 ;keep value of K in R2

LP SUB R1, R1, R2

BEQ R2, 100, EXIT ;done if

ADD R2, R2, 1 ;else increment K

I = 100

;S : = S − K

K = 100

JMP LP ;back to start of loop

A compiler for a RISC machine will introduce delay slots into this code so that the processor can
employ the delayed branch mechanism. The JMP instruction is easy to deal with, because this
instruction is always followed by the SUB instruction; therefore, we can simply place a copy of
the SUB instruction in the delay slot after the JMP. The BEQ presents a difficulty. We can’t
leave the code as is, because the ADD instruction would then be executed one too many times.
Therefore, a NOP instruction is needed. Show the resulting code.
	17.6 A RISC machine’s compiler may do both a mapping of symbolic registers to actual
registers and a rearrangement of instructions for pipeline efficiency. An interesting question
arises as to the order in which these two operations should be done. Consider the following
program fragment:

LD SR1, A ;load A into symbolic register 1

LD SR2, B ;load B into symbolic register 2

ADD SR3, SR1, SR2 ;add contents of SR1 and SR2 and store in SR3

LD SR4, C

LD SR5, D

ADD SR6, SR4, SR5

a. First do the register mapping and then any possible instruction reordering. How many
machine registers are used? Has there been any pipeline improvement?

b. Starting with the original program, now do instruction reordering and then any possible
mapping. How many machine registers are used? Has there been any pipeline
improvement?

17.7 Add entries for the following processors to Table 17.7 :
a. Pentium II
b. ARM

17.8 In many cases, common machine instructions that are not listed as part of the MIPS
instruction set can be synthesized with a single MIPS instruction. Show this for the following:

a. Register- ​to-​register move
b. Increment, decrement
c. Complement
d. Negate
e. Clear

17.9 A SPARC implementation has K register windows. What is the number N of physical
registers?
17.10 SPARC is lacking a number of instructions commonly found on CISC machines. Some of
these are easily simulated using either register R0, which is always set to 0, or a constant
operand. These simulated instructions are called pseudoinstructions and are recognized by the
SPARC assembler. Show how to simulate the following pseudoinstructions, each with a single

SPARC instruction. In all of these, src and dst refer to registers. (Hint: A store to R0 has no
effect.)

a. MOV src, dst
b. COMPARE src1, src2
c. TEST src1
d. NOT dst
e. NEG dst
f. INC dst
g. DEC dst
h. CLR dst
i. NOP

17.11 Consider the following code fragment:

if K > 10
 L := K + 1
else
 L := K – 1

A straightforward translation of this statement into SPARC assembler could take the following
form:

sethi %hi(K), %r8 ;load high- ​order 22 bits of address of location

;K into register r8

ld , %r8 ;load contents of location K into r8

cmp %r8, 10 ;compare contents of r8 with 10

ble L1 ;branch if

nop

sethi %hi(K), %r9

ld , %r9 ;load contents of location K into r9

inc %r9 ;add 1 to (r9)

sethi %hi(L), %r10

st %r9, ;store (r9) into location L

b L2

nop

[%r8 + %lo (K)]

(r8) ≤ 10

[% r9 + % lo(K)]

[% r10 + % lo(L)]

L1: sethi %hi(K), %r11

ld , %r12 ;load contents of location K into r12

dec %r12 ;subtract 1 from (r12)

sethi %hi(L), %r13

st %r12, ;store (r12) into location L

L2:

The code contains a nop after each branch instruction to permit delayed branch operation.
a. Standard compiler optimizations that have nothing to do with RISC machines are

generally effective in being able to perform two transformations on the foregoing code.
Notice that two of the loads are unnecessary and that the two stores can be merged if the
store is moved to a different place in the code. Show the program after making these two
changes.

b. It is now possible to perform some optimizations peculiar to SPARC. The nop after the
ble can be replaced by moving another instruction into that delay slot and setting the
annul bit on the ble instruction (expressed as ble,a L1). Show the program after this
change.

c. There are now two unnecessary instructions. Remove these and show the resulting
program.

[% r11 + % lo(K)]

[% r13 + % lo(L)]

Chapter 18 Instruction-Level Parallelism and Superscalar
Processors

18.6 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Explain the difference between superscalar and superpipelined approaches.
Define instruction-level parallelism.
Discuss dependencies and resource conflicts as limitations to instruction-level parallelism
Present an overview of the design issues involved in instruction-level parallelism.
Compare and contrast techniques of improving pipeline performance in RISC machines and

18.1 Overview
Superscalar versus Superpipelined
Constraints

18.2 Design Issues
Instruction-Level Parallelism and Machine Parallelism
Instruction Issue Policy
Register Renaming
Machine Parallelism
Branch Prediction
Superscalar Execution
Superscalar Implementation

18.3 Intel Core Microarchitecture
Front End
Out-of-Order Execution Logic
Integer and Floating-Point Execution Units

18.4 Arm Cortex-A8
Instruction Fetch Unit
Instruction Decode Unit
Integer Execute Unit
SIMD and Floating-Point Pipeline

18.5 ARM Cortex-M3
Pipeline Structure
Dealing with Branches

superscalar machines.

A superscalar implementation of a processor architecture is one in which common
instructions—integer and floating-point arithmetic, loads, stores, and conditional
branches—can be initiated simultaneously and executed independently. Such
implementations raise a number of complex design issues related to the instruction
pipeline.

Superscalar design arrived on the scene hard on the heels of RISC architecture.
Although the simplified instruction set architecture of a RISC machine lends itself
readily to superscalar techniques, the superscalar approach can be used on either
a RISC or CISC architecture.

Whereas the gestation period for the arrival of commercial RISC machines from
the beginning of true RISC research with the IBM 801 and the Berkeley RISC I
was seven or eight years, the first superscalar machines became commercially
available within just a year or two of the coining of the term superscalar . The
superscalar approach has now become the standard method for implementing
high-performance microprocessors.

In this chapter, we begin with an overview of the superscalar approach, contrasting
it with superpipelining. Next, we present the key design issues associated with
superscalar implementation. Then we look at several important examples of
superscalar architecture.

18.1 Overview
The term superscalar, first coined in 1987 [AGER87], refers to a machine that is designed to improve
the performance of the execution of scalar instructions. In most applications, the bulk of the operations
are on scalar quantities. Accordingly, the superscalar approach represents the next step in the
evolution of high-performance general-purpose processors.

The essence of the superscalar approach is the ability to execute instructions independently and
concurrently in different pipelines. The concept can be further exploited by allowing instructions to be
executed in an order different from the program order. Figure 18.1 compares, in general terms, the
scalar and superscalar approaches. In a traditional scalar organization, there is a single pipelined
functional unit for integer operations and one for floating-point operations. Parallelism is achieved by
enabling multiple instructions to be at different stages of the pipeline at one time. In the superscalar
organization, there are multiple functional units, each of which is implemented as a pipeline. Each
individual functional unit provides a degree of parallelism by virtue of its pipelined structure. The use of
multiple functional units enables the processor to execute streams of instructions in parallel, one
stream for each pipeline. It is the responsibility of the hardware, in conjunction with the compiler, to
assure that the parallel execution does not violate the intent of the program.

Figure 18.1 Superscalar Organization Compared to Ordinary Scalar Organization

1

Figure 18.2 provides additional detail of a typical organization for a superscalar pipeline processor.
Compare with Figure 17.16. The L1 cache is divided into instruction and data. Groups of instructions
are fetched into an instruction buffer. The instruction decode stage involves, at minimum, determining
the opcode and operand specifiers. This stage also usually involves detection of inter-instruction
dependencies among the group of instructions that have been fetched but not yet dispatched. This
stage selects instructions to be issued in the next instruction cycle and sends them to the issue
window. The issue window holds all decoded instructions of issue in the next cycle. The width of the
issue window corresponds to the degree of superscaling.

 Figure provided by Professor Roger Kieckhafer of Michigan Technological University.

Figure 18.2 Generic Superscalar Organization
Source: Used with permission from Professor Roger Kieckhafer of Michigan Technical University.

Define issue rate as the number of instructions issued per instruction cycle. Then, for a superscalar
machine, the maximum issue rate equals the width of the issue window. The mean issue rate depends

1

(degree = 4)

on the occurrence of pipeline hazards and constraints, and the issue policies that are based on these
hazards and constraints. The design objective is to achieve an issue rate of well above one instruction
per instruction cycle, and as close as is reasonable to the maximum issue rate.

The issue window is followed by a set of reservation stations, with instructions being issued from the
issue window as reservation station capacity becomes available. The concept of a single reservation
station was introduced in Chapter 16. With a superscalar architecture, there are multiple reservation
stations, one for each pipeline. Each reservation station is essentially a set of input registers that are
used to buffer operations and operands for a functional unit. The purpose of the reservation station is
to relieve a bottleneck at the instruction decode (ID) stage. The ID can issue an instruction as soon as
a functional unit is available and hazards are resolved. The problem this creates is that the ID stage
cannot receive a new instruction until the previous instruction has been issued. The reservation
stations provide a buffer that enables the ID stage to issue instructions as soon as possible. Then, the
reservation station will dispatch each instruction to its functional unit when the latter is available.

The reorder buffer holds results until it is safe to store the results to memory or a register in program
order. When an instruction is complete and can be finalized, it is either written back to the register file
or the results forwarded to the reservation stations.

Many researchers have investigated superscalar-like processors, and their research indicates that
some degree of performance improvement is possible. Table 18.1 presents the reported performance
advantages. The differences in the results arise from differences both in the hardware of the simulated
machine and in the applications being simulated.

Table 18.1 Reported Speedups of Superscalar-Like Machines

Reference Speedup

[TJAD70] 1.8

[KUCK77] 8 

[WEIS84] 1.58

[ACOS86] 2.7 

[SOHI90] 1.8 

[SMIT89] 2.3 

[JOUP89b] 2.2 

[LEE91] 7 

Superscalar versus Superpipelined

An alternative approach to achieving greater performance is referred to as superpipelining, a term first
coined in 1988 [JOUP88]. Superpipelining divides the pipeline into a greater number of smaller stages
in order to clock it at a higher frequency. There is still only one pipeline, but by increasing the number

of stages, we increase its temporal parallelism—it is working on more instructions at the same time.
This use of a very deep, very high-speed pipeline for instruction processing is called superpipelining.
We have seen one example of this approach with the MIPS R4000.

Figure 18.3 compares the two approaches. The upper part of the diagram illustrates an ordinary
pipeline, used as a base for comparison. The base pipeline issues one instruction per clock cycle and
can perform one pipeline stage per clock cycle. The pipeline has four stages: instruction fetch;
operation decode; operation execution; and result write back. The execution stage is crosshatched for
clarity. Note that although several instructions are executing concurrently, only one instruction is in its
execution stage at any one time.

Figure 18.3 Comparison of Superscalar and Superpipeline Approaches

The next part of the diagram shows a superpipelined implementation that is capable of performing
two pipeline stages per clock cycle. An alternative way of looking at this is that the functions
performed in each stage can be split into two nonoverlapping parts, and each can execute in half a
clock cycle. A superpipeline implementation that behaves in this fashion is said to be of degree 2.
Finally, the lowest part of the diagram shows a superscalar implementation capable of executing two
instances of each stage in parallel. Higher-degree superpipeline and superscalar implementations are

of course possible.

Both the superpipeline and the superscalar approaches depicted in Figure 18.3 have the same
number of instructions executing at the same time in the steady state. The superpipelined processor
falls behind the superscalar processor at the start of the program and at each branch target.

Constraints

The superscalar approach depends on the ability to execute multiple instructions in parallel. The term
instruction-level parallelism refers to the degree to which, on average, the instructions of a program
can be executed in parallel. A combination of compiler-based optimization and hardware techniques
can be used to maximize instruction-level parallelism. Before examining the design techniques used in
superscalar machines to increase instruction-level parallelism, we need to look at the fundamental
limitations to parallelism with which the system must cope. [JOHN91] lists five limitations:

True data dependency;
Procedural dependency;
Resource conflicts;
Output dependency;
Antidependency.

We examine the first three of these limitations in the remainder of this section. A discussion of the last
two must await some of the developments in the next section.

TRUE DATA DEPENDENCY

Consider the following sequence:

 For the Intel x86 assembly language, a semicolon starts a comment field.

 ADD EAX, ECX ;load register EAX with the con-
 ;tents of ECX plus the contents
 ;of EAX
 MOV EBX, EAX ;load EBX with the contents of EAX

The second instruction can be fetched and decoded but cannot execute until the first instruction
executes. The reason is that the second instruction needs data produced by the first instruction. This
situation is referred to as a true data dependency (also called flow dependency or read after write
[RAW] dependency).

Figure 18.4 illustrates this dependency in a superscalar machine of degree 2. With no dependency,
two instructions can be fetched and executed in parallel. If there is a data dependency between the
first and second instructions, then the second instruction is delayed as many clock cycles as required
to remove the dependency. In general, any instruction must be delayed until all of its input values
have been produced.

2

2

Figure 18.4 Effect of Dependencies

In a simple pipeline, such as illustrated in the upper part of Figure 18.3, the aforementioned sequence
of instructions would cause no delay. However, consider the following, in which one of the loads is
from memory rather than from a register:

 MOV EAX, eff ;load register EAX with the
 contents of effective memory
 address eff
 MOV EBX, EAX ;load EBX with the contents of EAX

A typical RISC processor takes two or more cycles to perform a load from memory when the load is a
cache hit. It can take tens or even hundreds of cycles for a cache miss on all cache levels, because of

the delay of an off-chip memory access. One way to compensate for this delay is for the compiler to
reorder instructions so that one or more subsequent instructions that do not depend on the memory
load can begin flowing through the pipeline. This scheme is less effective in the case of a superscalar
pipeline: The independent instructions executed during the load are likely to be executed on the first
cycle of the load, leaving the processor with nothing to do until the load completes.

PROCEDURAL DEPENDENCIES

As was discussed in Chapter 14, the presence of branches in an instruction sequence complicates
the pipeline operation. The instructions following a branch (taken or not taken) have a procedural
dependency on the branch and cannot be executed until the branch is executed. Figure 18.4
illustrates the effect of a branch on a superscalar pipeline of degree 2.

As we have seen, this type of procedural dependency also affects a scalar pipeline. The consequence
for a superscalar pipeline is more severe, because a greater magnitude of opportunity is lost with each
delay.

If variable-length instructions are used, then another sort of procedural dependency arises. Because
the length of any particular instruction is not known, it must be at least partially decoded before the
following instruction can be fetched. This prevents the simultaneous fetching required in a superscalar
pipeline. This is one of the reasons that superscalar techniques are more readily applicable to a RISC
or RISC-like architecture, with its fixed instruction length.

RESOURCE CONFLICT

A resource conflict is a competition of two or more instructions for the same resource at the same
time. Examples of resources include memories, caches, buses, register-file ports, and functional units
(e.g., ALU adder).

In terms of the pipeline, a resource conflict exhibits similar behavior to a data dependency (Figure
18.4). There are some differences, however. For one thing, resource conflicts can be overcome by
duplication of resources, whereas a true data dependency cannot be eliminated. Also, when an
operation takes a long time to complete, resource conflicts can be minimized by pipelining the
appropriate functional unit.

18.2 Design Issues

Instruction-Level Parallelism and Machine Parallelism

[JOUP89a] makes an important distinction between the two related concepts of instruction-level
parallelism and machine parallelism. Instruction-level parallelism exists when instructions in a
sequence are independent and thus can be executed in parallel by overlapping.

As an example of the concept of instruction-level parallelism, consider the following two code
fragments [JOUP89b]:

Load R1 ← R2 Add R3 ← R3, “1”
Add R3 ← R3, “1” Add R4 ← R3, R2
Add R4 ← R4, R2 Store [R4] ← R0

The three instructions on the left are independent, and in theory all three could be executed in parallel.
In contrast, the three instructions on the right cannot be executed in parallel because the second
instruction uses the result of the first, and the third instruction uses the result of the second.

The degree of instruction-level parallelism is determined by the frequency of true data dependencies
and procedural dependencies in the code. These factors, in turn, are dependent on the instruction set
architecture and on the application. Instruction-level parallelism is also determined by what [JOUP89a]
refers to as operation latency: the time until the result of an instruction is available for use as an
operand in a subsequent instruction. The latency determines how much of a delay a data or
procedural dependency will cause.

Machine parallelism is a measure of the ability of the processor to take advantage of instruction-level
parallelism. Machine parallelism is determined by the number of instructions that can be fetched and
executed at the same time (the number of parallel pipelines) and by the speed and sophistication of
the mechanisms that the processor uses to find independent instructions.

Both instruction-level and machine parallelism are important factors in enhancing performance. A
program may not have enough instruction-level parallelism to take full advantage of machine
parallelism. The use of a fixed-length instruction set architecture, as in a RISC, enhances instruction-
level parallelism. On the other hand, limited machine parallelism will limit performance no matter what
the nature of the program.

Instruction Issue Policy

As was mentioned, machine parallelism is not simply a matter of having multiple instances of each
pipeline stage. The processor must also be able to identify instruction-level parallelism and
orchestrate the fetching, decoding, and execution of instructions in parallel. [JOHN91] uses the term
instruction issue to refer to the process of initiating instruction execution in the processor’s
functional units, and the term instruction issue policy to refer to the protocol used to issue
instructions. In general, we can say that instruction issue occurs when instruction moves from the
decode stage of the pipeline to the first execute stage of the pipeline.

In essence, the processor is trying to look ahead of the current point of execution to locate instructions
that can be brought into the pipeline and executed. Three types of orderings are important in this

regard:

The order in which instructions are fetched;
The order in which instructions are executed;
The order in which instructions update the contents of register and memory locations.

The more sophisticated the processor, the less it is bound by a strict relationship between these
orderings. To optimize utilization of the various pipeline elements, the processor will need to alter one
or more of these orderings with respect to the ordering to be found in a strict sequential execution.
The one constraint on the processor is that the result must be correct. Thus, the processor must
accommodate the various dependencies and conflicts discussed earlier.

In general terms, we can group superscalar instruction issue policies into the following categories:

In-order issue with in-order completion.
In-order issue with out-of-order completion.
Out-of-order issue with out-of-order completion.

IN-ORDER ISSUE WITH IN-ORDER COMPLETION

The simplest instruction issue policy is to issue instructions in the exact order that would be achieved
by sequential execution (in-order issue) and to write results in that same order (in-order
completion). Not even scalar pipelines follow such a simple-minded policy. However, it is useful to
consider this policy as a baseline for comparing more sophisticated approaches.

Figure 18.5a gives an example of this policy. We assume a superscalar pipeline capable of fetching
and decoding two instructions at a time, having three separate functional units (e.g., two integer
arithmetic and one floating-point arithmetic), and having two instances of the write-back pipeline
stage. The example assumes the following constraints on a six-instruction code fragment:

Figure 18.5 Superscalar Instruction Issue and Completion Policies

I1 requires two cycles to execute.
I3 and I4 conflict for the same functional unit.
I5 depends on the value produced by I4.
I5 and I6 conflict for a functional unit.

Instructions are fetched two at a time and passed to the decode unit. Because instructions are fetched
in pairs, the next two instructions must wait until the pair of decode pipeline stages has cleared. To
guarantee in-order completion, when there is a conflict for a functional unit or when a functional unit
requires more than one cycle to generate a result, the issuing of instructions temporarily stalls.

In this example, the elapsed time from decoding the first instruction to writing the last results is eight
cycles.

IN-ORDER ISSUE WITH OUT-OF-ORDER COMPLETION

Out-of-order completion is used in scalar RISC processors to improve the performance of
instructions that require multiple cycles. Figure 18.5b illustrates its use on a superscalar processor.
Instruction I2 is allowed to run to completion prior to I1. This allows I3 to be completed earlier, with the
net result of a savings of one cycle.

With out-of-order completion, any number of instructions may be in the execution stage at any one
time, up to the maximum degree of machine parallelism across all functional units. Instruction issuing
is stalled by a resource conflict, a data dependency, or a procedural dependency.

In addition to the aforementioned limitations, a new dependency, which we referred to earlier as an
output dependency (also called write after write [WAW] dependency),arises. The following code
fragment illustrates this dependency (op represents any operation):

I1: R3 ← R3 op R5
I2: R4 ← R3 + 1
I3: R3 ← R5 + 1
I4: R7 ← R3 op R4

Instruction I2 cannot execute before instruction I1, because it needs the result in register R3 produced
in I1; this is an example of a true data dependency, as described in Section 18.1. Similarly, I4 must
wait for I3, because it uses a result produced by I3. What about the relationship between I1 and I3?
There is no data dependency here, as we have defined it. However, if I3 executes to completion prior
to I1, then the wrong value of the contents of R3 will be fetched for the execution of I4. Consequently,
I3 must complete after I1 to produce the correct output values. To ensure this, the issuing of the third
instruction must be stalled if its result might later be overwritten by an older instruction that takes
longer to complete.

Out-of-order completion requires more complex instruction issue logic than in-order completion. In
addition, it is more difficult to deal with instruction interrupts and exceptions. When an interrupt occurs,
instruction execution at the current point is suspended, to be resumed later. The processor must
assure that the resumption takes into account that, at the time of interruption, instructions ahead of the
instruction that caused the interrupt may already have completed.

OUT-OF-ORDER ISSUE WITH OUT-OF-ORDER COMPLETION

With in-order issue, the processor will only decode instructions up to the point of a dependency or
conflict. No additional instructions are decoded until the conflict is resolved. As a result, the processor
cannot look ahead of the point of conflict to subsequent instructions that may be independent of those
already in the pipeline and that may be usefully introduced into the pipeline.

To allow out-of-order issue, it is necessary to decouple the decode and execute stages of the
pipeline. This is done with a buffer referred to as an instruction window. With this organization, after
a processor has finished decoding an instruction, it is placed in the instruction window. As long as this
buffer is not full, the processor can continue to fetch and decode new instructions. When a functional
unit becomes available in the execute stage, an instruction from the instruction window may be issued
to the execute stage. Any instruction may be issued, provided that (1) it needs the particular functional
unit that is available, and (2) no conflicts or dependencies block this instruction. Figure 18.6 suggests
this organization.

Figure 18.6 Organization for Out-of-Order Issue with Out-of-Order Completion

The result of this organization is that the processor has a lookahead capability, allowing it to identify
independent instructions that can be brought into the execute stage. Instructions are issued from the
instruction window with little regard for their original program order. As before, the only constraint is
that the program execution behaves correctly.

Figures 18.5c illustrates this policy. During each of the first three cycles, two instructions are fetched
into the decode stage. During each cycle, subject to the constraint of the buffer size, two instructions
move from the decode stage to the instruction window. In this example, it is possible to issue
instruction I6 ahead of I5 (recall that I5 depends on I4, but I6 does not). Thus, one cycle is saved in
both the execute and write-back stages, and the end-to-end savings, compared with Figure 18.5b, is
one cycle.

The instruction window is depicted in Figure 18.5c to illustrate its role. However, this window is not an
additional pipeline stage. An instruction being in the window simply implies that the processor has
sufficient information about that instruction to decide when it can be issued.

The out-of-order issue, out-of-order completion policy is subject to the same constraints described
earlier. An instruction cannot be issued if it violates a dependency or conflict. The difference is that
more instructions are available for issuing, reducing the probability that a pipeline stage will have to
stall. In addition, a new dependency, which we referred to earlier as an antidependency (also called
write after read [WAR] dependency), arises. The code fragment considered earlier illustrates this
dependency:

I1: R3 ← R3 op R5
I2: R4 ← R3 + 1
I3: R3 ← R5 + 1
I4: R7 ← R3 op R4

Instruction I3 cannot complete execution before instruction I2 begins execution and has fetched its
operands. This is so because I3 updates register R3, which is a source operand for I2. The term
antidependency is used because the constraint is similar to that of a true data dependency, but
reversed: Instead of the first instruction producing a value that the second instruction uses, the second
instruction destroys a value that the first instruction uses.

Aleksandr Lukin/123RF

Reorder Buffer Simulator

Tomasulo’s Algorithm Simulator

Alternative Simulation of Tomasulo’s Algorithm

One common technique that is used to support out-of-order completion is the reorder buffer. The
reorder buffer is temporary storage for results completed out of order that are then committed to the
register file in program order. A related concept is Tomasulo’s algorithm. Appendix G examines these
concepts.

Register Renaming

When out-of-order instruction issuing and/or out-of-order instruction completion are allowed, we have
seen that this gives rise to the possibility of WAW dependencies and WAR dependencies. These
dependencies differ from RAW data dependencies and resource conflicts, which reflect the flow of
data through a program and the sequence of execution. WAW dependencies and WAR
dependencies, on the other hand, arise because the values in registers may no longer reflect the
sequence of values dictated by the program flow.

When instructions are issued in sequence and complete in sequence, it is possible to specify the
contents of each register at each point in the execution. When out-of-order techniques are used, the
values in registers cannot be fully known at each point in time just from a consideration of the
sequence of instructions dictated by the program. In effect, values are in conflict for the use of
registers, and the processor must resolve those conflicts by occasionally stalling a pipeline stage.

Antidependencies and output dependencies are both examples of storage conflicts. Multiple
instructions are competing for the use of the same register locations, generating pipeline constraints
that retard performance. The problem is made more acute when register optimization techniques are
used (as discussed in Chapter 15), because these compiler techniques attempt to maximize the use
of registers, hence maximizing the number of storage conflicts.

One method for coping with these types of storage conflicts is based on a traditional resource-conflict
solution: duplication of resources. In this context, the technique is referred to as register renaming. In
essence, registers are allocated dynamically by the processor hardware, and they are associated with
the values needed by instructions at various points in time. When a new register value is created (i.e.,
when an instruction executes that has a register as a destination operand), a new register is allocated
for that value. Subsequent instructions that access that value as a source operand in that register
must go through a renaming process: the register references in those instructions must be revised to
refer to the register containing the needed value. Thus, the same original register reference in several
different instructions may refer to different actual registers, if different values are intended.

Let us consider how register renaming could be used on the code fragment we have been examining:

I1: R3b ← R3a op R5a
I2: R4b ← R3b + 1
I3: R3c ← R5a + 1
I4: R7b ← R3c op R4b

The register reference without the subscript refers to the logical register reference found in the
instruction. The register reference with the subscript refers to a hardware register allocated to hold a
new value. When a new allocation is made for a particular logical register, subsequent instruction
references to that logical register as a source operand are made to refer to the most recently allocated
hardware register (recent in terms of the program sequence of instructions).

In this example, the creation of register in instruction I3 avoids the WAR dependency on the
second instruction and the WAW on the first instruction, and it does not interfere with the correct value
being accessed by I4. The result is that I3 can be issued immediately; without renaming, I3 cannot be
issued until the first instruction is complete and the second instruction is issued.

Aleksandr Lukin/123RF

Scoreboarding Simulator

An alternative to register renaming is scoreboarding. In essence, scoreboarding is a bookkeeping
technique that allows instructions to execute whenever they are not dependent on previous
instructions and no structural hazards are present. See Appendix G for a discussion.

Machine Parallelism

In the preceding discussion, we looked at three hardware techniques that can be used in a
superscalar processor to enhance performance: duplication of resources, out-of-order issue, and
renaming. One study that illuminates the relationship among these techniques was reported in
[SMIT89]. The study made use of a simulation that modeled a machine with the characteristics of the
MIPS R2000, augmented with various superscalar features. A number of different program sequences
were simulated.

Figure 18.7 shows the results. In each of the graphs, the vertical axis corresponds to the mean
speedup of the superscalar machine over the scalar machine. The horizontal axis shows the results
for four alternative processor organizations. The base machine does not duplicate any of the
functional units, but it can issue instructions out of order. The second configuration duplicates the
load/store functional unit that accesses a data cache. The third configuration duplicates the ALU, and
the fourth configuration duplicates both load/store and ALU. In each graph, results are shown for
instruction window sizes of 8, 16, and 32 instructions, which dictates the amount of lookahead the
processor can do. The difference between the two graphs is that, in the second, register renaming is
allowed. This is equivalent to saying that the first graph reflects a machine that is limited by all
dependencies, whereas the second graph corresponds to a machine that is limited only by true
dependencies.

R3c

Figure 18.7 Speedups of Various Machine Organizations without Procedural Dependencies

The two graphs, combined, yield some important conclusions. The first is that it is probably not
worthwhile to add functional units without register renaming. There is some slight improvement in
performance, but at the cost of increased hardware complexity. With register renaming, which
eliminates antidependencies and output dependencies, noticeable gains are achieved by adding more
functional units. Note, however, that there is a significant difference in the amount of gain achievable
between using an instruction window of 8 versus a larger instruction window. This indicates that if the
instruction window is too small, data dependencies will prevent effective utilization of the extra
functional units; the processor must be able to look quite far ahead to find independent instructions to
utilize the hardware more fully.

Aleksandr Lukin/123RF

Pipeline with Static vs. Dynamic Scheduling—Simulator

Branch Prediction

Any high-performance pipelined machine must address the issue of dealing with branches. For
example, the Intel 80486 addressed the problem by fetching both the next sequential instruction after

a branch and speculatively fetching the branch target instruction. However, because there are two
pipeline stages between prefetch and execution, this strategy incurs a two-cycle delay when the
branch gets taken.

With the advent of RISC machines, the delayed branch strategy was explored. This allows the
processor to calculate the result of conditional branch instructions before any unusable instructions
have been prefetched. With this method, the processor always executes the single instruction that
immediately follows the branch. This keeps the pipeline full while the processor fetches a new
instruction stream.

With the development of superscalar machines, the delayed branch strategy has less appeal. The
reason is that multiple instructions need to execute in the delay slot, raising several problems relating
to instruction dependencies. Thus, superscalar machines have returned to pre-RISC techniques of
branch prediction . Some, like the PowerPC 601, use a simple static branch prediction technique.
More sophisticated processors, such as the PowerPC 620 and the Pentium 4, use dynamic branch
prediction based on branch history analysis.

Superscalar Execution

We are now in a position to provide an overview of superscalar execution of programs; this is
illustrated in Figure 18.8. The program to be executed consists of a linear sequence of instructions.
This is the static program as written by the programmer or generated by the compiler. The instruction
fetch stage, which includes branch prediction, is used to form a dynamic stream of instructions. This
stream is examined for dependencies, and the processor may remove artificial dependencies. The
processor then dispatches the instructions into a window of execution. In this window, instructions no
longer form a sequential stream, but are structured according to their true data dependencies. The
processor executes each instruction in an order determined by the true data dependencies and
hardware resource availability. Finally, instructions are conceptually put back into sequential order and
their results are recorded.

Figure 18.8 Conceptual Depiction of Superscalar Processing

The final step mentioned in the preceding paragraph is referred to as committing, or retiring, the
instruction. This step is needed for the following reason. Because of the use of parallel, multiple
pipelines, instructions may complete in an order different from that shown in the static program.
Further, the use of branch prediction and speculative execution means that some instructions may
complete execution and then must be abandoned because the branch they represent is not taken.
Therefore, permanent storage and program-visible registers cannot be updated immediately when
instructions complete execution. Results must be held in some sort of temporary storage that is usable
by dependent instructions and then made permanent when it is determined that the sequential model
would have executed the instruction.

Superscalar Implementation

Based on our discussion so far, we can make some general comments about the processor hardware
required for the superscalar approach. [SMIT95] lists the following key elements:

Instruction fetch strategies that simultaneously fetch multiple instructions, often by predicting the
outcomes of, and fetching beyond, conditional branch instructions. These functions require the use
of multiple pipeline fetch and decode stages, and branch prediction logic.
Logic for determining true dependencies involving register values, and mechanisms for
communicating these values to where they are needed during execution.
Mechanisms for initiating, or issuing, multiple instructions in parallel.
Resources for parallel execution of multiple instructions, including multiple pipelined functional
units and memory hierarchies capable of simultaneously servicing multiple memory references.
Mechanisms for committing the process state in correct order.

18.3 Intel Core Microarchitecture
Although the concept of superscalar design is generally associated with the RISC architecture, the same
superscalar principles can be applied to a CISC machine. Perhaps the most notable example of this is the
Intel x86 architecture. The evolution of superscalar concepts in the Intel line is interesting to note. The 386
is a traditional CISC nonpipelined machine. The 486 introduced the first pipelined x86 processor, reducing
the average latency of integer operations from between two and four cycles to one cycle, but still limited to
executing a single instruction each cycle, with no superscalar elements. The original Pentium had a
modest superscalar component, consisting of the use of two separate integer execution units. The
Pentium Pro introduced a full-blown superscalar design with out-of-order execution. Subsequent x86
models have refined and enhanced the superscalar design.

Figure 18.9 shows the current version of the x86 pipeline architecture. Intel refers to a pipeline
architecture as a microarchitecture. The microarchitecture underlies and implements the machine’s
instruction set architecture. The microarchitecture is referred to as the Intel Core Microarchitecture. It is
implemented on each processor core in the Intel Core 2 and Intel Xeon processor families. There is also
an Enhanced Intel Core Microarchitecture. One key difference between the two microarchitectures is that
the Enhanced Intel Core Microarchitecture provides a third level of cache.

Figure 18.9 Intel Core Microarchitecture

Table 18.2 shows some of the parameters and performance characteristics of the cache architecture. All
of the caches use a writeback update policy. When an instruction reads data from a memory location, the
processor looks for the cache line that contains this data in the caches and main memory in the following
order:

Table 18.2 Cache/Memory Parameters and Performance of Processors Based on Intel Core
Microarchitecture
Notes:

1. Intel Core Microarchitecture

2. Enhanced Intel Core Microarchitecture

(a) Cache Parameters

Cache Level Capacity Associativity (ways) Line Size (bytes) Writeback Update Policy

L1 data 32 kB 8 64 Writeback

L1 instruction 32 kB 8 N/A N/A

L2 (shared) 2, 4 MB 8 or 16 64 Writeback

L2 (shared) 3, 6 MB 12 or 24 64 Writeback

L3 (shared) 8, 12, 16 MB 15 64 Writeback

(b) Load/Store Performance

Data
Locality

Load Store

Latency Throughput Latency Throughput

L1 data
cache

3 clock cycles 1 clock cycle 2 clock cycles 3 clock
cycles

L1 data
cache of
the
other
core in
modified
state

N/A

L2
cache

14 3 14 3

Memory Depends on bus
read protocol

Depends
on bus
read
protocol

1. L1 data cache of the initiating core
2. L1 data cache of other cores and L2 cache
3. System memory

1

2

2

14clock cycles + 5.5bus cycles 14clockcycles + 5.5buscycles 14clock cycles + 5.5bus cycles

14clockcycles + 5.5buscycles + memory
latency

14clockcycles + 5.5buscycles + memory
latency

The cache line is taken from the L1 data cache of another core only if it is modified, ignoring the cache
line availability or state in the L2 cache. Table 18.2b shows the characteristics of fetching the first four
bytes of different localities from the memory cluster. The latency column provides an estimate of access
latency. However, the actual latency can vary depending on the load of cache, memory components, and
their parameters.

The pipeline of the Intel Core microarchitecture contains:

An in-order issue front end that fetches instruction streams from memory, with four instruction
decoders to supply decoded instructions to the out-of-order execution core. Each instruction is
translated into one or more fixed-length RISC instructions, known as micro-operations , or micro-
ops.
An out-of-order superscalar execution core that can issue up to six micro-ops per cycle and reorder
micro-ops to execute as soon as sources are ready and execution resources are available.
An in-order retirement unit that ensures the results of execution of micro-ops are processed and
architectural states and the processor's register set are updated according to the original program
order.

In effect, the Intel Core Microarchitecture implements a CISC instruction set architecture on a RISC
microarchitecture. The inner RISC micro-ops pass through a pipeline with at least 14 stages; in some
cases, the micro-op requires multiple execution stages, resulting in an even longer pipeline. This contrasts
with the five-stage pipeline (Figure 16.21) used on the earlier Intel x86 processors and on the Pentium.

Front End

The front end needs to supply decoded instructions (micro-ops) and sustain the stream to a six-issue wide
out-of-order engine. It consists of three major components: branch prediction unit (BPU), instruction fetch
and predecode unit, and instruction queue and decode unit.

BRANCH PREDICTION UNIT

This unit helps the instruction fetch unit fetch the most likely instruction to be executed by predicting the
various branch types: conditional, indirect, direct, call, and return. The BPU uses dedicated hardware for
each branch type. Branch prediction enables the processor to begin executing instructions long before the
branch outcome is decided.

The microarchitecture uses a dynamic branch prediction strategy based on the history of recent
executions of branch instructions. A branch target buffer (BTB) is maintained that caches information
about recently encountered branch instructions. Whenever a branch instruction is encountered in the
instruction stream, the BTB is checked. If an entry already exists in the BTB, then the instruction unit is
guided by the history information for that entry in determining whether to predict that the branch is taken. If
a branch is predicted, then the branch destination address associated with this entry is used for
prefetching the branch target instruction.

Once the instruction is executed, the history portion of the appropriate entry is updated to reflect the result
of the branch instruction. If this instruction is not represented in the BTB, then the address of this
instruction is loaded into an entry in the BTB; if necessary, an older entry is deleted.

The description of the preceding two paragraphs fits, in general terms, the branch prediction strategy used
on the original Pentium model, as well as the later Pentium models, including current Intel models.
However, in the case of the Pentium, a relatively simple 2-bit history scheme is used. The later models
have much longer pipelines (14 stages for the Intel Core Microarchitecture compared with 5 stages for the
Pentium) and therefore the penalty for misprediction is greater. Accordingly, the later models use a more

elaborate branch prediction scheme with more history bits to reduce the misprediction rate.

Conditional branches that do not have a history in the BTB are predicted using a static prediction
algorithm, according to the following rules:

For branch addresses that are not instruction pointer (IP) relative, predict taken if the branch is a return
and not taken otherwise.
For IP-relative backward conditional branches, predict taken. This rule reflects the typical behavior of
loops.
For IP-relative forward conditional branches, predict not taken.

INSTRUCTION FETCH AND PREDECODE UNIT

The instruction fetch unit comprises the instruction translation lookaside buffer (ITLB), an instruction
prefetcher, the instruction cache, and the predecode logic.

Instruction fetch is performed from an L1 instruction cache. When an L1 cache miss occurs, the in-order
front end feeds new instructions into the L1 cache from the L2 cache 64 bytes at a time. As a default,
instructions are fetched sequentially, so that each L2 cache line fetch includes the next instruction to be
fetched. Branch prediction via the branch prediction unit may alter this sequential fetch operation. The
ITLB translates the linear IP address given it into physical addresses needed to access the L2 cache.
Static branch prediction in the front end is used to determine which instructions to fetch next.

The predecode unit accepts the sixteen bytes from the instruction cache or prefetch buffers and carries
out the following tasks:

Determine the length of the instructions.
Decode all prefixes associated with instructions.
Mark various properties of instructions for the decoders (for example, “is branch”).

The predecode unit can write up to six instructions per cycle into the instruction queue. If a fetch contains
more than six instructions, the predecoder continues to decode up to six instructions per cycle until all
instructions in the fetch are written to the instruction queue. Subsequent fetches can only enter
predecoding after the current fetch completes.

INSTRUCTION QUEUE AND DECODE UNIT

Fetched instructions are placed in an instruction queue. From there, the decode unit scans the bytes to
determine instruction boundaries; this is a necessary operation because of the variable length of x86
instructions. The decoder translates each machine instruction into from one to four micro-ops, each of
which is a 118-bit RISC instruction. Note for comparison that most pure RISC machines have an
instruction length of just 32 bits. The longer micro-op length is required to accommodate the more
complex x86 instructions. Nevertheless, the micro-ops are easier to manage than the original instructions
from which they derive.

A few instructions require more than four micro-ops. These instructions are transferred to microcode
ROM, which contains the series of micro-ops (five or more) associated with a complex machine
instruction. For example, a string instruction may translate into a very large (even hundreds), repetitive
sequence of micro-ops. Thus, the microcode ROM is a microprogrammed control unit in the sense
discussed in Part Six.

The resulting micro-op sequence is delivered to the rename/allocator module.

Out-of-Order Execution Logic

This part of the processor reorders micro-ops to allow them to execute as quickly as their input operands
are ready.

ALLOCATE

The allocate stage allocates resources required for execution. It performs the following functions:

If a needed resource, such as a register, is unavailable for one of the three micro-ops arriving at the
allocator during a clock cycle, the allocator stalls the pipeline.
The allocator allocates a reorder buffer (ROB) entry, which tracks the completion status of one of the
126 micro-ops that could be in process at any time.
 See Appendix G for a discussion of reorder buffers.

The allocator allocates one of the 128 integer or floating-point register entries for the result data value
of the micro-op, and possibly a load or store buffer used to track one of the 48 loads or 24 stores in the
machine pipeline.
The allocator allocates an entry in one of the two micro-op queues in front of the instruction
schedulers.

The ROB is a circular buffer that can hold up to 126 micro-ops and also contains the 128 hardware
registers. Each buffer entry consists of the following fields:

State: Indicates whether this micro-op is scheduled for execution, has been dispatched for execution,
or has completed execution and is ready for retirement.
Memory Address: The address of the Pentium instruction that generated the micro-op.
Micro-op: The actual operation.
Alias Register: If the micro-op references one of the 16 architectural registers, this entry redirects that
reference to one of the 128 hardware registers.

Micro-ops enter the ROB in order. Micro-ops are then dispatched from the ROB to the Dispatch/Execute
unit out of order. The criterion for dispatch is that the appropriate execution unit and all necessary data
items required for this micro-op are available. Finally, micro-ops are retired from the ROB in order. To
accomplish in-order retirement, micro-ops are retired oldest first after each micro-op has been designated
as ready for retirement.

REGISTER RENAMING

The rename stage remaps references to the 16 architectural registers (8 floating-point registers, plus
EAX, EBX, ECX, EDX, ESI, EDI, EBP, and ESP) into a set of 128 physical registers. The stage removes
false dependencies caused by a limited number of architectural registers while preserving the true data
dependencies (reads after writes).

MICRO-OP QUEUING

After resource allocation and register renaming, micro-ops are placed in one of two micro-op queues,
where they are held until there is room in the schedulers. One of the two queues is for memory operations
(loads and stores) and the other for micro-ops that do not involve memory references. Each queue obeys
a FIFO (first-in-first-out) discipline, but no order is maintained between queues. That is, a micro-op may
be read out of one queue out of order with respect to micro-ops in the other queue. This provides greater
flexibility to the schedulers.

MICRO-OP SCHEDULING AND DISPATCHING

The schedulers are responsible for retrieving micro-ops from the micro-op queues and dispatching these

3
3

for execution. Each scheduler looks for micro-ops whose status indicates that the micro-op has all of its
operands. If the execution unit needed by that micro-op is available, then the scheduler fetches the micro-
op and dispatches it to the appropriate execution unit. Up to six micro-ops can be dispatched in one cycle.
If more than one micro-op is available for a given execution unit, then the scheduler dispatches them in
sequence from the queue. This is a sort of FIFO discipline that favors in-order execution, but by this time
the instruction stream has been so rearranged by dependencies and branches that it is substantially out of
order.

Four ports attach the schedulers to the execution units. Port 0 is used for both integer and floating-point
instructions, with the exception of simple integer operations and the handling of branch mispredictions,
which are allocated to Port 1. In addition, MMX execution units are allocated between these two ports.
The remaining ports are for memory loads and stores.

Integer and Floating-Point Execution Units

The integer and floating-point register files are the source for pending operations by the execution units.
The execution units retrieve values from the register files as well as from the L1 data cache. A separate
pipeline stage is used to compute flags (e.g., zero, negative); these are typically the input to a branch
instruction.

A subsequent pipeline stage performs branch checking. This function compares the actual branch result
with the prediction. If a branch prediction turns out to have been wrong, then there are micro-operations in
various stages of processing that must be removed from the pipeline. The proper branch destination is
then provided to the Branch Predictor during a drive stage, which restarts the whole pipeline from the new
target address.

18.4 ARM Cortex-A8
Recent implementations of the ARM architecture have seen the introduction of superscalar techniques
in the instruction pipeline. In this section, we focus on the ARM Cortex-A8, which provides a good
example of a RISC-based superscalar design.

The Cortex-A8 is in the ARM family of processors that ARM refers to as application processors. An
ARM application processor is an embedded processor running complex operating systems for
wireless, consumer and imaging applications. The Cortex-A8 targets a wide variety of mobile and
consumer applications including mobile phones, set-top boxes, gaming consoles and automotive
navigation/entertainment systems.

Figure 18.10 shows a logical view of the Cortex-A8 architecture, emphasizing the flow of instructions
among functional units. The main instruction flow is through three functional units that implement a
dual, in-order-issue, 13-stage pipeline. The Cortex designers decided to stay with in-order issue to
keep additional power required to a minimum. Out-of-order issue and retire can require extensive
amounts of logic consuming extra power.

Figure 18.10 Architectural Block Diagram of ARM Cortex-A8

Figure 18.11 shows the details of the main Cortex-A8 pipeline. There is a separate unit for SIMD
(single-instruction-multiple-data) that implements a 10-stage pipeline.

Figure 18.11 ARM Cortex-A8 Integer Pipeline

Instruction Fetch Unit

The instruction fetch unit predicts the instruction stream, fetches instructions from the L1 instruction
cache, and places the fetched instructions into a buffer for consumption by the decode pipeline. The
instruction fetch unit also includes the L1 instruction cache. Because there can be several unresolved
branches in the pipeline, instruction fetches are speculative, meaning there is no guarantee that they

are executed. A branch or exceptional instruction in the code stream can cause a pipeline flush,
discarding the currently fetched instructions. The instruction fetch unit can fetch up to four instructions
per cycle, and goes through the following stages:

F0: The address generation unit (AGU) generates a new virtual address. Normally, this address is the
next address sequentially from the preceding fetch address. The address can also be a branch target
address provided by a branch prediction for a previous instruction. F0 is not counted as part of the 13-
stage pipeline, because ARM processors have traditionally defined instruction cache access as the
first stage.

F1: The calculated address is used to fetch instructions from the L1 instruction cache. In parallel, the
fetch address is used to access the branch prediction arrays to determine if the next fetch address
should be based on a branch prediction.

F3: Instruction data are placed into the instruction queue. If an instruction results in branch prediction,
the new target address is sent to the address generation unit.

To minimize the branch penalties typically associated with a deeper pipeline, the Cortex-A8 processor
implements a two-level global history branch predictor, consisting of the branch target buffer (BTB)
and the global history buffer (GHB). These data structures are accessed in parallel with instruction
fetches. The BTB indicates whether or not the current fetch address will return a branch instruction
and its branch target address. It contains 512 entries. On a hit in the BTB a branch is predicted and
the GHB is accessed. The GHB consists of 4096 2-bit counters that encode the strength and direction
information of branches. The GHB is indexed by 10-bit history of the direction of the last ten branches
encountered and 4 bits of the PC. In addition to the dynamic branch predictor, a return stack is used to
predict subroutine return addresses. The return stack has eight 32-bit entries that store the link
register value in r14 and the ARM or Thumb state of the calling function. When a return-type
instruction is predicted taken, the return stack provides the last pushed address and state.

The instruction fetch unit can fetch and queue up to 12 instructions. It issues instructions to the
decode unit two at a time. The queue enables the instruction fetch unit to prefetch ahead of the rest of
the integer pipeline and build up a backlog of instructions ready for decoding.

Instruction Decode Unit

The instruction decode unit decodes and sequences all ARM and Thumb instructions. It has a dual
pipeline structure, called pipe0 and pipe1, so that two instructions can progress through the unit at a
time. When two instructions are issued from the instruction decode pipeline, pipe0 will always contain
the older instruction in program order. This means that if the instruction in pipe0 cannot issue, then the
instruction in pipe1 will not issue. All issued instructions progress in order down the execution pipeline
with results written back into the register file at the end of the execution pipeline. This in-order
instruction issue and retire prevents WAR hazards and keeps tracking of WAW hazards and recovery
from flush conditions straightforward. Thus, the main concern of the instruction decode pipeline is the
prevention of RAW hazards.

Each instruction goes through five stages of processing.

D0: Thumb instructions are decompressed into 32-bit ARM instructions. A preliminary decode function
is performed.

D1: The instruction decode function is completed.

D2: This stage writes instructions into and reads instructions from the pending/replay queue structure.

D3: This stage contains the instruction scheduling logic. A scoreboard predicts register availability

using static scheduling techniques. Hazard checking is also done at this stage.

 See Appendix G for a discussion of scoreboarding.

D4: Performs the final decode for all the control signals required by the integer execute and load/store
units.

In the first two stages, the instruction type, the source and destination operands, and resource
requirements for the instruction are determined. A few less commonly used instructions are referred to
as multicycle instructions. The D1 stage breaks these instructions down into multiple instruction
opcodes that are sequenced individually through the execution pipeline.

The pending queue serves two purposes. First, it prevents a stall signal from D3 from rippling any
further up the pipeline. Second, by buffering instructions, there should always be two instructions
available for the dual pipeline. In the case where only one instruction is issued, the pending queue
enables two instructions to proceed down the pipeline together, even if they were originally sent from
the fetch unit in different cycles.

The replay operation is designed to deal with the effects of the memory system on instruction timing.
Instructions are statically scheduled in the D3 stage based on a prediction of when the source
operand will be available. Any stall from the memory system can result in the minimum of an 8-cycle
delay. This 8-cycle delay minimum is balanced with the minimum number of possible cycles to receive
data from the L2 cache in the case of an L1 load miss. Table 18.3 gives the most common cases that
can result in an instruction replay because of a memory system stall.

Table 18.3 Cortex-A8 Memory System Effects on Instruction Timings

Replay
Event

Delay Description

Load data
miss

8
cycles

1. A load instruction misses in the L1 data cache.
2. A request is then made to the L2 data cache.
3. If a miss also occurs in the L2 data cache, then a second replay

occurs. The number of stall cycles depends on the external system
memory timing. The minimum time required to receive the critical word
for an L2 cache miss is approximately 25 cycles, but can be much
longer because of L3 memory latencies.

Data TLB
miss

24
cycles

1. A table walk because of a miss in the L1 TLB causes a 24-cycle
delay, assuming the translation table entries are found in the L2
cache.

2. If the translation table entries are not present in the L2 cache, the
number of stall cycles depends on the external system memory
timing.

Store
buffer full

8
cycles

1. A store instruction miss does not result in any stalls unless the store
buffer is full.

4

4

plus
latency
to drain
fill
buffer

2. In the case of a full store buffer, the delay is at least eight cycles. The
delay can be more if it takes longer to drain some entries from the
store buffer.

Unaligned
load or
store
request

8
cycles

1. If a load instruction address is unaligned and the full access is not
contained within a 128-bit boundary, there is a 8-cycle penalty.

2. If a store instruction address is unaligned and the full access is not
contained within a 64-bit boundary, there is a 8-cycle penalty.

To deal with these stalls, a recovery mechanism is used to flush all subsequent instructions in the
execution pipeline and reissue (replay) them. To support replay, instructions are copied into the replay
queue before they are issued and removed as they write back their results and retire. If a replay signal
is issued, instructions are retrieved from the replay queue and reenter the pipeline.

The decode unit issues two instructions in parallel to the execution unit, unless it encounters an issue
restriction. Table 18.4 shows the most common restriction cases.

Table 18.4 Cortex-A8 Dual-Issue Restrictions

Restriction
Type

Description Example Cycle Restriction

Load/store
resource
hazard

There is only one LS pipeline. Only one LS
instruction can be issued per cycle. It can be in
pipeline 0 or pipeline 1.

LDR r5,
[r6]

STR r7,
[r8]

MOV r9,
r10

1

2

2

Wait for LS
unit

Dual issue
possible

Multiply
resource
hazard

There is only one multiply pipeline, and it is only
available in pipeline 0.

ADD r1,
r2, r3

MUL r4,
r5, r6

MUL r7,
r8, r9

1

2

3

Wait for
pipeline 0

Wait for
multiply unit

Branch
resource
hazard

There can be only one branch per cycle. It can be
in pipeline 0 or pipeline 1. A branch is any
instruction that changes the PC.

BX r1

BEQ

1

2

Wait for
branch Dual
issue

0x1000

ADD r1,
r2, r3

2 possible

Data
output
hazard

Instructions with the same destination cannot be
issued in the same cycle. This can happen with
conditional code.

MOVEQ
r1, r2

MOVNE
r1, r3

LDR r5,
[r6]

1

2

2

Wait
because of
output
dependency

Dual issue
possible

Data
source
hazard

Instructions cannot be issued if their data is not
available. See the scheduling tables for source
requirements and stages results.

ADD r1,
r2, r3

ADD r4,
r1, r6

LDR r7,
[r4]

1

2

4

Wait for r1

Wait two
cycles for r4

Multi-cycle
instructions

Multi-cycle instructions must issue in pipeline 0
and can only dual issue in their last iteration.

MOV r1,
r2

LDM r3,
{r4-r7}

LDM
(cycle 2)

LDM
(cycle 3)

ADD r8,
r9, r10

1

2

3

4

4

Wait for
pipeline 0,
transfer r4

Transfer r5,
r6

Transfer r7

Dual issue
possible on
last transfer

Integer Execute Unit

The instruction execute unit consists of two symmetric arithmetic logic unit (ALU) pipelines, an
address generator for load and store instructions, and the multiply pipeline. The execute pipelines also
perform register write back. The instruction execute unit:

Executes all integer ALU and multiply operations, including flag generation.
Generates the virtual addresses for loads and stores and the base write-back value, when
required.
Supplies formatted data for stores and forwards data and flags.
Processes branches and other changes of instruction stream, and evaluates instruction condition
codes.

For ALU instructions, either pipeline can be used, consisting of the following stages:

E0: Access register file. Up to six registers can be read from the register file for two instructions.

E1: The barrel shifter (see Figure 16.25) performs its function, if needed.

E2: The ALU unit (see Figure 16.25) performs its function.

E3: If needed, this stage completes saturation arithmetic used by some ARM data processing
instructions.

E4: Any change in control flow, including branch misprediction, exceptions, and memory system
replays are prioritized and processed.

E5: Results of ARM instructions are written back into the register file.

Instructions that invoke the multiply unit (see Figure 16.25) are routed to pipe0; the multiply operation
is performed in stages E1 through E3, and the multiply accumulate operation in stage E4.

The load/store pipeline runs parallel to the integer pipeline. The stages are as follows:

E1: The memory address is generated from the base and index register.

E2: The address is applied to the cache arrays.

E3: In the case of a load, data are returned and formatted for forwarding to the ALU or MUL unit. In
the case of a store, the data are formatted and ready to be written into the cache.

E4: Performs updates to the L2 cache, if required.

E5: Results of ARM instructions are written back into the register file.

Table 18.5 shows a sample code segment and indicates how the processor might schedule it.

Table 18.5 Cortex-A8 Example Dual Issue Instruction Sequence for Integer Pipeline

Cycle Program
Counter

Instruction Timing Description

1 0x00000ed0 BX r14 Dual issue pipeline 0

1 0x00000ee4 CMP r0,#0 Dual issue in pipeline 1

2 0x00000ee8 MOV r3,#3 Dual issue pipeline 0

2 0x00000eec MOV r0,#0 Dual issue in pipeline 1

3 0x00000ef0 STREQ r3,
[r1,#0]

Dual issue in pipeline 0, r3 not needed until E3

3 0x00000ef4 CMP r2,#4 Dual issue in pipeline 1

4 0x00000ef8 LDRLS pc,
[pc,r2,LSL
#2]

Single issue pipeline 0, cycle for load to pc, no extra
cycle for shift since LSL #2

5 0x00000f2c MOV r0,#1 Dual issue with 2nd iteration of load in pipeline 1

6 0x00000f30 B {pc} #0xf38 dual issue pipeline 0

6 0x00000f38 STR r0,
[r1,#0]

Dual issue pipeline 1

7 0x00000f3c: LDR pc,
[r13],#4

Single issue pipeline 0, cycle for load to pc

8 0x0000017c ADD
r2,r4,#0xc

Dual issue with 2nd iteration of load in pipeline 1

9 0x00000180 LDR r0,
[r6,#4]

Dual issue pipeline 0

9 0x00000184 MOV
r1,#0xa

Dual issue pipeline 1

12 0x00000188 LDR r0,
[r0,#0]

Single issue pipeline 0: r0 produced in E3, required in E1, so
 cycle stall

13 0x0000018c STR r0,
[r4,#0]

Single issue pipeline 0 due to LS resource hazard, no extra
delay for r0 since produced in E3 and consumed in E3

14 0x00000190 LDR r0,
[r4,#0xc]

Single issue pipeline 0 due to LS resource hazard

15 0x00000194 LDMFD
r13!,{r4-
r6,r14}

Load multiple: loads r4 in 1st cycle, r5 and r6 in 2nd cycle,
r14 in 3rd cycle, 3 cycles total

17 0x00000198 B {pc}
0xda8

#0xf40 dual issue in pipeline 1 with 3rd cycle of LDM

18 0x00000f40 ADD
r0,r0,#2
ARM

Single issue in pipeline 0

+1

+8

+1

+2

+

19 0x00000f44 ADD
r0,r1,r0
ARM

Single issue in pipeline 0, no dual issue due to hazard on r0
produced in E2 and required in E2

SIMD and Floating-Point Pipeline

All SIMD and floating-point instructions pass through the integer pipeline and are processed in a
separate 10-stage pipeline (Figure 18.12). This unit, referred to as the NEON unit, handles packed
SIMD instructions, and provides two types of floating-point support. If implemented, a vector floating-
point (VFP) coprocessor performs floating-point operations in compliance with IEEE 754. If the
coprocessor is not present, then separate multiply and add pipelines implement the floating-point
operations.

Figure 18.12 ARM Cortex-A8 NEON and Floating-Point Pipeline

18.5 ARM Cortex-M3
The preceding section looked at the rather complex pipeline organization of the Cortex-A8, an
application processor. As a useful contrast, this section examines the considerably simpler pipeline
organization of the Cortex-M3. The Cortex-M series is designed for the microcontroller domain. As
such, the Cortex-M processors need to be as simple and efficient as possible.

Figure 18.13 provides a block diagram overview of the Cortex-M3 processor. This figure provides
more detail than that shown in Figure 1.16. Key elements include:

Figure 18.13 ARM Cortex-M3 Block Diagram

Processor core: Includes a three-stage pipeline, a register bank, and a memory interface.
Memory protection unit: Protects critical data used by the operating system from user
applications, separating processing tasks by disallowing access to each other’s data, disabling
access to memory regions, allowing memory regions to be defined as read-only, and detecting
unexpected memory accesses that could potentially break the system.
Nested vectored interrupt controller (NVIC): Provides configurable interrupt handling abilities to
the processor. It facilitates low-latency exception and interrupt handling, and controls power
management.

Wake-up interrupt controller (NVIC): Provides configurable interrupt handling abilities to the
processor. It facilitates low-latency exception and interrupt handling, and controls power
management.
Flash patch and breakpoint unit: Implements breakpoints and code patches.
 Data watchpoint and trace (DWT): Implements watchpoints, data tracing, and system profiling.
Serial wire viewer: Can export a stream of software-generated messages, data trace, and
profiling information through a single pin.
Debug access port: Provides an interface for external debug access to the processor.
Embedded trace macrocell: Is an application-driven trace source that supports printf() style
debugging to trace operating system and application events, and generates diagnostic system
information.
Bus matrix: Connects the core and debug interfaces to external buses on the microcontroller.

Pipeline Structure

The Cortex-M3 pipeline has three stages (Figure 18.14). We examine these in turn.

Figure 18.14 ARM Cortex-M3 Pipeline

During the fetch stage, one 32-bit word is fetched at a time and loaded into a 3-word buffer. The 32-bit
word may consist of:

two Thumb instructions,
one word-aligned Thumb-2 instruction, or
the upper/lower halfword of a halfword-aligned Thumb-2 instruction with
— one Thumb instruction, or

— the lower/upper halfword of another halfword-aligned Thumb-2 instruction.

All fetch addresses from the core are word aligned. If a Thumb-2 instruction is halfword aligned, two
fetches are necessary to fetch the Thumb-2 instruction. However, the three-entry prefetch buffer
ensures that a stall cycle is only necessary for the first halfword Thumb-2 instruction fetched.

This decode stage performs three key functions:

Instruction decode and register read: Decodes Thumb and Thumb-2 instructions.
Address generation: The address generation unit (AGU) generates main memory addresses for
the load/store unit.
Branch: Performs branch based on immediate offset in branch instruction or a return based on the
contents of the link register (register R14).

Finally, there is a single execute stage for instruction execution, which includes ALU, load/store, and
branch instructions.

Dealing with Branches

To keep the processor as simple as possible, the Cortex-M3 processor does not use branch
prediction, but instead use the simple techniques of branch forwarding and branch speculation,
defined as follows:

Branch forwarding: The term forwarding refers to presenting an instruction address to be fetched
from memory. The processor forwards certain branch types, by which the memory transaction of
the branch is presented at least one cycle earlier than when the opcode reaches execute. Branch
forwarding increases the performance of the core, because branches are a significant part of
embedded controller applications. Branches affected are PC relative with immediate offset, or use
link register (LR) as the target register.
Branch speculation: For conditional branches, the instruction address is presented speculatively,
so that the instruction is fetched from memory before it is known if the instruction will be executed.

The Cortex-M3 processor prefetches instruction ahead of execution using the fetch buffer. It also
speculatively prefetches from branch target addresses. Specifically, when a conditional branch
instruction is encountered, the decode stage also includes a speculative instruction fetch that could
lead to faster execution. The processor fetches the branch destination instruction during the decode
stage itself. Later, during the execute stage, the branch is resolved and it is known which instruction is
to be executed next.

If the branch is not to be taken, the next sequential instruction is already available. If the branch is to
be taken, the branch instruction is made available at the same time as the decision is made, restricting
idle time to just one cycle.

Figure 18.14 clarifies the manner in which branches are handled, which can be described as follows:

1. The decode stage forwards addresses from unconditional branches and speculatively forwards
addresses from conditional branches when it is possible to calculate the address.

2. If the ALU determines that a branch is not taken, this information is fed back to empty the
instruction cache.

3. A load instruction to the program counter results in a branch address to be forwarded for
fetching.

As can be seen, the manner in which branches are handled is considerably simpler for the Cortex-M
than the Cortex-A, requiring less processor logic and processing.

18.6 Key Terms, Review Questions, and Problems

Key Terms

antidependency

branch prediction

commit

flow dependency

in-order completion

in-order issue

instruction issue

instruction-level parallelism

instruction window

machine parallelism

micro-operations

micro-ops

out-of-order completion

out-of-order issue

output dependency

procedural dependency

read-write dependency

register renaming

resource conflict

retire

superpipelined

superscalar

true data dependency

write-read dependency

write-write dependency

Review Questions

18.1 What is the essential characteristic of the superscalar approach to processor design?
18.2 What is the difference between the superscalar and superpipelined approaches?
18.3 What is instruction-level parallelism?

Problems

18.4 Briefly define the following terms:
True data dependency
Procedural dependency
Resource conflicts
Output dependency
Antidependency

18.5 What is the distinction between instruction-level parallelism and machine parallelism?
18.6 List and briefly define three types of superscalar instruction issue policies.
18.7 What is the purpose of an instruction window?
18.8 What is register renaming and what is its purpose?
18.9 What are the key elements of a superscalar processor organization?

18.1 When out-of-order completion is used in a superscalar processor, resumption of execution
after interrupt processing is complicated, because the exceptional condition may have been
detected as an instruction that produced its result out of order. The program cannot be restarted
at the instruction following the exceptional instruction, because subsequent instructions have
already completed, and doing so would cause these instructions to be executed twice. Suggest
a mechanism or mechanisms for dealing with this situation.
18.2 Consider the following sequence of instructions, where the syntax consists of an opcode
followed by the destination register followed by one or two source registers:

	 0	 ADD	 R3, R1, R2
	 1	 LOAD	 R6, [R3]
	 2	 AND	 R7, R5, 3
	 3	 ADD	 R1, R6, R7
	 4	 SRL	 R7, R0, 8
	 5	 OR	 R2, R4, R7
	 6	 SUB	 R5, R3, R4
	 7	 ADD	 R0, R1, 10
	 8	 LOAD	 R6, [R5]
	 9	 SUB	 R2, R1, R6
	 10	 AND	 R3, R7, 15

Assume the use of a four-stage pipeline: fetch, decode/issue, execute, write back. Assume that
all pipeline stages take one clock cycle except for the execute stage. For simple integer
arithmetic and logical instructions, the execute stage takes one cycle, but for a LOAD from
memory, five cycles are consumed in the execute stage.
If we have a simple scalar pipeline but allow out-of-order execution, we can construct the
following table for the execution of the first seven instructions:

Instruction Fetch Decode Execute Write Back

0 0 1 2 3

1 1 2 4 9

2 2 3 5 6

3 3 4 10 11

4 4 5 6 7

5 5 6 8 10

6 6 7 9 12

The entries under the four pipeline stages indicate the clock cycle at which each instruction
begins each phase. In this program, the second ADD instruction (instruction 3) depends on the
LOAD instruction (instruction 1) for one of its operands, r6. Because the LOAD instruction takes
five clock cycles, and the issue logic encounters the dependent ADD instruction after two
clocks, the issue logic must delay the ADD instruction for three clock cycles. With an out-of-
order capability, the processor can stall instruction 3 at clock cycle 4, and then move on to issue
the following three independent instructions, which enter execution at clocks 6, 8, and 9. The
LOAD finishes execution at clock 9, and so the dependent ADD can be launched into execution
on clock 10.

a. Complete the preceding table.
b. Redo the table assuming no out-of-order capability. What is the savings using the

capability?
c. Redo the table assuming a superscalar implementation that can handle two instructions

at a time at each stage.

18.3 Consider the following assembly language program:

 I1: Move R3, R7 /R3 ← (R7)/
 I2: Load R8, (R3) /R8 ← Memory (R3)/
 I3: Add R3, R3, 4 /R3 ← (R3) + 4/
 I4: Load R9, (R3) /R9 ← Memory (R3)/
 I5: BLE R8, R9, L3 /Branch if (R9) > (R8)/

This program includes WAW, RAW, and WAR dependencies. Show these.
18.4

a. Identify the RAW, WAR, and WAW dependencies in the following instruction sequence:

I1: R1 = 100
I2: R1 = R2 + R4
I3: R2 = r4 - 25
I4: R4 = R1 + R3
I5: R1 = R1 + 30

b. Rename the registers from part (a) to prevent dependency problems. Identify references
to initial register values using the subscript “a” to the register reference.

18.5 Consider the “in-order-issue/in-order-completion” execution sequence shown in Figure
18.15 .

Figure 18.15 An In-Order Issue, In-Order-Completion Execution Sequence

a. Identify the most likely reason why I2 could not enter the execute stage until the fourth
cycle. Will “in-order issue/out-of-order completion” or “out-of-order issue/out-of-order
completion” fix this? If so, which?

b. Identify the reason why I6 could not enter the write stage until the nineth cycle. Will “in-
order issue/out-of-order completion” or “out-of-order issue/out-of-order completion” fix
this? If so, which?

18.6 Figure 18.16 shows an example of a superscalar processor organization. The processor
can issue two instructions per cycle if there is no resource conflict and no data dependence
problem. There are essentially two pipelines, with four processing stages (fetch, decode,
execute, and store). Each pipeline has its own fetch decode and store unit. Four functional units
(multiplier, adder, logic unit, and load unit) are available for use in the execute stage and are
shared by the two pipelines on a dynamic basis. The two store units can be dynamically used
by the two pipelines, depending on availability at a particular cycle. There is a lookahead
window with its own fetch and decoding logic. This window is used for instruction lookahead for
out-of-order instruction issue.

Figure 18.16 A Dual-Pipeline Superscalar Processor

Consider the following program to be executed on this processor:

I1: Load R1, A /R1 ← Memory (A)/
I2: Add R2, R1 /R2 ← (R2) + R(1)/
I3: Add R3, R4 /R3 ← (R3) + R(4)/
I4: Mul R4, R5 /R4 ← (R4) + R(5)/
I5: Comp R6 /R6 ← (R6)/
I6: Mul R6, R7 /R6 ← (R6) × R(7)/

a. What dependencies exist in the program?
b. Show the pipeline activity for this program on the processor of Figure 18.16 using in-

order issue with in-order completion policies and using a presentation similar to Figure
18.3 .

c. Repeat for in-order issue with out-of-order completion.
d. Repeat for out-of-order issue with out-of-order completion.

18.7 Figure 18.17 is from a paper on superscalar design. Explain the three parts of the figure,
and define w, x, y, and z.

Figure 18.17 Figure for Problem 18.7

18.8 Yeh’s dynamic branch prediction algorithm, used on the Pentium 4, is a two-level branch
prediction algorithm. The first level is the history of the last n branches. The second level is the
branch behavior of the last s occurrences of that unique pattern of the last n branches. For each
conditional branch instruction in a program, there is an entry in a Branch History Table (BHT).
Each entry consists of n bits corresponding to the last n executions of the branch instruction,
with a 1 if the branch was taken and a 0 if the branch was not. Each BHT entry indexes into a
Pattern Table (PT) that has 2n entries, one for each possible pattern of n bits. Each PT entry

consists of s bits that are used in branch prediction, as was described in Chapter 16 (e.g.,
Figure 16.19). When a conditional branch is encountered during instruction fetch and decode,
the address of the instruction is used to retrieve the appropriate BHT entry, which shows the
recent history of the instruction. Then, the BHT entry is used to retrieve the appropriate PT entry
for branch prediction. After the branch is executed, the BHT entry is updated, and then the
appropriate PT entry is updated.

a. In testing the performance of this scheme, Yeh tried five different prediction schemes,
illustrated in Figure 18.18 . Identify which three of these schemes correspond to those
shown in Figures 16.19 and 16.28. Describe the remaining two schemes.

Figure 18.18 Figure for Problem 18.8

b. With this algorithm, the prediction is not based on just the recent history of this particular
branch instruction. Rather, it is based on the recent history of all patterns of branches that
match the n-bit pattern in the BHT entry for this instruction. Suggest a rationale for such a
strategy.

Chapter 19 Control Unit Operation and Microprogrammed
Control

19.5 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Explain the concept of micro- ​operations and define the principal instruction cycle phases in terms
of micro-​operations.
Discuss how micro- ​operations are organized to control a processor.
Understand hardwired control unit organization.
Present an overview of the basic concepts of microprogrammed control.
Understand the difference between hardwired control and microprogrammed control.

In Chapter 13, weWe pointed out that a machine instruction set goes a long way
toward defining the processor. If we know the machine instruction set, including an

19.1 Micro-​Operations
The Fetch Cycle
The Indirect Cycle
The Interrupt Cycle
The Execute Cycle
The Instruction Cycle

19.2 Control of the Processor
Functional Requirements
Control Signals
A Control Signals Example
Internal Processor Organization
The Intel 8085

19.3 Hardwired Implementation
Control Unit Inputs
Control Unit Logic

19.4 Microprogrammed Control
Microinstructions
Microprogrammed Control Unit
Wilkes Control
Advantages and Disadvantages

understanding of the effect of each opcode and an understanding of the
addressing modes, and if we know the set of user- ​visible registers, then we know
the functions that the processor must perform. This is not the complete picture. We
must know the external interfaces, usually through a bus, and how interrupts are
handled. With this line of reasoning, the following list of those things needed to
specify the function of a processor emerges:

1. Operations (opcodes)
2. Addressing modes
3. Registers
4. I/O module interface
5. Memory module interface
6. Interrupts

This list, though general, is rather complete. Items 1 through 3 are defined by the
instruction set. Items 4 and 5 are typically defined by specifying the system bus.
Item 6 is defined partially by the system bus and partially by the type of support the
processor offers to the operating system.

This list of six items might be termed the functional requirements for a processor.
They determine what a processor must do. This is what occupied us in previous
chapters. Now, we turn to the question of how these functions are performed or,
more specifically, how the various elements of the processor are controlled to
provide these functions. Thus, we turn to a discussion of the control unit, which
controls the operation of the processor.

19.1 Micro-​Operations
We have seen that the operation of a computer, in executing a program, consists of a sequence of
instruction cycles with one machine instruction per cycle. Of course, we must remember that this
sequence of instruction cycles is not necessarily the same as the written sequence of instructions that
make up the program, because of the existence of branching instructions. What we are referring to
here is the execution time sequence of instructions.

We have further seen that each instruction cycle is made up of a number of smaller units. One
subdivision that we found convenient is fetch, indirect, execute, and interrupt, with only fetch and
execute cycles always occurring.

To design a control unit, however, we need to break down the description further. In our discussion of
pipelining in Chapter 16, we began to see that a further decomposition is possible. In fact, we will see
that each of the smaller cycles involves a series of steps, each of which involves the processor
registers. We will refer to these steps as micro-​operations . The prefix micro refers to the fact that
each step is very simple and accomplishes very little. Figure 19.1 depicts the relationship among the
various concepts we have been discussing. To summarize, the execution of a program consists of the
sequential execution of instructions. Each instruction is executed during an instruction cycle made up
of shorter subcycles (e.g., fetch, indirect, execute, interrupt). The execution of each subcycle involves
one or more shorter operations, that is, micro- ​operations.

Figure 19.1 Constituent Elements of a Program Execution

Micro-​operations are the functional, or atomic, operations of a processor. In this section, we will
examine micro- ​operations to gain an understanding of how the events of any instruction cycle can be
described as a sequence of such micro- ​operations. A simple example will be used. In the remainder of
this chapter, we then show how the concept of micro- ​operations serves as a guide to the design of the
control unit.

The Fetch Cycle

We begin by looking at the fetch cycle, which occurs at the beginning of each instruction cycle and

causes an instruction to be fetched from memory. For purposes of discussion, we assume the
organization depicted in Figure 16.5 (Data Flow, Fetch Cycle).
We begin by looking at the fetch cycle,
which occurs at the beginning of each instruction cycle and causes an instruction to be fetched from
memory (Data Flow, Fetch Cycle). Four registers are involved:

Memory address register (MAR): Is connected to the address lines of the system bus. It specifies
the address in memory for a read or write operation.
Memory buffer register (MBR): Is connected to the data lines of the system bus. It contains the
value to be stored in memory or the last value read from memory.
Program counter (PC): Holds the address of the next instruction to be fetched.
Instruction register (IR): Holds the last instruction fetched.

Let us look at the sequence of events for the fetch cycle from the point of view of its effect on the
processor registers. An example appears in Figure 19.2. At the beginning of the fetch cycle, the
address of the next instruction to be executed is in the program counter (PC); in this case, the address
is 1100100. The first step is to move that address to the memory address register (MAR) because this
is the only register connected to the address lines of the system bus. The second step is to bring in
the instruction. The desired address (in the MAR) is placed on the address bus, the control unit issues
a READ command on the control bus, and the result appears on the data bus and is copied into the
memory buffer register (MBR). We also need to increment the PC by the instruction length to get
ready for the next instruction. Because these two actions (read word from memory, increment PC) do
not interfere with each other, we can do them simultaneously to save time. The third step is to move
the contents of the MBR to the instruction register (IR). This frees up the MBR for use during a
possible indirect cycle.

Figure 19.2 Sequence of Events, Fetch Cycle

Thus, the simple fetch cycle actually consists of three steps and four micro- ​operations. Each
micro-​operation involves the movement of data into or out of a register. So long as these movements
do not interfere with one another, several of them can take place during one step, saving time.
Symbolically, we can write this sequence of events as follows:

t1: MAR ← (PC)
t2: MBR ← Memory

 PC ← (PC) + I
t3: IR ← (MBR)

where I is the instruction length. We need to make several comments about this sequence. We
assume that a clock is available for timing purposes and that it emits regularly spaced clock pulses.
Each clock pulse defines a time unit. Thus, all time units are of equal duration. Each micro- ​operation
can be performed within the time of a single time unit. The notation represents successive
time units. In words, we have

First time unit: Move contents of PC to MAR.
Second time unit: Move contents of memory location specified by MAR to MBR. Increment by I
the contents of the PC.
Third time unit: Move contents of MBR to IR.

Note that the second and third micro- ​operations both take place during the second time unit. The third
micro-​operation could have been grouped with the fourth without affecting the fetch operation:

t1: MAR ← (PC)
t2: MBR ← Memory
t3: PC ← (PC) + I
 IR ← (MBR)

The groupings of micro- ​operations must follow two simple rules:

1. The proper sequence of events must be followed. Thus must precede

 because the memory read operation makes use of the address in the MAR.

2. Conflicts must be avoided. One should not attempt to read to and write from the same register
in one time unit, because the results would be unpredictable. For example, the micro- ​operations

 and should not occur during the same time unit.

A final point worth noting is that one of the micro- ​operations involves an addition. To avoid duplication
of circuitry, this addition could be performed by the ALU. The use of the ALU may involve additional
micro-​operations, depending on the functionality of the ALU and the organization of the processor. We
defer a discussion of this point until later in this chapter.

It is useful to compare events described in this and the following subsections to Figure 3.5 (Example
of Program Execution). Whereas micro-​operations are ignored in that figure, this
This discussion
shows the micro- ​operations needed to perform the subcycles of the instruction cycle.

The Indirect Cycle

Once an instruction is fetched, the next step is to fetch source operands. Continuing our simple
example, let us assume a one- ​address instruction format, with direct and indirect addressing allowed.
If the instruction specifies an indirect address, then an indirect cycle must precede the execute cycle.
The data flow differs somewhat from that indicated in Figure 16.6 (Data Flow, Indirect Cycle) and
includes the following micro- ​operations:

t1: MAR ← (IR(Address))

(t1 , t2 , t3)

(MAR ← (PC))

(MBR ← Memory)

(MBR ← Memory) (IR ← MBR)

t2: MBR ← Memory
t3: IR(Address) ← (MBR(Address))

The address field of the instruction is transferred to the MAR. This is then used to fetch the address of
the operand. Finally, the address field of the IR is updated from the MBR, so that it now contains a
direct rather than an indirect address.

The IR is now in the same state as if indirect addressing had not been used, and it is ready for the
execute cycle. We skip that cycle for a moment, to consider the interrupt cycle.

The Interrupt Cycle

At the completion of the execute cycle, a test is made to determine whether any enabled interrupts
have occurred. If so, the interrupt cycle occurs. The nature of this cycle varies greatly from one
machine to another. We present a very simple sequence of events, as illustrated in Figure 16.7 (Data
Flow, Interrupt Cycle). We have

t1: MBR ← (PC)
t2: MAR ← Save_Address
 PC ← Routine_Address
t3: Memory ← (MBR)

In the first step, the contents of the PC are transferred to the MBR, so that they can be saved for
return from the interrupt. Then the MAR is loaded with the address at which the contents of the PC are
to be saved, and the PC is loaded with the address of the start of the interrupt- ​processing routine.
These two actions may each be a single micro- ​operation. However, because most processors provide
multiple types and/or levels of interrupts, it may take one or more additional micro- ​operations to obtain
the Save_Address and the Routine_Address before they can be transferred to the MAR and PC,
respectively. In any case, once this is done, the final step is to store the MBR, which contains the old
value of the PC, into memory. The processor is now ready to begin the next instruction cycle.

The Execute Cycle

The fetch, indirect, and interrupt cycles are simple and predictable. Each involves a small, fixed
sequence of micro- ​operations and, in each case, the same micro- ​operations are repeated each time
around.

This is not true of the execute cycle. Because of the variety of opcodes, there are a number of
different sequences of micro- ​operations that can occur. The control unit examines the opcode and
generates a sequence of micro- ​operations based on the value of the opcode. This is referred to as
instruction decoding.

Let us consider several hypothetical examples.

First, consider an add instruction:

ADD R1, X

which adds the contents of the location X to register R1. The following sequence of micro- ​operations
might occur:

t1: MAR ← (IR(address))
t2: MBR ← Memory
t3: R1 ← (R1) + (MBR)

We begin with the IR containing the ADD instruction. In the first step, the address portion of the IR is
loaded into the MAR. Then the referenced memory location is read. Finally, the contents of R1 and
MBR are added by the ALU. Again, this is a simplified example. Additional micro- ​operations may be
required to extract the register reference from the IR and perhaps to stage the ALU inputs or outputs
in some intermediate registers.

Let us look at two more complex examples. A common instruction is increment and skip if zero:

ISZ X

The content of location X is incremented by 1. If the result is 0, the next instruction is skipped. A
possible sequence of micro- ​operations is

t1: MAR ← (IR(address))
t2: MBR ← Memory
t3: MBR ← (MBR) + 1
t4: Memory ← (MBR)
 If ((MBR) = 0) then (PC ← (PC) + I)

The new feature introduced here is the conditional action. The PC is incremented if . This

test and action can be implemented as one micro- ​operation. Note also that this micro- ​operation can
be performed during the same time unit during which the updated value in MBR is stored back to
memory.

Finally, consider a subroutine call instruction. As an example, consider a branch- ​and-​save-​address
instruction:

BSA X

The address of the instruction that follows the BSA instruction is saved in location X, and execution
continues at location . The saved address will later be used for return. This is a straightforward
technique for supporting subroutine calls. The following micro- ​operations suffice:

t1: MAR ← (IR(address))
 MBR ← (PC)
t2: PC ← (IR(address))
 Memory ← (MBR)

(MBR) = 0

X + I

t3: PC ← (PC) + I

The address in the PC at the start of the instruction is the address of the next instruction in sequence.
This is saved at the address designated in the IR. The latter address is also incremented to provide
the address of the instruction for the next instruction cycle.

The Instruction Cycle

We have seen that each phase of the instruction cycle can be decomposed into a sequence of
elementary micro- ​operations. In our example, there is one sequence each for the fetch, indirect, and
interrupt cycles, and, for the execute cycle, there is one sequence of micro- ​operations for each
opcode.

To complete the picture, we need to tie sequences of micro- ​operations together, and this is done in
Figure 19.3. We assume a new 2-bit register called the instruction cycle code (ICC). The ICC
designates the state of the processor in terms of which portion of the cycle it is in:

Figure 19.3 Flowchart for Instruction Cycle

00: Fetch

01: Indirect

10: Execute

11: Interrupt

At the end of each of the four cycles, the ICC is set appropriately. The indirect cycle is always followed
by the execute cycle. The interrupt cycle is always followed by the fetch cycle (see Figure 16.3, The
Instruction Cycle). For both the fetch and execute cycles, the next cycle depends on the state of the
system.

Thus, the flowchart of Figure 19.3 defines the complete sequence of micro- ​operations, depending
only on the instruction sequence and the interrupt pattern. Of course, this is a simplified example. The
flowchart for an actual processor would be more complex. In any case, we have reached the point in
our discussion in which the operation of the processor is defined as the performance of a sequence of
micro-​operations. We can now consider how the control unit causes this sequence to occur.

19.2 Control of the Processor

Functional Requirements

As a result of our analysis in the preceding section, we have decomposed the behavior or functioning
of the processor into elementary operations, called micro- ​operations. By reducing the operation of the
processor to its most fundamental level, we are able to define exactly what it is that the control unit
must cause to happen. Thus, we can define the functional requirements for the control unit: those
functions that the control unit must perform. A definition of these functional requirements is the basis
for the design and implementation of the control unit.

With the information at hand, the following three- ​step process leads to a characterization of the control
unit:

1. Define the basic elements of the processor.
2. Describe the micro- ​operations that the processor performs.
3. Determine the functions that the control unit must perform to cause the micro- ​operations to be

performed.

We have already performed steps 1 and 2. Let us summarize the results. First, the basic functional
elements of the processor are the following:

ALU
Registers
Internal data paths
External data paths
Control unit

Some thought should convince you that this is a complete list. The ALU is the functional essence of
the computer. Registers are used to store data internal to the processor. Some registers contain
status information needed to manage instruction sequencing (e.g., a program status word). Others
contain data that go to or come from the ALU, memory, and I/O modules. Internal data paths are used
to move data between registers and between register and ALU. External data paths link registers to
memory and I/O modules, often by means of a system bus. The control unit causes operations to
happen within the processor.

The execution of a program consists of operations involving these processor elements. As we have
seen, these operations consist of a sequence of micro- ​operations. Upon review of Section 19.1, the
reader should see that all micro- ​operations fall into one of the following categories:

Transfer data from one register to another.
Transfer data from a register to an external interface (e.g., system bus).
Transfer data from an external interface to a register.
Perform an arithmetic or logic operation, using registers for input and output.

All of the micro-​operations needed to perform one instruction cycle, including all of the
micro-​operations to execute every instruction in the instruction set, fall into one of these categories.

We can now be somewhat more explicit about the way in which the control unit functions. The control
unit performs two basic tasks:

Sequencing: The control unit causes the processor to step through a series of micro- ​operations in
the proper sequence, based on the program being executed.

Execution: The control unit causes each micro- ​operation to be performed.
The preceding is a functional description of what the control unit does. The key to how the control unit
operates is the use of control signals.

Control Signals

We have defined the elements that make up the processor (ALU, registers, data paths) and the
micro-​operations that are performed. For the control unit to perform its function, it must have inputs
that allow it to determine the state of the system and outputs that allow it to control the behavior of the
system. These are the external specifications of the control unit. Internally, the control unit must have
the logic required to perform its sequencing and execution functions. We defer a discussion of the
internal operation of the control unit to Section 19.3 and 19.4. The remainder of this section is
concerned with the interaction between the control unit and the other elements of the processor.

Figure 19.4 is a general model of the control unit, showing all of its inputs and outputs. The inputs are:

Figure 19.4 Block Diagram of the Control Unit

Clock: This is how the control unit “keeps time.” The control unit causes one micro- ​operation (or a
set of simultaneous micro- ​operations) to be performed for each clock pulse. This is sometimes
referred to as the processor cycle time, or the clock cycle time.
Instruction register: The opcode and addressing mode of the current instruction are used to
determine which micro- ​operations to perform during the execute cycle.
Flags: These are needed by the control unit to determine the status of the processor and the
outcome of previous ALU operations. For example, for the increment- ​and-​skip-​if-​zero (ISZ)
instruction, the control unit will increment the PC if the zero flag is set.
Control signals from control bus: The control bus portion of the system bus provides signals to
the control unit.

The outputs are as follows:

Control signals within the processor: These are two types: those that cause data to be moved
from one register to another, and those that activate specific ALU functions.
Control signals to control bus: These are also of two types: control signals to memory, and
control signals to the I/O modules.

Three types of control signals are used: those that activate an ALU function; those that activate a data
path; and those that are signals on the external system bus or other external interface. All of these
signals are ultimately applied directly as binary inputs to individual logic gates.

Let us consider again the fetch cycle to see how the control unit maintains control. The control unit
keeps track of where it is in the instruction cycle. At a given point, it knows that the fetch cycle is to be
performed next. The first step is to transfer the contents of the PC to the MAR. The control unit does
this by activating the control signal that opens the gates between the bits of the PC and the bits of the
MAR. The next step is to read a word from memory into the MBR and increment the PC. The control
unit does this by sending the following control signals simultaneously:

A control signal that opens gates, allowing the contents of the MAR onto the address bus;
A memory read control signal on the control bus;
A control signal that opens the gates, allowing the contents of the data bus to be stored in the
MBR;
Control signals to logic that add 1 to the contents of the PC and store the result back to the PC.

Following this, the control unit sends a control signal that opens gates between the MBR and the IR.

This completes the fetch cycle except for one thing: The control unit must decide whether to perform
an indirect cycle or an execute cycle next. To decide this, it examines the IR to see if an indirect
memory reference is made.

The indirect and interrupt cycles work similarly. For the execute cycle, the control unit begins by
examining the opcode and, on the basis of that, decides which sequence of micro- ​operations to
perform for the execute cycle.

A Control Signals Example

To illustrate the functioning of the control unit, let us examine a simple example. Figure 19.5
illustrates the example. This is a simple processor with a single accumulator (AC). The data paths
between elements are indicated. The control paths for signals emanating from the control unit are not
shown, but the terminations of control signals are labeled and indicated by a circle. The control unit
receives inputs from the clock, the IR, and flags. With each clock cycle, the control unit reads all of its
inputs and emits a set of control signals. Control signals go to three separate destinations:

Ci

Figure 19.5 Data Paths and Control Signals

Data paths: The control unit controls the internal flow of data. For example, on instruction fetch,
the contents of the memory buffer register are transferred to the IR. For each path to be controlled,
there is a switch (indicated by a circle in the figure). A control signal from the control unit
temporarily opens the gate to let data pass.
ALU: The control unit controls the operation of the ALU by a set of control signals. These signals
activate various logic circuits and gates within the ALU.
System bus: The control unit sends control signals out onto the control lines of the system bus
(e.g., memory READ).

The control unit must maintain knowledge of where it is in the instruction cycle. Using this knowledge,
and by reading all of its inputs, the control unit emits a sequence of control signals that causes
micro-​operations to occur. It uses the clock pulses to time the sequence of events, allowing time
between events for signal levels to stabilize. Table 19.1 indicates the control signals that are needed
for some of the micro-​operation sequences described earlier. For simplicity, the data and control paths
for incrementing the PC and for loading the fixed addresses into the PC and MAR are not shown.

Table 19.1 Micro-​operations and Control Signals

Micro-​operations Active Control Signals

Fetch:

CR = Read control signal to system bus .

CW = Write control signal to system bus.

t1 : MAR ← (PC) C2

t2: MBR ← Memory
PC ← (PC) + 1

C5 , CR

Indirect:

Interrupt:

It is worth pondering the minimal nature of the control unit. The control unit is the engine that runs the
entire computer. It does this based only on knowing the instructions to be executed and the nature of
the results of arithmetic and logical operations (e.g., positive, overflow, etc.). It never gets to see the
data being processed or the actual results produced. And it controls everything with a few control
signals to points within the processor and a few control signals to the system bus.

Internal Processor Organization

Figure 19.5 indicates the use of a variety of data paths. The complexity of this type of organization
should be clear. More typically, some sort of internal bus arrangement, as was suggested in Figure
16.1 (Internal Structure of the CPU),
, some sort of internal bus arrangement, as was suggested in
Internal Structure of the CPU will be used.

Using an internal processor bus, Figure 19.5 can be rearranged as shown in Figure 19.6. A single
internal bus connects the ALU and all processor registers. Gates and control signals are provided for
movement of data onto and off the bus from each register. Additional control signals control data
transfer to and from the system (external) bus and the operation of the ALU.

t3 : IR ← (MBR) C4

t1 : MAR ← (IR (Address)) C8

t2 : MBR ← Memory C5 , CR

t3 : IR (Address) ← (MBR (Address)) C4

t1 : MBR ← (PC) C1

t2: MAR ← Save-address
PC ← Routine-address

t3 : Memory ← (MBR) C12 , CW

Figure 19.6 CPU with Internal Bus

Two new registers, labeled Y and Z, have been added to the organization. These are needed for the
proper operation of the ALU. When an operation involving two operands is performed, one can be
obtained from the internal bus, but the other must be obtained from another source. The AC could be
used for this purpose, but this limits the flexibility of the system and would not work with a processor
with multiple general- ​purpose registers. Register Y provides temporary storage for the other input. The
ALU is a combinatorial circuit (see Chapter 12) with no internal storage. Thus, when control signals
activate an ALU function, the input to the ALU is transformed to the output. Therefore, the output of
the ALU cannot be directly connected to the bus, because this output would feed back to the input.
Register Z provides temporary output storage. With this arrangement, an operation to add a value
from memory to the AC would have the following steps:

t1: MAR ← (IR(address))
t2: MBR ← Memory
t3: Y ← (MBR)

t4: Z ← (AC) + (Y)
t5: AC ← (Z)

Other organizations are possible, but, in general, some sort of internal bus or set of internal buses is
used. The use of common data paths simplifies the interconnection layout and the control of the
processor. Another practical reason for the use of an internal bus is to save space.

The Intel 8085

To illustrate some of the concepts introduced thus far in this chapter, let us consider the Intel 8085. Its
organization is shown in Figure 19.7. Several key components that may not be self- ​explanatory are:

Figure 19.7 Intel 8085 CPU Block Diagram

Incrementer/decrementer address latch: Logic that can add 1 to or subtract 1 from the contents
of the stack pointer or program counter. This saves time by avoiding the use of the ALU for this
purpose.
Interrupt control: This module handles multiple levels of interrupt signals.
Serial I/O control: This module interfaces to devices that communicate 1 bit at a time.

Table 19.2 describes the external signals into and out of the 8085. These are linked to the external

system bus. These signals are the interface between the 8085 processor and the rest of the system
(Figure 19.8).

Table 19.2 Intel 8085 External Signals

Address and Data Signals

High Address (A15–A8)

The high- ​order 8 bits of a 16-bit address.

Address/Data (AD7–AD0)

The lower- ​order 8 bits of a 16-bit address or 8 bits of data. This multiplexing saves on pins.

Serial Input Data (SID)

A single- ​bit input to accommodate devices that transmit serially (one bit at a time).

Serial Output Data (SOD)

A single- ​bit output to accommodate devices that receive serially.

Timing and Control Signals

CLK (OUT)

The system clock. The CLK signal goes to peripheral chips and synchronizes their timing.

X1, X2

These signals come from an external crystal or other device to drive the internal clock generator.

Address Latch Enabled (ALE)

Occurs during the first clock state of a machine cycle and causes peripheral chips to store the
address lines. This allows the address module (e.g., memory, I/O) to recognize that it is being
addressed.

Status (S0, S1)

Control signals used to indicate whether a read or write operation is taking place.

IO/M

Used to enable either I/O or memory modules for read and write operations.

Read Control (RD)

Indicates that the selected memory or I/O module is to be read and that the data bus is available for
data transfer.

Write Control (WR)

Indicates that data on the data bus is to be written into the selected memory or I/O location.

Memory and I/O Initiated Symbols

Hold

Requests the CPU to relinquish control and use of the external system bus. The CPU will complete
execution of the instruction presently in the IR and then enter a hold state, during which no signals
are inserted by the CPU to the control, address, or data buses. During the hold state, the bus may
be used for DMA operations.

Hold Acknowledge (HOLDA)

This control unit output signal acknowledges the HOLD signal and indicates that the bus is now
available.

READY

Used to synchronize the CPU with slower memory or I/O devices. When an addressed device
asserts READY, the CPU may proceed with an input (DBIN) or output (WR) operation. Otherwise,
the CPU enters a wait state until the device is ready.

Interrupt-​Related Signals

TRAP

Restart Interrupts (RST 7.5, 6.5, 5.5)

Interrupt Request (INTR)

These five lines are used by an external device to interrupt the CPU. The CPU will not honor the
request if it is in the hold state or if the interrupt is disabled. An interrupt is honored only at the
completion of an instruction. The interrupts are in descending order of priority.

Interrupt Acknowledge

Acknowledges an interrupt.

CPU Initialization

RESET IN

Causes the contents of the PC to be set to zero. The CPU resumes execution at location zero.

RESET OUT

Acknowledges that the CPU has been reset. The signal can be used to reset the rest of the system.

Voltage and Ground

VCC

-volt power supply

VSS

Electrical ground

Figure 19.8 Intel 8085 Pin Configuration

+5

The control unit is identified as having two components labeled (1) instruction decoder and machine
cycle encoding and (2) timing and control. A discussion of the first component is deferred until the next
section. The essence of the control unit is the timing and control module. This module includes a clock
and accepts as inputs the current instruction and some external control signals. Its output consists of
control signals to the other components of the processor plus control signals to the external system
bus.

The timing of processor operations is synchronized by the clock and controlled by the control unit with
control signals. Each instruction cycle is divided into from one to five machine cycles; each machine
cycle is in turn divided into from three to five states. Each state lasts one clock cycle. During a state,
the processor performs one or a set of simultaneous micro- ​operations as determined by the control
signals.

The number of machine cycles is fixed for a given instruction but varies from one instruction to
another. Machine cycles are defined to be equivalent to bus accesses. Thus, the number of machine
cycles for an instruction depends on the number of times the processor must communicate with
external devices. For example, if an instruction consists of two 8-bit portions, then two machine cycles
are required to fetch the instruction. If that instruction involves a 1-byte memory or I/O operation, then
a third machine cycle is required for execution.

 Figure 19.9 gives an example of 8085 timing, showing the value of external control signals. Of
course, at the same time, the control unit generates internal control signals that control internal data
transfers. The diagram shows the instruction cycle for an OUT instruction. Three machine cycles

 are needed. During the first, the OUT instruction is fetched. The second machine cycle

fetches the second half of the instruction, which contains the number of the I/O device selected for
output. During the third cycle, the contents of the AC are written out to the selected device over the
data bus.

(M
1

, M
2

, M
3
)

Figure 19.9 Timing Diagram for Intel 8085 OUT Instruction

The Address Latch Enabled (ALE) pulse signals the start of each machine cycle from the control unit.
The ALE pulse alerts external circuits. During timing state of machine cycle , the control unit

sets the IO/M signal to indicate that this is a memory operation. Also, the control unit causes the
contents of the PC to be placed on the address bus (through) and the address/data bus (
through). With the falling edge of the Ale pulse, the other modules on the bus store the address.

During timing state , the addressed memory module places the contents of the addressed memory
location on the address/data bus. The control unit sets the Read Control (RD) signal to indicate a
read, but it waits until to copy the data from the bus. This gives the memory module time to put the
data on the bus and for the signal levels to stabilize. The final state, , is a bus idle state during
which the processor decodes the instruction. The remaining machine cycles proceed in a similar
fashion.

T1 M
1

A15 A8 AD7

AD0

T2

T3

T4

19.3 Hardwired Implementation
We have discussed the control unit in terms of its inputs, output, and functions. We now turn to the
topic of control unit implementation. A wide variety of techniques have been used. Most of these fall
into one of two categories:

Hardwired implementation
Microprogrammed implementation

In a hardwired implementation, the control unit is essentially a state machine circuit. Its input logic
signals are transformed into a set of output logic signals, which are the control signals. This approach
is examined in this section. Microprogrammed implementation is the subject of Section 19.4.

Control Unit Inputs

Figure 19.4 depicts the control unit as we have so far discussed it. The key inputs are the IR, the
clock, flags, and control bus signals. In the case of the flags and control bus signals, each individual
bit typically has some meaning (e.g., overflow). The other two inputs, however, are not directly useful
to the control unit.

First consider the IR. The control unit makes use of the opcode and will perform different actions
(issue a different combination of control signals) for different instructions. To simplify the control unit
logic, there should be a unique logic input for each opcode. This function can be performed by a
decoder, which takes an encoded input and produces a single output. In general, a decoder will have
n binary inputs and binary outputs. Each of the different input patterns will activate a single
unique output. Table 19.3 is an example for . The decoder for a control unit will typically have to
be more complex than that, to account for variable- ​length opcodes. An example of the digital logic
used to implement a decoder is presented in Chapter 12.

Table 19.3 A Decoder with 4 Inputs and 16 Outputs

I1 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

I2 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

I3 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

I4 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

O1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1

O2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

O3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0

O4 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0

O5 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0

2n 2n

n = 4

O6 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0

O7 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0

O8 0 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0

O9 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

O10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0

O11 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

O12 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0

O13 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0

O14 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0

O15 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0

O16 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

The clock portion of the control unit issues a repetitive sequence of pulses. This is useful for
measuring the duration of micro- ​operations. Essentially, the period of the clock pulses must be long
enough to allow the propagation of signals along data paths and through processor circuitry. However,
as we have seen, the control unit emits different control signals at different time units within a single
instruction cycle. Thus, we would like a counter as input to the control unit, with a different control
signal being used for , and so forth. At the end of an instruction cycle, the control unit must feed
back to the counter to reinitialize it at .

With these two refinements, the control unit can be depicted as in Figure 19.10.

T1 , T2

T1

Figure 19.10 Control Unit with Decoded Inputs

Control Unit Logic

To define the hardwired implementation of a control unit, all that remains is to discuss the internal
logic of the control unit that produces output control signals as a function of its input signals.

Essentially, what must be done is, for each control signal, to derive a Boolean expression of that
signal as a function of the inputs. This is best explained by example. Let us consider again our simple
example illustrated in Figure 19.5. We saw in Table 19.1 the micro-​operation sequences and control
signals needed to control three of the four phases of the instruction cycle.

Let us consider a single control signal, . This signal causes data to be read from the external data
bus into the MBR. We can see that it is used twice in Table 19.1. Let us define two new control
signals, P and Q, that have the following interpretation:

Then the following Boolean expression defines

That is, the control signal will be asserted during the second time unit of both the fetch and indirect
cycles.

C5

PQ = 00 Fetch Cycle
PQ = 01 Indirect Cycle
PQ = 10 Execute Cycle
PQ = 11 Interrupt Cycle

C5 : v

C5 = P̄ • Q̄ • T2 + P̄ • Q • T2

C5

This expression is not complete. is also needed during the execute cycle. For our simple example,
let us assume that there are only three instructions that read from memory: LDA, ADD, and AND. Now
we can define as

This same process could be repeated for every control signal generated by the processor. The result
would be a set of Boolean equations that define the behavior of the control unit and hence of the
processor.

To tie everything together, the control unit must control the state of the instruction cycle. As was
mentioned, at the end of each subcycle (fetch, indirect, execute, interrupt), the control unit issues a
signal that causes the timing generator to reinitialize and issue . The control unit must also set the
appropriate values of P and Q to define the next subcycle to be performed.

The reader should be able to appreciate that in a modern complex processor, the number of Boolean
equations needed to define the control unit is very large. The task of implementing a combinatorial
circuit that satisfies all of these equations becomes extremely difficult. The result is that a far simpler
approach, known as microprogramming, is usually used. This is the subject of the next section.

C5

C5

C5 = P̄ • Q̄ • T2 + P̄ • Q • T2 + P • Q̄ • (LDA + ADD + AND) • T2

T1

19.4 Microprogrammed Control
The term microprogram was first coined by M. V. Wilkes in the early 1950s [WILK51]. Wilkes proposed
an approach to control unit design that was organized and systematic, and avoided the complexities of
a hardwired implementation. The idea intrigued many researchers but appeared unworkable because
it would require a fast, relatively inexpensive control memory.

The state of the microprogramming art was reviewed by Datamation in its February 1964 issue. No
microprogrammed system was in wide use at that time, and one of the papers [HILL64] summarized
the then-popular view that the future of microprogramming “is somewhat cloudy. None of the major
manufacturers has evidenced interest in the technique, although presumably all have examined it.”

This situation changed dramatically within a very few months. IBM’s System/360 was announced in
April, and all but the largest models were microprogrammed. Although the 360 series predated the
availability of semiconductor ROM, the advantages of microprogramming were compelling enough for
IBM to make this move. Microprogramming became a popular technique for implementing the control
unit of CISC processors. In recent years, microprogramming has become less used but remains a tool
available to computer designers. For example, as we have seen on the Pentium 4, machine
instructions are converted into a RISC-like format, most of which are executed without the use of
microprogramming. However, some of the instructions are executed using microprogramming.

Microinstructions

The control unit seems a reasonably simple device. Nevertheless, to implement a control unit as an
interconnection of basic logic elements is no easy task. The design must include logic for sequencing
through micro-operations, for executing micro-operations, for interpreting opcodes, and for making
decisions based on ALU flags. It is difficult to design and test such a piece of hardware. Furthermore,
the design is relatively inflexible. For example, it is difficult to change the design if one wishes to add a
new machine instruction.

An alternative, which has been used in many CISC processors, is to implement a microprogrammed
control unit.

Consider Table 19.4. In addition to the use of control signals, each micro- operation is described in
symbolic notation. This notation looks suspiciously like a programming language. In fact it is a
language, known as a microprogramming language . Each line describes a set of micro-
operations occurring at one time and is known as a microinstruction . A sequence of instructions
is known as a microprogram , or firmware. This latter term reflects the fact that a microprogram is
midway between hardware and software. It is easier to design in firmware than hardware, but it is
more difficult to write a firmware program than a software program.

Table 19.4 Machine Instruction Set for Wilkes Example

Notation:

Order Effect of Order

A n

Acc = accumulator
Acc1 = most significant half of accumulator
Acc2 = least significant half of accumulator
n = storage location n
C (X) = contents of X (X = register or storage location)

C (Acc) + C (n) to Acc1

S n

H n

V n

T n

U n

R n

L n

G n IF transfer control to n; if ignore (i.e., proceed serially)

I n Read next character on input mechanism into n

O n Send C(n) to output mechanism

How can we use the concept of microprogramming to implement a control unit? Consider that for each
micro-operation, all that the control unit is allowed to do is generate a set of control signals. Thus, for
any micro-operation, each control line emanating from the control unit is either on or off. This condition
can, of course, be represented by a binary digit for each control line. So we could construct a control
word in which each bit represents one control line. Then each micro-operation would be represented
by a different pattern of 1s and 0s in the control word.

Suppose we string together a sequence of control words to represent the sequence of micro-
operations performed by the control unit. Next, we must recognize that the sequence of micro-
operations is not fixed. Sometimes we have an indirect cycle; sometimes we do not. So let us put our
control words in a memory, with each word having a unique address. Now add an address field to
each control word, indicating the location of the next control word to be executed if a certain condition
is true (e.g., the indirect bit in a memory-reference instruction is 1). Also, add a few bits to specify the
condition.

The result is known as a horizontal microinstruction, an example of which is shown in Figure
19.12a. The format of the microinstruction or control word is as follows. There is one bit for each
internal processor control line and one bit for each system bus control line. There is a condition field
indicating the condition under which there should be a branch, and there is a field with the address of
the microinstruction to be executed next when a branch is taken. Such a microinstruction is interpreted
as follows:

C (Acc) − C (n) to Acc1

C (n) to Acc2

C (Acc2) × C (n) to Acc , where C (n) ≥ 0

C (Acc1) to n , 0to Acc

C (Acc1) to n

C (Acc) × 2
(n + 1)

to Acc

C (Acc) × 2
n + 1

to Acc

C (Acc) < 0, C (Acc) ≥ 0,

Figure 19.12 Typical Microinstruction Formats

1. To execute this microinstruction, turn on all the control lines indicated by a 1 bit; leave off all
control lines indicated by a 0 bit. The resulting control signals will cause one or more micro-
operations to be performed.

2. If the condition indicated by the condition bits is false, execute the next microinstruction in
sequence.

3. If the condition indicated by the condition bits is true, the next microinstruction to be executed is
indicated in the address field.

Figure 19.13 shows how these control words or microinstructions could be arranged in a control
memory. The microinstructions in each routine are to be executed sequentially. Each routine ends
with a branch or jump instruction indicating where to go next. There is a special execute cycle routine
whose only purpose is to signify that one of the machine instruction routines (AND, ADD, and so on) is
to be executed next, depending on the current opcode.

Figure 19.13 Organization of Control Memory

The control memory of Figure 19.13 is a concise description of the complete operation of the control
unit. It defines the sequence of micro-operations to be performed during each cycle (fetch, indirect,
execute, interrupt), and it specifies the sequencing of these cycles. If nothing else, this notation would
be a useful device for documenting the functioning of a control unit for a particular computer. But it is
more than that. It is also a way of implementing the control unit.

Microprogrammed Control Unit

The control memory of Figure 19.13 contains a program that describes the behavior of the control
unit. It follows that we could implement the control unit by simply executing that program.

Figure 19.14 shows the key elements of such an implementation. The set of microinstructions is
stored in the control memory. The control address register contains the address of the next
microinstruction to be read. When a microinstruction is read from the control memory, it is transferred

to a control buffer register. The left-hand portion of that register (see Figure 19.12a) connects to the
control lines emanating from the control unit. Thus, reading a microinstruction from the control
memory is the same as executing that microinstruction. The third element shown in the figure is a
sequencing unit that loads the control address register and issues a read command.

Figure 19.14 Control Unit Microarchitecture

Let us examine this structure in greater detail, as depicted in Figure 19.15. Comparing this with
Figure 19.14, we see that the control unit still has the same inputs (IR, ALU flags, clock) and outputs
(control signals). The control unit functions as follows:

Figure 19.15 Functioning of Microprogrammed Control Unit

1. To execute an instruction, the sequencing logic unit issues a READ command to the control
memory.

2. The word whose address is specified in the control address register is read into the control
buffer register.

3. The content of the control buffer register generates control signals and next-address information
for the sequencing logic unit.

4. The sequencing logic unit loads a new address into the control address register based on the
next-address information from the control buffer register and the ALU flags.

All this happens during one clock pulse.

The last step just listed needs elaboration. At the conclusion of each microinstruction, the sequencing
logic unit loads a new address into the control address register. Depending on the value of the ALU

flags and the control buffer register, one of three decisions is made:

Get the next instruction: Add 1 to the control address register.
Jump to a new routine based on a jump microinstruction: Load the address field of the control
buffer register into the control address register.
Jump to a machine instruction routine: Load the control address register based on the opcode
in the IR.

Figure 19.15 shows two modules labeled decoder. The upper decoder translates the opcode of the IR
into a control memory address. The lower decoder is not used for horizontal microinstructions but is
used for vertical microinstructions (Figure 19.12b). As was mentioned, in a horizontal
microinstruction every bit in the control field attaches to a control line. In a vertical microinstruction, a
code is used for each action to be performed [e.g.,], and the decoder translates this

code into individual control signals. The advantage of vertical microinstructions is that they are more
compact (fewer bits) than horizontal microinstructions, at the expense of a small additional amount of
logic and time delay.

Wilkes Control

As was mentioned, Wilkes first proposed the use of a microprogrammed control unit in 1951
[WILK51]. This proposal was subsequently elaborated into a more detailed design [WILK53]. It is
instructive to examine this seminal proposal.

The configuration proposed by Wilkes is depicted in Figure 19.16. The heart of the system is a matrix
partially filled with diodes. During a machine cycle, one row of the matrix is activated with a pulse. This
generates signals at those points where a diode is present (indicated by a dot in the diagram). The
first part of the row generates the control signals that control the operation of the processor. The
second part generates the address of the row to be pulsed in the next machine cycle. Thus, each row
of the matrix is one microinstruction, and the layout of the matrix is the control memory.

MAR ← (PC)

Figure 19.16 Wilkes’s Microprogrammed Control Unit

At the beginning of the cycle, the address of the row to be pulsed is contained in Register I. This
address is the input to the decoder, which, when activated by a clock pulse, activates one row of the
matrix. Depending on the control signals, either the opcode in the instruction register or the second
part of the pulsed row is passed into Register II during the cycle. Register II is then gated to Register I
by a clock pulse. Alternating clock pulses are used to activate a row of the matrix and to transfer from
Register II to Register I. The two-register arrangement is needed because the decoder is simply a
combinatorial circuit; with only one register, the output would become the input during a cycle, causing
an unstable condition.

This scheme is very similar to the horizontal microprogramming approach described earlier (Figure
19.12a). The main difference is this: In the previous description, the control address register could be
incremented by one to get the next address. In the Wilkes scheme, the next address is contained in
the microinstruction. To permit branching, a row must contain two address parts, controlled by a
conditional signal (e.g., flag), as shown in the figure.

Having proposed this scheme, Wilkes provides an example of its use to implement the control unit of a
simple machine. This example, the first known design of a microprogrammed processor, is worth
repeating here because it illustrates many of the contemporary principles of microprogramming.

The processor of the hypothetical machine (the example machine by Wilkes) includes the following
registers:

A Multiplicand

B Accumulator (least significant half)

C Accumulator (most significant half)

D Shift register

In addition, there are three registers and two 1-bit flags accessible only to the control unit. The
registers are as follows:

E Serves as both a memory address register (MAR) and temporary storage

F Program counter

G Another temporary register; used for counting

Table 19.4 lists the machine instruction set for this example. Table 19.5 is the complete set of
microinstructions, expressed in symbolic form, that implements the control unit. Thus, a total of 38
microinstructions is all that is required to define the system completely.

Table 19.5 Microinstructions for Wilkes Example
Notations: A, B, C, … stand for the various registers in the arithmetical and control register units. C to
D indicates that the switching circuits connect the output of register C to the input register D;
to C indicates that the output register of A is connected to the one input of the adding unit (the output
of D is permanently connected to the other input), and the output of the adder to register C. A
numerical symbol n in quotes (e.g., “n”) stands for the source whose output is the number n in units of
the least significant digit.
* Right shift. The switching circuits in the arithmetic unit are arranged so that the least significant digit
of the register C is placed in the most significant place of register B during right shift micro-operations,
and the most significant digit of register C (sign digit) is repeated (thus making the correction for
negative numbers).
† Left shift. The switching circuits are similarly arranged to pass the most significant digit of register B
to the least significant place of register C during left shift micro-operations.

Arithmetical Unit Control Register Unit Conditional Flip-Flop Next Microinstruction

Set Use 0 1

 0 F to G and E 1

 1 (G to “1”) to F 2

 2 Store to G 3

 3 G to E 4

 4 E to decoder —

(D + A)

A  5 C to D 16

S  6 C to D 17

H  7 Store to B 0

V  8 Store to A 27

T  9 C to Store 25

U 10 C to Store 0

R 11 B to D E to G 19

L 12 C to D E to G 22

G 13 E to G (1) 18

I 14 Input to Store 0

O 15 Store to Output 0

16 0

17 0

18 1 0 1

19 D to B (R)* 20

20 C to D (1) 21

21 D to C (R) 1 11  0

22 D to C (L)† 23

23 B to D (1) 24

24 D to B (L) 1 12  0

25 “0” to B 26

26 B to C 0

27 “0” to C “18” to E 28

C5

(D + Store) to C

(D − Store) to C

(G − 1) to E

E5

(G − 1) to E

E5

28 B to D E to G (1) 29

29 D to B (R) (G − “ 1 ”) to E 30

30 C to D (R) (2) 1 31 32

31 D to C 2 28 33

32 2 28 33

33 B to D (1) 34

34 D to B (R) 35

35 C to D (R) 1 36 37

36 D to C 0

37 0

The first full column gives the address (row number) of each microinstruction. Those addresses
corresponding to opcodes are labeled. Thus, when the opcode for the add instruction (A) is
encountered, the microinstruction at location 5 is executed. Columns 2 and 3 express the actions to
be taken by the ALU and control unit, respectively. Each symbolic expression must be translated into
a set of control signals (microinstruction bits). Columns 4 and 5 have to do with the setting and use of
the two flags (flip-flops). Column 4 specifies the signal that sets the flag. For example, (1) means
that flag number 1 is set by the sign bit of the number in register C. If column 5 contains a flag
identifier, then columns 6 and 7 contain the two alternative microinstruction addresses to be used.
Otherwise, column 6 specifies the address of the next microinstruction to be fetched.

 Instructions 0 through 4 constitute the fetch cycle. Microinstruction 4 presents the opcode to a
decoder, which generates the address of a microinstruction corresponding to the machine instruction
to be fetched. The reader should be able to deduce the complete functioning of the control unit from a
careful study of Table 19.5.

Advantages and Disadvantages

The principal advantage of the use of microprogramming to implement a control unit is that it simplifies
the design of the control unit. Thus, it is both cheaper and less error prone to implement. A hardwired
control unit must contain complex logic for sequencing through the many micro-operations of the
instruction cycle. On the other hand, the decoders and sequencing logic unit of a microprogrammed
control unit are very simple pieces of logic.

The principal disadvantage of a microprogrammed unit is that it will be somewhat slower than a
hardwired unit of comparable technology. Despite this, microprogramming is the dominant technique
for implementing control units in pure CISC architectures, due to its ease of implementation. RISC
processors, with their simpler instruction format, typically use hardwired control units.

B1

E5

(D + A) to C

B1

(D − A) to C

Cs

19.5 Key Terms, Review Questions, and Problems

Key Terms

control bus

control path

control signal

control unit

hardwired implementation

micro-​operations

Review Questions

Problems

19.1 Explain the distinction between the written sequence and the time sequence of an
instruction.
19.2 What is the relationship between instructions and micro- ​operations?
19.3 What is the overall function of a processor’s control unit?
19.4 Outline a three-​step process that leads to a characterization of the control unit.
19.5 What basic tasks does a control unit perform?
19.6 Provide a typical list of the inputs and outputs of a control unit.
19.7 List three types of control signals.
19.8 Briefly explain what is meant by a hardwired implementation of a control unit.
19.9 What is the difference between a hardwired implementation and a microprogrammed
implementation of a control unit?
19.10 How is a horizontal microinstruction interpreted?
19.11 What is the purpose of a control memory?

19.1 Your ALU can add its two input registers, and it can logically complement the bits of either
input register, but it cannot subtract. Numbers are to be stored in twos complement
representation. List the micro- ​operations your control unit must perform to cause a subtraction.
19.2 Show the micro-​operations and control signals in the same fashion as Table 19.1 for the
processor in Figure 19.5 for the following instructions:

Load Accumulator
Store Accumulator
Add to Accumulator
AND to Accumulator
Jump
Jump if
Complement Accumulator

19.3 Assume that propagation delay along the bus and through the ALU of Figure 19.6 are 20
and 100 ns, respectively. The time required for a register to copy data from the bus is 10 ns.
What is the time that must be allowed for

a. data from one register to another?
b. the program counter?

AC = 0

19.4 Write the sequence of micro-​operations required for the bus structure of Figure 19.6 to
add a number to the AC when the number is

a. immediate operand;
b. direct-​address operand;
c. indirect- ​address operand.

19.5 A stack is implemented as shown in Figure 19.11 (see Appendix G for a discussion of
stacks). Show the sequence of micro- ​operations for

Figure 19.11 Typical Stack Organization (full/descending)

a. popping;
b. the stack

19.6 Describe the implementation of the multiply instruction in the hypothetical machine
designed by Wilkes. Use narrative and a flowchart.
19.7 Assume a microinstruction set that includes a microinstruction with the following symbolic
form:

where is the sign bit of the accumulator and are the first seven bits of the

IF(AC0 = 1) THEN CAR ← (C0 − 6) ELSE CAR ← (CAR) + 1

AC C

microinstruction. Using this microinstruction, write a microprogram that implements a Branch
Register Minus (BRM) machine instruction, which branches if the AC is negative. Assume that
bits through of the microinstruction specify a parallel set of micro-operations. Express the
program symbolically.
19.8 A simple processor has four major phases to its instruction cycle: fetch, indirect, execute,
and interrupt. Two 1-bit flags designate the current phase in a hardwired implementation.

a. Why are these flags needed?
b. Why are they not needed in a microprogrammed control unit?.

0 0 − 6

C1 Cn

Part Six Parallel Organization

Chapter 20 Parallel Processing

20.7 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Summarize the types of parallel processor organizations.
Present an overview of design features of symmetric multiprocessors.
Understand the issue of cache coherence in a multiple processor system.
Explain the key features of the MESI protocol.
Explain the difference between implicit and explicit multithreading.
Summarize key design issues for clusters.
Explain the concept of nonuniform memory access.

Traditionally, the computer has been viewed as a sequential machine. Most

20.1 Multiple Processor Organizations
Types of Parallel Processor Systems
Parallel Organizations

20.2 Symmetric Multiprocessors
Organization
Multiprocessor Operating System Design Considerations

20.3 Cache Coherence and the MESI Protocol
Software Solutions
Hardware Solutions
The MESI Protocol

20.4 Multithreading and Chip Multiprocessors
Implicit and Explicit Multithreading
Approaches to Explicit Multithreading

20.5 Clusters
Cluster Configurations

20.6 Nonuniform Memory Access
Motivation
Organization
NUMA Pros and Cons

computer programming languages require the programmer to specify algorithms
as sequences of instructions. Processors execute programs by executing machine
instructions in a sequence and one at a time. Each instruction is executed in a
sequence of operations (fetch instruction, fetch operands, perform operation, store
results).

This view of the computer has never been entirely true. At the micro- ​operation
level, multiple control signals are generated at the same time. Instruction
pipelining, at least to the extent of overlapping fetch and execute operations, has
been around for a long time. Both of these are examples of performing
independent operations in parallel. This approach is taken further with superscalar
organization, which exploits instruction- ​level parallelism. With a superscalar
machine, there are multiple execution units within a single processor, and these
may execute multiple instructions from the same program in parallel.

As computer technology has evolved, and as the cost of computer hardware has
dropped, computer designers have sought more and more opportunities for
parallelism, usually to enhance performance and, in some cases, to increase
availability. After an overview, this chapter looks at some of the most prominent
approaches to parallel organization. First, we examine symmetric multiprocessors
(SMPs), one of the earliest and still the most common example of parallel
organization. In an SMP organization, multiple processors share a common
memory. This organization raises the issue of cache coherence, to which a
separate section is devoted. Next, the chapter examines multithreaded processors
and chip multiprocessors. Then we describe clusters, which consist of multiple
independent computers organized in a cooperative fashion. Clusters have become
increasingly common to support workloads that are beyond the capacity of a single
SMP. Another approach to the use of multiple processors that we examine is that
of nonuniform memory access (NUMA) machines. The NUMA approach is
relatively new and not yet proven in the marketplace, but is often considered as an
alternative to the SMP or cluster approach.

20.1 Multiple Processor Organizations

Types of Parallel Processor Systems

A taxonomy first introduced by Flynn [FLYN72] is still the most common way of categorizing systems
with parallel processing capability. Flynn proposed the following categories of computer systems:

Single instruction, single data (SISD) stream: A single processor executes a single instruction
stream to operate on data stored in a single memory. Uniprocessors fall into this category.
Single instruction, multiple data (SIMD) stream: A single machine instruction controls the
simultaneous execution of a number of processing elements on a lockstep basis. Each processing
element has an associated data memory, so that instructions are executed on different sets of data
by different processors. Vector and array processors fall into this category, and are discussed in
Section 20.7.
Multiple instruction, single data (MISD) stream: A sequence of data is transmitted to a set of
processors, each of which executes a different instruction sequence. This structure is not
commercially implemented.
Multiple instruction, multiple data (MIMD) stream: A set of processors simultaneously execute
different instruction sequences on different data sets. SMPs, clusters, and NUMA systems fit into
this category.

With the MIMD organization, the processors are general purpose; each is able to process all of the
instructions necessary to perform the appropriate data transformation. MIMDs can be further
subdivided by the means in which the processors communicate (Figure 20.1). If the processors share
a common memory, then each processor accesses programs and data stored in the shared memory,
and processors communicate with each other via that memory. The most common form of such
systems is known as a symmetric multiprocessor (SMP) , which we examine in Section 20.2. In
an SMP, multiple processors share a single memory or pool of memory by means of a shared bus or
other interconnection mechanism; a distinguishing feature is that the memory access time to any
region of memory is approximately the same for each processor. A more recent development is the
nonuniform memory access (NUMA) organization, which is described in Section 20.6. As the
name suggests, the memory access time to different regions of memory may differ for a NUMA
processor.

Figure 20.1 A Taxonomy of Parallel Processor Architectures

A collection of independent uniprocessors or SMPs may be interconnected to form a cluster .
Communication among the computers is either via fixed paths or via some network facility.

Parallel Organizations

Figure 20.2 illustrates the general organization of the taxonomy of Figure 20.1. Figure 20.2a shows
the structure of an SISD. There is some sort of control unit (CU) that provides an instruction stream
(IS) to a processing unit (PU). The processing unit operates on a single data stream (DS) from a
memory unit (MU). With an SIMD, there is still a single control unit, now feeding a single instruction
stream to multiple PUs. Each PU may have its own dedicated memory (illustrated in Figure 20.2b), or
there may be a shared memory. Finally, with the MIMD, there are multiple control units, each feeding
a separate instruction stream to its own PU. The MIMD may be a shared- ​memory multiprocessor
(Figure 20.2c) or a distributed-memory multicomputer (Figure 20.2d).

Figure 20.2 Alternative Computer Organizations

The design issues relating to SMPs, clusters, and NUMAs are complex, involving issues relating to
physical organization, interconnection structures, interprocessor communication, operating system
design, and application software techniques. Our concern here is primarily with organization, although
we touch briefly on operating system design issues.

20.2 Symmetric Multiprocessors
Until fairly recently, virtually all single- ​user personal computers and most workstations contained a
single general- ​purpose microprocessor. As demands for performance increase and as the cost of
microprocessors continues to drop, vendors have introduced systems with an SMP organization. The
term SMP refers to a computer hardware architecture and also to the operating system behavior that
reflects that architecture. An SMP can be defined as a standalone computer system with the following
characteristics:

1. There are two or more similar processors of comparable capability.
2. These processors share the same main memory and I/O facilities and are interconnected by a

bus or other internal connection scheme, such that memory access time is approximately the
same for each processor.

3. All processors share access to I/O devices, either through the same channels or through
different channels that provide paths to the same device.

4. All processors can perform the same functions (hence the term symmetric).
5. The system is controlled by an integrated operating system that provides interaction between

processors and their programs at the job, task, file, and data element levels.

Points 1 to 4 should be self- ​explanatory. Point 5 illustrates one of the contrasts with a loosely coupled
multiprocessing system, such as a cluster. In the latter, the physical unit of interaction is usually a
message or complete file. In an SMP, individual data elements can constitute the level of interaction,
and there can be a high degree of cooperation between processes.

The operating system of an SMP schedules processes or threads across all of the processors. An
SMP organization has a number of potential advantages over a uniprocessor organization, including
the following:

Performance: If the work to be done by a computer can be organized so that some portions of the
work can be done in parallel, then a system with multiple processors will yield greater performance
than one with a single processor of the same type (Figure 20.3).

Figure 20.3 Multiprogramming and Multiprocessing

Availability: In a symmetric multiprocessor, because all processors can perform the same
functions, the failure of a single processor does not halt the machine. Instead, the system can
continue to function at reduced performance.
Incremental growth: A user can enhance the performance of a system by adding an additional
processor.
Scaling: Vendors can offer a range of products with different price and performance characteristics
based on the number of processors configured in the system.

It is important to note that these are potential, rather than guaranteed, benefits. The operating system
must provide tools and functions to exploit the parallelism in an SMP system.

An attractive feature of an SMP is that the existence of multiple processors is transparent to the user.
The operating system takes care of scheduling threads or processes on individual processors, and of
synchronization among processors.

Organization

Figure 20.4 depicts in general terms the organization of a multiprocessor system. There are two or
more processors. Each processor is self- ​contained, including a control unit, ALU, registers, and,
typically, one or more levels of cache. Each processor has access to a shared main memory and the
I/O devices through some form of interconnection mechanism. The processors can communicate with
each other through memory (messages and status information left in common data areas). It may also
be possible for processors to exchange signals directly. The memory is often organized so that
multiple simultaneous accesses to separate blocks of memory are possible. In some configurations,
each processor may also have its own private main memory and I/O channels, in addition to the

shared resources.

Figure 20.4 Generic Block Diagram of a Tightly Coupled Multiprocessor

The most common organization for personal computers, workstations, and servers is the time- ​shared
bus. The time-​shared bus is the simplest mechanism for constructing a multiprocessor system (Figure
20.5). The structure and interfaces are basically the same as for a single- ​processor system that uses
a bus interconnection. The bus consists of control, address, and data lines. To facilitate DMA transfers
from I/O subsystems to processors, the following features are provided:

Addressing: It must be possible to distinguish modules on the bus to determine the source and
destination of data.
Arbitration: Any I/O module can temporarily function as “master.” A mechanism is provided to
arbitrate competing requests for bus control, using some sort of priority scheme.
Time-​sharing: When one module is controlling the bus, other modules are locked out and must, if
necessary, suspend operation until bus access is achieved.

These uniprocessor features are directly usable in an SMP organization. In this latter case, there are
now multiple processors as well as multiple I/O processors all attempting to gain access to one or
more memory modules via the bus.

Figure 20.5 Symmetric Multiprocessor Organization

The bus organization has several attractive features:

Simplicity: This is the simplest approach to multiprocessor organization. The physical interface
and the addressing, arbitration, and time- ​sharing logic of each processor remain the same as in a
single- ​processor system.
Flexibility: It is generally easy to expand the system by attaching more processors to the bus.
Reliability: The bus is essentially a passive medium, and the failure of any attached device should
not cause failure of the whole system.

The main drawback to the bus organization is performance. All memory references pass through the
common bus. Thus, the bus cycle time limits the speed of the system. To improve performance, it is
desirable to equip each processor with a cache memory. This should reduce the number of bus
accesses dramatically. Typically, workstation and PC SMPs have two levels of cache, with the L1
cache internal (same chip as the processor) and the L2 cache either internal or external. Some
processors now employ a L3 cache as well.

The use of caches introduces some new design considerations. Because each local cache contains
an image of a portion of memory, if a word is altered in one cache, it could conceivably invalidate a
word in another cache. To prevent this, the other processors must be alerted that an update has taken
place. This problem is known as the cache coherence problem and is typically addressed in
hardware rather than by the operating system. We address this issue in Section 20.3.

Multiprocessor Operating System Design Considerations

An SMP operating system manages processor and other computer resources so that the user
perceives a single operating system controlling system resources. In fact, such a configuration should
appear as a single- ​processor multiprogramming system. In both the SMP and uniprocessor cases,
multiple jobs or processes may be active at one time, and it is the responsibility of the operating
system to schedule their execution and to allocate resources. A user may construct applications that
use multiple processes or multiple threads within processes, without regard to whether a single
processor or multiple processors will be available. Thus, a multiprocessor operating system must
provide all the functionality of a multiprogramming system plus additional features to accommodate
multiple processors. Among the key design issues:

Simultaneous concurrent processes: OS routines need to be reentrant to allow several
processors to execute the same IS code simultaneously. With multiple processors executing the
same or different parts of the OS, OS tables and management structures must be managed
properly to avoid deadlock or invalid operations.
Scheduling: Any processor may perform scheduling, so conflicts must be avoided. The scheduler
must assign ready processes to available processors.
Synchronization: With multiple active processes having potential access to shared address
spaces or shared I/O resources, care must be taken to provide effective synchronization.
Synchronization is a facility that enforces mutual exclusion and event ordering.
Memory management: Memory management on a multiprocessor must deal with all of the issues
found on uniprocessor machines, as discussed in Chapter 9. In addition, the operating system
needs to exploit the available hardware parallelism, such as multiported memories, to achieve the
best performance. The paging mechanisms on different processors must be coordinated to enforce
consistency when several processors share a page or segment, and to decide on page
replacement.
Reliability and fault tolerance: The operating system should provide graceful degradation in the
face of processor failure. The scheduler and other portions of the operating system must recognize
the loss of a processor and restructure management tables accordingly.

20.3 Cache Coherence and the MESI Protocol
In contemporary multiprocessor systems, it is customary to have one or two levels of cache
associated with each processor. This organization is essential to achieve reasonable performance. It
does, however, create a problem known as the cache coherence problem. The essence of the
problem is this: Multiple copies of the same data can exist in different caches simultaneously, and if
processors are allowed to update their own copies freely, an inconsistent view of memory can result.
In Chapter 5 we defined two common write policies: The two common write policies are:

Write back: Write operations are usually made only to the cache. Main memory is only updated
when the corresponding cache line is evicted from the cache.
Write through: All write operations are made to main memory as well as to the cache, ensuring
that main memory is always valid.

It is clear that a write-​back policy can result in inconsistency. If two caches contain the same line, and
the line is updated in one cache, the other cache will unknowingly have an invalid value. Subsequent
reads to that invalid line produce invalid results. Even with the write- ​through policy, inconsistency can
occur unless other caches monitor the memory traffic or receive some direct notification of the update.

In this section, we will briefly survey various approaches to the cache coherence problem and then
focus on the approach that is most widely used: the MESI (modified/exclusive/shared/invalid) protocol.
A version of this protocol is used on the x86 architecture.

For any cache coherence protocol, the objective is to let recently used local variables get into the
appropriate cache and stay there through numerous reads and writes, while using the protocol to
maintain consistency of shared variables that might be in multiple caches at the same time. Cache
coherence approaches have generally been divided into software and hardware approaches. Some
implementations adopt a strategy that involves both software and hardware elements. Nevertheless,
the classification into software and hardware approaches is still instructive and is commonly used in
surveying cache coherence strategies.

Software Solutions

Software cache coherence schemes attempt to avoid the need for additional hardware circuitry and
logic by relying on the compiler and operating system to deal with the problem. Software approaches
are attractive because the overhead of detecting potential problems is transferred from run time to
compile time, and the design complexity is transferred from hardware to software. On the other hand,
compile- ​time software approaches generally must make conservative decisions, leading to inefficient
cache utilization.

Compiler- ​based coherence mechanisms perform an analysis on the code to determine which data
items may become unsafe for caching, and they mark those items accordingly. The operating system
or hardware then prevents noncacheable items from being cached.

The simplest approach is to prevent any shared data variables from being cached. This is too
conservative, because a shared data structure may be exclusively used during some periods and may
be effectively read- ​only during other periods. It is only during periods when at least one process may
update the variable and at least one other process may access the variable that cache coherence is
an issue.

More efficient approaches analyze the code to determine safe periods for shared variables. The
compiler then inserts instructions into the generated code to enforce cache coherence during the

critical periods. A number of techniques have been developed for performing the analysis and for
enforcing the results; see [LILJ93] and [STEN90] for surveys.

Hardware Solutions

Hardware- ​based solutions are generally referred to as cache coherence protocols. These solutions
provide dynamic recognition at run time of potential inconsistency conditions. Because the problem is
only dealt with when it actually arises, there is more effective use of caches, leading to improved
performance over a software approach. In addition, these approaches are transparent to the
programmer and the compiler, reducing the software development burden.

Hardware schemes differ in a number of particulars, including where the state information about data
lines is held, how that information is organized, where coherence is enforced, and the enforcement
mechanisms. In general, hardware schemes can be divided into two categories: directory protocols
and snoopy protocols.

DIRECTORY PROTOCOLS

Directory protocols collect and maintain information about where copies of lines reside. Typically,
there is a centralized controller that is part of the main memory controller, and a directory that is stored
in main memory. The directory contains global state information about the contents of the various local
caches. When an individual cache controller makes a request, the centralized controller checks and
issues necessary commands for data transfer between memory and caches or between caches. It is
also responsible for keeping the state information up to date; therefore, every local action that can
affect the global state of a line must be reported to the central controller.

Typically, the controller maintains information about which processors have a copy of which lines.
Before a processor can write to a local copy of a line, it must request exclusive access to the line from
the controller. Before granting this exclusive access, the controller sends a message to all processors
with a cached copy of this line, forcing each processor to invalidate its copy. After receiving
acknowledgments back from each such processor, the controller grants exclusive access to the
requesting processor. When another processor tries to read a line that is exclusively granted to
another processor, it will send a miss notification to the controller. The controller then issues a
command to the processor holding that line that requires the processor to do a write back to main
memory. The line may now be shared for reading by the original processor and the requesting
processor.

Directory schemes suffer from the drawbacks of a central bottleneck and the overhead of
communication between the various cache controllers and the central controller. However, they are
effective in large- ​scale systems that involve multiple buses or some other complex interconnection
scheme.

SNOOPY PROTOCOLS

Snoopy protocols distribute the responsibility for maintaining cache coherence among all of the cache
controllers in a multiprocessor. A cache must recognize when a line that it holds is shared with other
caches. When an update action is performed on a shared cache line, it must be announced to all other
caches by a broadcast mechanism. Each cache controller is able to “snoop” on the network to
observe these broadcasted notifications, and react accordingly.

Snoopy protocols are ideally suited to a bus- ​based multiprocessor, because the shared bus provides
a simple means for broadcasting and snooping. However, because one of the objectives of the use of
local caches is to avoid bus accesses, care must be taken that the increased bus traffic required for

broadcasting and snooping does not cancel out the gains from the use of local caches.

Two basic approaches to the snoopy protocol have been explored: write invalidate and write update
(or write broadcast). With a write- ​invalidate protocol, there can be multiple readers but only one writer
at a time. Initially, a line may be shared among several caches for reading purposes. When one of the
caches wants to perform a write to the line, it first issues a notice that invalidates that line in the other
caches, making the line exclusive to the writing cache. Once the line is exclusive, the owning
processor can make cheap local writes until some other processor requires the same line.

With a write-​update protocol, there can be multiple writers as well as multiple readers. When a
processor wishes to update a shared line, the word to be updated is distributed to all others, and
caches containing that line can update it.

Neither of these two approaches is superior to the other under all circumstances. Performance
depends on the number of local caches and the pattern of memory reads and writes. Some systems
implement adaptive protocols that employ both write- ​invalidate and write- ​update mechanisms.

The write-​invalidate approach is the most widely used in commercial multiprocessor systems, such as
the x86 architecture. It marks the state of every cache line (using two extra bits in the cache tag) as
modified, exclusive, shared, or invalid. For this reason, the write- ​invalidate protocol is called MESI. In
the remainder of this section, we will look at its use among local caches across a multiprocessor. For
simplicity in the presentation, we do not examine the mechanisms involved in coordinating among
both level 1 and level 2 locally and at the same time coordinating across the distributed
multiprocessor. This would not add any new principles but would greatly complicate the discussion.

The MESI Protocol

To provide cache consistency on an SMP, the data cache often supports a protocol known as MESI.
For MESI, the data cache includes two status bits per tag, so that each line can be in one of four
states:

Modified: The line in the cache has been modified (different from main memory) and is available
only in this cache.
Exclusive: The line in the cache is the same as that in main memory and is not present in any
other cache.
Shared: The line in the cache is the same as that in main memory and may be present in another
cache.
Invalid: The line in the cache does not contain valid data.

Table 20.1 summarizes the meaning of the four states. Figure 20.6 displays a state diagram for the
MESI protocol. Keep in mind that each line of the cache has its own state bits and therefore its own
realization of the state diagram. Figure 20.6a shows the transitions that occur due to actions initiated
by the processor attached to this cache. Figure 20.6b shows the transitions that occur due to events
that are snooped on the common bus. This presentation of separate state diagrams for
processor- ​initiated and bus- ​initiated actions helps to clarify the logic of the MESI protocol. At any time
a cache line is in a single state. If the next event is from the attached processor, then the transition is
dictated by Figure 20.6a, and if the next event is from the bus the transition is dictated by Figure
20.6b. Figure 20.7 summarizes the state relationship between lines in different caches, all of which
map to the same block of memory.

Table 20.1 MESI Cache Line States

M E S I

Modified Exclusive Shared Invalid

This cache line valid? Yes Yes Yes No

The memory copy is
…

out of date valid valid —

Copies exist in other
caches?

No No Maybe Maybe

A write to this line … does not go
to bus

does not go
to bus

goes to bus and
updates cache

goes directly
to bus

Figure 20.6 MESI State Transition Diagram

Figure 20.7 Relationship Between Cache Lines in Cooperating Caches

We now examine the transitions in Figure 20.6 in more detail.

READ MISS

When a read miss occurs in the local cache, the processor initiates a memory read to read the line of
main memory containing the missing address. The processor inserts a signal on the bus that alerts all
other processor/cache units to snoop the transaction. There are a number of possible outcomes:

If one other cache has a clean (unmodified since read from memory) copy of the line in the
exclusive state, it returns a signal indicating that it shares this line. The responding processor then
transitions the state of its copy from exclusive to shared, and the initiating processor reads the line
from main memory and transitions the line in its cache from invalid to shared.
If one or more caches have a clean copy of the line in the shared state, each of them signals that it
shares the line. The initiating processor reads the line and transitions the line in its cache from
invalid to shared.
If one other cache has a modified copy of the line, then that cache blocks the memory read and
provides the line to the requesting cache over the shared bus. The responding cache then changes
its line from modified to shared. The line sent to the requesting cache is also received and
processed by the memory controller, which stores the block in memory.
 In some implementations, the cache with the modified line signals the initiating processor to retry. Meanwhile,

the processor with the modified copy seizes the bus, writes the modified line back to main memory, and
transitions the line in its cache from modified to shared. Subsequently, the requesting processor tries again and
finds that one or more processors have a clean copy of the line in the shared state, as described in the

1

1

preceding point.

If no other cache has a copy of the line (clean or modified), then no signals are returned. The
initiating processor reads the line and transitions the line in its cache from invalid to exclusive.

READ HIT

When a read hit occurs on a line currently in the local cache, the processor simply reads the required
item. There is no state change: The state remains modified, shared, or exclusive.

WRITE MISS

When a write miss occurs in the local cache, the processor initiates a memory read to read the line of
main memory containing the missing address. For this purpose, the processor issues a signal on the
bus that means read-​with-​intent-​to-​modify (RWITM). When the line is loaded, it is immediately marked
modified. With respect to other caches, two possible scenarios precede the loading of the line of data.

First, some other cache may have a modified copy of this line . In this case, the alerted
processor signals the initiating processor that another processor has a modified copy of the line. The
initiating processor surrenders the bus and waits. The other processor gains access to the bus, writes
the modified cache line back to main memory, and transitions the state of the cache line to invalid
(because the initiating processor is going to modify this line). Subsequently, the initiating processor
will again issue a signal to the bus of RWITM and then read the line from main memory, modify the
line in the cache, and mark the line in the modified state.

The second scenario is that no other cache has a modified copy of the requested line. In this case, no
signal is returned, and the initiating processor proceeds to read in the line and modify it. Meanwhile, if
one or more caches have a clean copy of the line in the shared state, each cache invalidates its copy
of the line, and if one cache has a clean copy of the line in the exclusive state, it invalidates its copy of
the line.

WRITE HIT

When a write hit occurs on a line currently in the local cache, the effect depends on the current state
of that line in the local cache:

Shared: Before performing the update, the processor must gain exclusive ownership of the line.
The processor signals its intent on the bus. Each processor that has a shared copy of the line in its
cache transitions the sector from shared to invalid. The initiating processor then performs the
update and transitions its copy of the line from shared to modified.
Exclusive: The processor already has exclusive control of this line, and so it simply performs the
update and transitions its copy of the line from exclusive to modified.
Modified: The processor already has exclusive control of this line and has the line marked as
modified, and so it simply performs the update.

MESI SIGNALING

It will help to clarify the state transition diagrams of Figure 20.6 to develop flowcharts that show the
exchange of signals between cooperating caches during a read or write operation. The following
flowcharts assume an initiator system and one or more other participants, and refer to the state of a
cache line in each system that all map to the same block of main memory.

(state = modify)

Figure 20.8 covers the case of a memory read operation. If the desired word is contained in a cache
line of the initiator’s cache, then the line must be in the M, E, or S state. In that case, the word is
retrieved from the cache and returned to the processor. If the cache line is not present, then the
initiator signals a read miss (RM) to the other participants. This indicates that it is going to perform a
read memory operation to bring in the memory block containing the desired word after waiting for
responding signals. Then, if necessary the initiator writes back a line of cache to make room for the
incoming block.

 This figure and the next were provided by Professor Roger Kieckhafer of Michigan Technological University.

Figure 20.8 Initiator Reads from Writeback Cache
Source: Used with permission from Professor Roger Kieckhafer of Michigan Technical University

At the participant end, the participant checks to see if the requested block is in a line of its cache. If
not, it signals back null and is done. If the participant has the desired line in either the E or S state, it
signals S, because now the line will be shared with the initiator, and sets the line state to S. If the line
is in the M state, it signals M to the initiator. Then the participant writes back the line to bring main
memory up to date and move to an S state. If the initiator receives a signal M, it waits until the
participant has written the line back to memory before proceeding. If the signal is M or S, the initiator
sets the line to S and if the incoming signal is null it sets the state to E. Once the state is set, the
target line is loaded.

Figure 20.8 indicates the interaction between an initiator and a single participant. If there are multiple
other cache systems, the initiator needs to take into account all incoming signals. If an M signal is
received, any other signals received should be S or null; the initiator responds to the M signal by

2

2

waiting for the WB signal. If there is no M signal but one or more S signals, then the initiator responds
to that.

Figure 20.9 is the flowchart when the initiator performs a write to a write-back cache. If the block
containing the word to be written is already in a line of the cache (hit), the initiator updates the line in
the cache and sets the line state to M. It also signals a write hit to participants, who set that line to
invalid. If the desired line is not in the cache, the initiator signals a write miss (WM) to the other
participants. The rest of the flowchart is similar to that of Figure 20.8.

Figure 20.9 Initiator Writes to Writeback Cache
Source: Used with permission from Professor Roger Kieckhafer of Michigan Technical University

L1-L2 CACHE CONSISTENCY

We have so far described cache coherency protocols in terms of the cooperative activity among
caches connected to the same bus or other SMP interconnection facility. Typically, these caches are
L2 caches, and each processor also has an L1 cache that does not connect directly to the bus and
therefore cannot engage in a snoopy protocol. Thus, some scheme is needed to maintain data
integrity across both levels of cache and across all caches in the SMP configuration.

The strategy is to extend the MESI protocol (or any cache coherence protocol) to the L1 caches.
Thus, each line in the L1 cache includes bits to indicate the state. In essence, the objective is the
following: for any line that is present in both an L2 cache and its corresponding L1 cache, the L1 line
state should track the state of the L2 line. A simple means of doing this is to adopt the write- ​through
policy in the L1 cache; in this case the write through is to the L2 cache and not to the memory. The L1

write-​through policy forces any modification to an L1 line out to the L2 cache and therefore makes it
visible to other L2 caches. The use of the L1 write- ​through policy requires that the L1 content must be
a subset of the L2 content. This in turn suggests that the associativity of the L2 cache should be equal
to or greater than that of the L1 associativity. The L1 write- ​through policy is used in the IBM S/390
SMP.

If the L1 cache has a write-​back policy, the relationship between the two caches is more complex.
There are several approaches to maintaining, a topic beyond our scope.

20.4 Multithreading and Chip Multiprocessors
The most important measure of performance for a processor is the rate at which it executes
instructions. This can be expressed as

where f is the processor clock frequency, in MHz, and IPC (instructions per cycle) is the average
number of instructions executed per cycle. Accordingly, designers have pursued the goal of increased
performance on two fronts: increasing clock frequency and increasing the number of instructions
executed or, more properly, the number of instructions that complete during a processor cycle. As we
have seen in earlier chapters, designers have increased IPC by using an instruction pipeline and then
by using multiple parallel instruction pipelines in a superscalar architecture. With pipelined and
multiple- ​pipeline designs, the principal problem is to maximize the utilization of each pipeline stage. To
improve throughput, designers have created ever more complex mechanisms, such as executing
some instructions in a different order from the way they occur in the instruction stream and beginning
execution of instructions that may never be needed. But as was discussed in Section 2.2, this
approach may be reaching a limit due to complexity and power consumption concerns.

An alternative approach, which allows for a high degree of instruction- ​level parallelism without
increasing circuit complexity or power consumption, is called multithreading. In essence, the
instruction stream is divided into several smaller streams, known as threads, such that the threads can
be executed in parallel.

The variety of specific multithreading designs, realized in both commercial systems and experimental
systems, is vast. In this section, we give a brief survey of the major concepts.

Implicit and Explicit Multithreading

The concept of thread used in discussing multithreaded processors may or may not be the same as
the concept of software threads in a multiprogrammed operating system. It will be useful to define
terms briefly:

Process: An instance of a program running on a computer. A process embodies two key
characteristics:
— Resource ownership: A process includes a virtual address space to hold the process image;
the process image is the collection of program, data, stack, and attributes that define the process.
From time to time, a process may be allocated control or ownership of resources, such as main
memory, I/O channels, I/O devices, and files.

— Scheduling/execution: The execution of a process follows an execution path (trace) through
one or more programs. This execution may be interleaved with that of other processes. Thus, a
process has an execution state (Running, Ready, etc.) and a dispatching priority and is the entity
that is scheduled and dispatched by the operating system.

Process switch: An operation that switches the processor from one process to another, by saving
all the process control data, registers, and other information for the first and replacing them with the
process information for the second.
 The term context switch is often found in OS literature and textbooks. Unfortunately, although most of the

literature uses this term to mean what is here called a process switch, other sources use it to mean a thread
switch. To avoid ambiguity, the term is not used in this book.

MIPS rate = f × IPC

3
3

Thread: A dispatchable unit of work within a process. It includes a processor context (which
includes the program counter and stack pointer) and its own data area for a stack (to enable
subroutine branching). A thread executes sequentially and is interruptible so that the processor can
turn to another thread.
Thread switch: The act of switching processor control from one thread to another within the same
process. Typically, this type of switch is much less costly than a process switch.

Thus, a thread is concerned with scheduling and execution, whereas a process is concerned with both
scheduling/execution and resource ownership. The multiple threads within a process share the same
resources. This is why a thread switch is much less time consuming than a process switch. Traditional
operating systems, such as earlier versions of unix, did not support threads. Most modern operating
systems, such as Linux, other versions of unix, and Windows, do support threads. A distinction is
made between user- ​level threads, which are visible to the application program, and kernel- ​level
threads, which are visible only to the operating system. Both of these may be referred to as explicit
threads, defined in software.

All of the commercial processors and most of the experimental processors so far have used explicit
multithreading. These systems concurrently execute instructions from different explicit threads, either
by interleaving instructions from different threads on shared pipelines or by parallel execution on
parallel pipelines. Implicit multithreading refers to the concurrent execution of multiple threads
extracted from a single sequential program. These implicit threads may be defined either statically by
the compiler or dynamically by the hardware. In the remainder of this section we consider explicit
multithreading.

Approaches to Explicit Multithreading

At minimum, a multithreaded processor must provide a separate program counter for each thread of
execution to be executed concurrently. The designs differ in the amount and type of additional
hardware used to support concurrent thread execution. In general, instruction fetching takes place on
a thread basis. The processor treats each thread separately and may use a number of techniques for
optimizing single- ​thread execution, including branch prediction, register renaming, and superscalar
techniques. What is achieved is thread- ​level parallelism, which may provide for greatly improved
performance when married to instruction- ​level parallelism.

Broadly speaking, there are four principal approaches to multithreading:

Interleaved multithreading: This is also known as fine-​grained multithreading. The processor
deals with two or more thread contexts at a time, switching from one thread to another at each
clock cycle. If a thread is blocked because of data dependencies or memory latencies, that thread
is skipped and a ready thread is executed.
Blocked multithreading: This is also known as coarse- ​grained multithreading. The instructions
of a thread are executed successively until an event occurs that may cause delay, such as a cache
miss. This event induces a switch to another thread. This approach is effective on an in- ​order
processor that would stall the pipeline for a delay event such as a cache miss.
Simultaneous multithreading (SMT): Instructions are simultaneously issued from multiple
threads to the execution units of a superscalar processor. This combines the wide superscalar
instruction issue capability with the use of multiple thread contexts.
Chip multiprocessing: In this case, multiple cores are implemented on a single chip and each
core handles separate threads. The advantage of this approach is that the available logic area on a
chip is used effectively without depending on ever- ​increasing complexity in pipeline design. This is
referred to as multicore; we examine this topic separately in Chapter 21.

For the first two approaches, instructions from different threads are not executed simultaneously.

Instead, the processor is able to rapidly switch from one thread to another, using a different set of
registers and other context information. This results in a better utilization of the processor’s execution
resources and avoids a large penalty due to cache misses and other latency events. The SMT
approach involves true simultaneous execution of instructions from different threads, using replicated
execution resources. Chip multiprocessing also enables simultaneous execution of instructions from
different threads.

Figure 20.10, based on one in [UNGE02], illustrates some of the possible pipeline architectures that
involve multithreading and contrasts these with approaches that do not use multithreading. Each
horizontal row represents the potential issue slot or slots for a single execution cycle; that is, the width
of each row corresponds to the maximum number of instructions that can be issued in a single clock
cycle. The vertical dimension represents the time sequence of clock cycles. An empty (shaded) slot
represents an unused execution slot in one pipeline. A no- ​op is indicated by N.

 Issue slots are the position from which instructions can be issued in a given clock cycle. Recall from Chapter 18
that instruction issue is the process of initiating instruction execution in the processor’s functional units. This occurs
when an instruction moves from the decode stage of the pipeline to the first execute stage of the pipeline.

The first three illustrations in Figure 20.10 show different approaches with a scalar (i.e., single- ​issue)
processor:

Single-​threaded scalar: This is the simple pipeline found in traditional RISC and CISC machines,
with no multithreading.
Interleaved multithreaded scalar: This is the easiest multithreading approach to implement. By
switching from one thread to another at each clock cycle, the pipeline stages can be kept fully
occupied, or close to fully occupied. The hardware must be capable of switching from one thread
context to another between cycles.
Blocked multithreaded scalar: In this case, a single thread is executed until a latency event
occurs that would stop the pipeline, at which time the processor switches to another thread.

Figure 20.10c shows a situation in which the time to perform a thread switch is one cycle, whereas
Figure 20.10b shows that thread switching occurs in zero cycles. In the case of interleaved
multithreading, it is assumed that there are no control or data dependencies between threads, which
simplifies the pipeline design and therefore should allow a thread switch with no delay. However,
depending on the specific design and implementation, block multithreading may require a clock cycle
to perform a thread switch, as illustrated in Figure 20.10. This is true if a fetched instruction triggers
the thread switch and must be discarded from the pipeline [UNGE03].

4

4

Figure 20.10 Approaches to Executing Multiple Threads

Although interleaved multithreading appears to offer better processor utilization than blocked

multithreading, it does so at the sacrifice of single- ​thread performance. The multiple threads compete
for cache resources, which raises the probability of a cache miss for a given thread.

More opportunities for parallel execution are available if the processor can issue multiple instructions
per cycle. Figures 20.10d through 20.10i illustrate a number of variations among processors that
have hardware for issuing four instructions per cycle. In all these cases, only instructions from a single
thread are issued in a single cycle. The following alternatives are illustrated:

Superscalar: This is the basic superscalar approach with no multithreading. Until relatively
recently, this was the most powerful approach to providing parallelism within a processor. Note that
during some cycles, not all of the available issue slots are used. During these cycles, less than the
maximum number of instructions is issued; this is referred to as horizontal loss. During other
instruction cycles, no issue slots are used; these are cycles when no instructions can be issued;
this is referred to as vertical loss.
Interleaved multithreading superscalar: During each cycle, as many instructions as possible are
issued from a single thread. With this technique, potential delays due to thread switches are
eliminated, as previously discussed. However, the number of instructions issued in any given cycle
is still limited by dependencies that exist within any given thread.
Blocked multithreaded superscalar: Again, instructions from only one thread may be issued
during any cycle, and blocked multithreading is used.
Very long instruction word (VLIW): A VLIW architecture, such as IA- ​64, places multiple
instructions in a single word. Typically, a VLIW is constructed by the compiler, which places
operations that may be executed in parallel in the same word. In a simple VLIW machine (Figure
20.10g), if it is not possible to completely fill the word with instructions to be issued in parallel,
no-​ops are used.
Interleaved multithreading VLIW: This approach should provide similar efficiencies to those
provided by interleaved multithreading on a superscalar architecture.
Blocked multithreading VLIW: This approach should provide similar efficiencies to those
provided by blocked multithreading on a superscalar architecture.

The final two approaches illustrated in Figure 20.10 enable the parallel, simultaneous execution of
multiple threads:

Simultaneous multithreading: Figure 20.10i shows a system capable of issuing 8 instructions at
a time. If one thread has a high degree of instruction- ​level parallelism, it may on some cycles be
able fill all of the horizontal slots. On other cycles, instructions from two or more threads may be
issued. If sufficient threads are active, it should usually be possible to issue the maximum number
of instructions on each cycle, providing a high level of efficiency.
Chip multiprocessor (multicore): Figure 20.10k shows a chip containing four cores, each of
which has a two- ​issue superscalar processor. Each core is assigned a thread, from which it can
issue up to two instructions per cycle. We discuss multicore computers in Chapter 21.

Comparing Figures 20.10i and 20.10k, we see that a chip multiprocessor with the same instruction
issue capability as an SMT cannot achieve the same degree of instruction- ​level parallelism. This is
because the chip multiprocessor is not able to hide latencies by issuing instructions from other
threads. On the other hand, the chip multiprocessor should outperform a superscalar processor with
the same instruction issue capability, because the horizontal losses will be greater for the superscalar
processor. In addition, it is possible to use multithreading within each of the cores on a chip
multiprocessor, and this is done on some contemporary machines.

20.5 Clusters
An important and relatively recent development in computer system design is clustering. Clustering is
an alternative to symmetric multiprocessing as an approach to providing high performance and high
availability, and is particularly attractive for server applications. We can define a cluster as a group of
interconnected, whole computers working together as a unified computing resource that can create
the illusion of being one machine. The term whole computer means a system that can run on its own,
apart from the cluster; in the literature, each computer in a cluster is typically referred to as a node.

[BREW97] lists four benefits that can be achieved with clustering. These can also be thought of as
objectives or design requirements:

Absolute scalability: It is possible to create large clusters that far surpass the power of even the
largest standalone machines. A cluster can have tens, hundreds, or even thousands of machines,
each of which is a multiprocessor.
Incremental scalability: A cluster is configured in such a way that it is possible to add new
systems to the cluster in small increments. Thus, a user can start out with a modest system and
expand it as needs grow, without having to go through a major upgrade in which an existing small
system is replaced with a larger system.
High availability: Because each node in a cluster is a standalone computer, the failure of one
node does not mean loss of service. In many products, fault tolerance is handled automatically in
software.
Superior price/performance: By using commodity building blocks, it is possible to put together a
cluster with equal or greater computing power than a single large machine, at much lower cost.

Cluster Configurations

In the literature, clusters are classified in a number of different ways. Perhaps the simplest
classification is based on whether the computers in a cluster share access to the same disks. Figure
20.11a shows a two-​node cluster in which the only interconnection is by means of a high- ​speed link
that can be used for message exchange to coordinate cluster activity. The link can be a LAN that is
shared with other computers that are not part of the cluster, or the link can be a dedicated
interconnection facility. In the latter case, one or more of the computers in the cluster will have a link to
a LAN or WAN so that there is a connection between the server cluster and remote client systems.
Note that in the figure, each computer is depicted as being a multiprocessor. This is not necessary but
does enhance both performance and availability.

In the simple classification depicted in Figure 20.11, the other alternative is a shared- ​disk cluster. In
this case, there generally is still a message link between nodes. In addition, there is a disk subsystem
that is directly linked to multiple computers within the cluster. In this figure, the common disk
subsystem is a RAID system. The use of RAID or some similar redundant disk technology is common
in clusters so that the high availability achieved by the presence of multiple computers is not
compromised by a shared disk that is a single point of failure.

Figure 20.11 Cluster Configurations

A clearer picture of the range of cluster options can be gained by looking at functional alternatives.
Table 20.2 provides a useful classification along functional lines, which we now discuss.

Table 20.2 Clustering Methods: Benefits and Limitations

Clustering
Method

Description Benefits Limitations

Passive
Standby

A secondary server takes over in
case of primary server failure.

Easy to implement. High cost because the
secondary server is
unavailable for other
processing tasks.

Active
Secondary:

The secondary server is also used
for processing tasks.

Reduced cost
because secondary
servers can be used
for processing.

Increased complexity.

Separate
Servers

Separate servers have their own
disks. Data is continuously copied
from primary to secondary server.

High availability. High network and
server overhead due
to copying operations.

Servers
Connected
to Disks

Servers are cabled to the same
disks, but each server owns its
disks. If one server fails, its disks
are taken over by the other server.

Reduced network
and server overhead
due to elimination of
copying operations.

Usually requires disk
mirroring or RAID
technology to
compensate for risk of
disk failure.

Servers
Share Disks

Multiple servers simultaneously
share access to disks.

Low network and
server overhead.
Reduced risk of
downtime caused by
disk failure.

Requires lock
manager software.
Usually used with disk
mirroring or RAID
technology.

A common, older method known as passive standby, is simply to have one computer handle all of
the processing load while the other computer remains inactive, standing by to take over in the event of
a failure of the primary. To coordinate the machines, the active, or primary, system periodically sends
a “heartbeat” message to the standby machine. Should these messages stop arriving, the standby
assumes that the primary server has failed and puts itself into operation. This approach increases
availability but does not improve performance. Further, if the only information that is exchanged
between the two systems is a heartbeat message, and if the two systems do not share common disks,
then the standby provides a functional backup but has no access to the databases managed by the
primary.

The passive standby is generally not referred to as a cluster. The term cluster is reserved for multiple
interconnected computers that are all actively doing processing while maintaining the image of a
single system to the outside world. The term active secondary is often used in referring to this
configuration. Three classifications of clustering can be identified: separate servers, shared nothing,
and shared memory.

In one approach to clustering, each computer is a separate server with its own disks, and there are
no disks shared between systems (Figure 20.11a). This arrangement provides high performance as
well as high availability. In this case, some type of management or scheduling software is needed to
assign incoming client requests to servers so that the load is balanced and high utilization is achieved.
It is desirable to have a failover capability, which means that if a computer fails while executing an
application, another computer in the cluster can pick up and complete the application. For this to
happen, data must constantly be copied among systems so that each system has access to the
current data of the other systems. The overhead of this data exchange ensures high availability at the
cost of a performance penalty.

To reduce the communications overhead, most clusters now consist of servers connected to common
disks (Figure 20.11b). In one variation on this approach, called shared nothing, the common disks
are partitioned into volumes, and each volume is owned by a single computer. If that computer fails,
the cluster must be reconfigured so that some other computer has ownership of the volumes of the
failed computer.

It is also possible to have multiple computers share the same disks at the same time (called the
shared disk approach), so that each computer has access to all of the volumes on all of the disks.
This approach requires the use of some type of locking facility to ensure that data can only be
accessed by one computer at a time.

20.6 Nonuniform Memory Access
In terms of commercial products, the two common approaches to providing a multiple- ​processor
system to support applications are SMPs and clusters. For some years, another approach, known as
nonuniform memory access (NUMA), has been the subject of research and commercial NUMA
products are now available.

Before proceeding, we should define some terms often found in the NUMA literature.

Uniform memory access (UMA): All processors have access to all parts of main memory using
loads and stores. The memory access time of a processor to all regions of memory is the same.
The access times experienced by different processors are the same. The SMP organization
discussed in Sections 20.2 and 20.3 is UMA.
Nonuniform memory access (NUMA): All processors have access to all parts of main memory
using loads and stores. The memory access time of a processor differs depending on which region
of main memory is accessed. The last statement is true for all processors; however, for different
processors, which memory regions are slower and which are faster differs.
Cache-​coherent NUMA (CC- ​NUMA): A NUMA system in which cache coherence is maintained
among the caches of the various processors.

A NUMA system without cache coherence is more or less equivalent to a cluster. The commercial
products that have received much attention recently are CC- ​NUMA systems, which are quite distinct
from both SMPs and clusters. Usually, but unfortunately not always, such systems are in fact referred
to in the commercial literature as CC- ​NUMA systems. This section is concerned only with CC- ​NUMA
systems.

Motivation

With an SMP system, there is a practical limit to the number of processors that can be used. An
effective cache scheme reduces the bus traffic between any one processor and main memory. As the
number of processors increases, this bus traffic also increases. Also, the bus is used to exchange
cache-​coherence signals, further adding to the burden. At some point, the bus becomes a
performance bottleneck. Performance degradation seems to limit the number of processors in an SMP
configuration to somewhere between 16 and 64 processors. For example, Silicon Graphics’ Power
Challenge SMP is limited to 64 R10000 processors in a single system; beyond this number
performance degrades substantially.

The processor limit in an SMP is one of the driving motivations behind the development of cluster
systems. However, with a cluster, each node has its own private main memory; applications do not
see a large global memory. In effect, coherence is maintained in software rather than hardware. This
memory granularity affects performance and, to achieve maximum performance, software must be
tailored to this environment. One approach to achieving large- ​scale multiprocessing while retaining the
flavor of SMP is NUMA.

The objective with NUMA is to maintain a transparent system-wide memory while permitting multiple
multiprocessor nodes, each with its own bus or other internal interconnect system.

Organization

Figure 20.12 depicts a typical CC- ​NUMA organization. There are multiple independent nodes, each of
which is, in effect, an SMP organization. Thus, each node contains multiple processors, each with its
own L1 and L2 caches, plus main memory. The node is the basic building block of the overall

CC-​NUMA organization. For example, each Silicon Graphics Origin node includes two MIPS R10000
processors; each Sequent NUMA- ​Q node includes four Pentium II processors. The nodes are
interconnected by means of some communications facility, which could be a switching mechanism, a
ring, or some other networking facility.

Figure 20.12 CC-​NUMA Organization

Each node in the CC- ​NUMA system includes some main memory. From the point of view of the
processors, however, there is only a single addressable memory, with each location having a unique
system-wide address. When a processor initiates a memory access, if the requested memory location

is not in that processor’s cache, then the L2 cache initiates a fetch operation. If the desired line is in
the local portion of the main memory, the line is fetched across the local bus. If the desired line is in a
remote portion of the main memory, then an automatic request is sent out to fetch that line across the
interconnection network, deliver it to the local bus, and then deliver it to the requesting cache on that
bus. All of this activity is automatic and transparent to the processor and its cache.

In this configuration, cache coherence is a central concern. Although implementations differ as to
details, in general terms we can say that each node must maintain some sort of directory that gives it
an indication of the location of various portions of memory and also cache status information. To see
how this scheme works, we give an example taken from [PFIS98]. Suppose that processor 3 on node
2 (P2-3) requests a memory location 798, which is in the memory of node 1. The following sequence
occurs:

1. P2-3 issues a read request on the snoopy bus of node 2 for location 798.
2. The directory on node 2 sees the request and recognizes that the location is in node 1.
3. Node 2’s directory sends a request to node 1, which is picked up by node 1’s directory.
4. Node 1’s directory, acting as a surrogate of P2-3, requests the contents of 798, as if it were a

processor.
5. Node 1’s main memory responds by putting the requested data on the bus.
6. Node 1’s directory picks up the data from the bus.
7. The value is transferred back to node 2’s directory.
8. Node 2’s directory places the data back on node 2’s bus, acting as a surrogate for the memory

that originally held it.
9. The value is picked up and placed in P2-3’s cache and delivered to P2-3.

The preceding sequence explains how data are read from a remote memory using hardware
mechanisms that make the transaction transparent to the processor. On top of these mechanisms,
some form of cache coherence protocol is needed. Various systems differ on exactly how this is done.
We make only a few general remarks here. First, as part of the preceding sequence, node 1’s
directory keeps a record that some remote cache has a copy of the line containing location 798. Then,
there needs to be a cooperative protocol to take care of modifications. For example, if a modification is
done in a cache, this fact can be broadcast to other nodes. Each node’s directory that receives such a
broadcast can then determine if any local cache has that line and, if so, cause it to be purged. If the
actual memory location is at the node receiving the broadcast notification, then that node’s directory
needs to maintain an entry indicating that that line of memory is invalid and remains so until a write
back occurs. If another processor (local or remote) requests the invalid line, then the local directory
must force a write back to update memory before providing the data.

NUMA Pros and Cons

The main advantage of a CC- ​NUMA system is that it can deliver effective performance at higher levels
of parallelism than SMP, without requiring major software changes. With multiple NUMA nodes, the
bus traffic on any individual node is limited to a demand that the bus can handle. However, if many of
the memory accesses are to remote nodes, performance begins to break down. There is reason to
believe that this performance breakdown can be avoided. First, the use of L1 and L2 caches is
designed to minimize all memory accesses, including remote ones. If much of the software has good
temporal locality, then remote memory accesses should not be excessive. Second, if the software has
good spatial locality, and if virtual memory is in use, then the data needed for an application will reside
on a limited number of frequently-used pages that can be initially loaded into the memory local to the
running application. The Sequent designers report that such spatial locality does appear in
representative applications [LOVE96]. Finally, the virtual memory scheme can be enhanced by
including in the operating system a page migration mechanism that will move a virtual memory page

to a node that is frequently using it; the Silicon Graphics designers report success with this approach
[WHIT97].

Even if the performance breakdown due to remote access is addressed, there are two other
disadvantages for the CC- ​NUMA approach [PFIS98]. First, a CC-​NUMA does not transparently look
like an SMP; software changes will be required to move an operating system and applications from an
SMP to a CC-​NUMA system. These include page allocation, already mentioned, process allocation,
and load balancing by the operating system. A second concern is that of availability. This is a rather
complex issue and depends on the exact implementation of the CC- ​NUMA system; the interested
reader is referred to [PFIS98].

Aleksandr Lukin/123RF

Vector Processor Simulator

20.7 Key Terms, Review Questions, and Problems

Key Terms

active standby

cache coherence

cluster

directory protocol

failback

failover

infrastructure as a service (IaaS)

MESI protocol

multiprocessor

nonuniform memory access (NUMA)

passive standby

platform as a service (PaaS)

service aggregation

service arbitrage

service intermediation

snoopy protocol

software as a service (SaaS)

symmetric multiprocessor (SMP)

uniform memory access (UMA)

uniprocessor

Review Questions

Problems

20.1 List and briefly define three types of computer system organization.
20.2 What are the chief characteristics of an SMP?
20.3 What are some of the potential advantages of an SMP compared with a uniprocessor?
20.4 What are some of the key OS design issues for an SMP?
20.5 What is the difference between software and hardware cache coherent schemes?
20.6 What is the meaning of each of the four states in the MESI protocol?
20.7 What are some of the key benefits of clustering?
20.8 What is the difference between failover and failback?
20.9 What are the differences among UMA, NUMA, and CC- ​NUMA?

20.1 Let be the percentage of program code that can be executed simultaneously by n
processors in a computer system. Assume that the remaining code must be executed
sequentially by a single processor. Each processor has an execution rate of x MIPS.

a. Derive an expression for the effective MIPS rate when using the system for exclusive
execution of this program, in terms of n, , and x.

b. If and MIPS, determine the value of that will yield a system performance of
40 MIPS.

20.2 A multiprocessor with eight processors has 20 attached tape drives. There are a large
number of jobs submitted to the system that each require a maximum of four tape drives to
complete execution. Assume that each job starts running with only three tape drives for a long
period before requiring the fourth tape drive for a short period toward the end of its operation.
Also assume an endless supply of such jobs.

a. Assume the scheduler in the OS will not start a job unless there are four tape drives
available. When a job is started, four drives are assigned immediately and are not
released until the job finishes. What is the maximum number of jobs that can be in
progress at once? What are the maximum and minimum number of tape drives that may
be left idle as a result of this policy?

b. Suggest an alternative policy to improve tape drive utilization and at the same time avoid
system deadlock. What is the maximum number of jobs that can be in progress at once?
What are the bounds on the number of idling tape drives?

20.3 Can you foresee any problem with the write- ​once cache approach on bus- ​based
multiprocessors? If so, suggest a solution.
20.4 Consider a situation in which two processors in an SMP configuration, over time, require
access to the same line of data from main memory. Both processors have a cache and use the
MESI protocol. Initially, both caches have an invalid copy of the line. Figure 20.13 depicts the
consequence of a read of line x by Processor P1. If this is the start of a sequence of accesses,
draw the subsequent figures for the following sequence:

1. P2 reads x.
2. P1 writes to x (for clarity, label the line in P1’s cache).
3. P1 writes to x (label the line in P1’s cache).
4. P2 reads x.

20.5 Figure 20.14 shows the state diagrams of two possible cache coherence protocols.
Deduce and explain each protocol, and compare each to MESI.

α

α
n = 16 x = 4 α

x′

x″

Figure 20.13 MESI Example: Processor 1 Reads Line x

Figure 20.14 Two Cache Coherence Protocols

20.6 Consider an SMP with both L1 and L2 caches using the MESI protocol. As explained in
Section 20.3 , one of four states is associated with each line in the L2 cache. Are all four states
also needed for each line in the L1 cache? If so, why? If not, explain which state or states can
be eliminated.
20.7 An earlier version of the IBM mainframe, the S/390 G4, used three levels of cache. As with
the z990, only the first level was on the processor chip [called the processor unit (PU)]. The L2

cache was also similar to the z990. An L3 cache was on a separate chip that acted as a
memory controller, and was interposed between the L2 caches and the memory cards. Table
20.3 shows the performance of a three- ​level cache arrangement for the IBM S/390. The
purpose of this problem is to determine whether the inclusion of the third level of cache seems
worthwhile. Determine the access penalty (average number of PU cycles) for a system with only
an L1 cache, and normalize that value to 1.0. Then determine the normalized access penalty
when both an L1 and L2 cache are used, and the access penalty when all three caches are
used. Note the amount of improvement in each case and state your opinion on the value of the
L3 cache.

Table 20.3 Typical Cache Hit Rate on S/390 SMP Configuration [MAK97]

Memory Subsystem Access Penalty (PU cycles) Cache Size Hit Rate (%)

L1 cache  1  32 KB 89

L2 cache  5 256 KB 5

L3 cache 14   2 MB 3

Memory 32   8 GB 3

20.8
a. Consider a uniprocessor with separate data and instruction caches, with hit ratios of

and , respectively. Access time from processor to cache is c clock cycles, and transfer
time for a block between memory and cache is b clock cycles. Let be the fraction of
memory accesses that are for instructions, and is the fraction of dirty lines in the data
cache among lines replaced. Assume a write- ​back policy and determine the effective
memory access time in terms of the parameters just defined.

b. Now assume a bus- ​based SMP in which each processor has the characteristics of part
(a). Every processor must handle cache invalidation in addition to memory reads and
writes. This affects effective memory access time. Let be the fraction of data
references that cause invalidation signals to be sent to other data caches. The processor
sending the signal requires t clock cycles to complete the invalidation operation. Other
processors are not involved in the invalidation operation. Determine the effective memory
access time.

 20.9 What organizational alternative is suggested by each of the illustrations in Figure 20.15 ?

Hd

H
i

fi
fd

finv

Figure 20.15 Diagram for Problem 20.9

20.10 In Figure 20.10 , some of the diagrams show horizontal rows that are partially filled. In
other cases, there are rows that are completely blank. These represent two different types of
loss of efficiency. Explain.
20.11 Consider the pipeline depiction in Figure 16.13b , which is redrawn in Figure 20.16a ,
with the fetch and decode stages ignored, to represent the execution of thread A. Figure
20.16b illustrates the execution of a separate thread B. In both cases, a simple pipelined
processor is used.

a. Show an instruction issue diagram, similar to Figure 20.10a , for each of the two threads.
b. Assume that the two threads are to be executed in parallel on a chip multiprocessor, with

each of the two cores on the chip using a simple pipeline. Show an instruction issue
diagram similar to Figure 20.10k . Also show a pipeline execution diagram in the style of
Figure 20.16 .

c. Assume a two-​issue superscalar architecture. Repeat part (b) for an interleaved
multithreading superscalar implementation, assuming no data dependencies. Note: There
is no unique answer; you need to make assumptions about latency and priority.

d. Repeat part (c) for a blocked multithreading superscalar implementation.
e. Repeat for a four-​issue SMT architecture.

Figure 20.16 Two Threads of Execution

20.12 An application program is executed on a nine- ​computer cluster. A benchmark program
took time T on this cluster. Further, it was found that 25% of T was time in which the application
was running simultaneously on all nine computers. The remaining time, the application had to
run on a single computer.

a. Calculate the effective speedup under the aforementioned condition as compared to
executing the program on a single computer. Also calculate , the percentage of code
that has been parallelized (programmed or compiled so as to use the cluster mode) in the
preceding program.

b. Suppose that we are able to effectively use 17 computers rather than 9 computers on the
parallelized portion of the code. Calculate the effective speedup that is achieved.

20.13 The following FORTRAN program is to be executed on a computer, and a parallel version
is to be executed on a 32-computer cluster.

L1: DO 10 I = 1, 1024
L2: SUM(I) = 0
L3: DO 20J = 1,I
L4: 20 SUM(I) = SUM(I) + I
L5: 10 CONTINUE

Suppose lines 2 and 4 each take two machine cycle times, including all processor and
memory-​access activities. Ignore the overhead caused by the software loop control statements
(lines 1, 3, 5) and all other system overhead and resource conflicts.

α

a. What is the total execution time (in machine cycle times) of the program on a single
computer?

b. Divide the I-​loop iterations among the 32 computers as follows: Computer 1 executes the
first 32 iterations (to 32), processor 2 executes the next 32 iterations, and so on.
What are the execution time and speedup factor compared with part (a)? (Note that the
computational workload, dictated by the J- ​loop, is unbalanced among the computers.)

c. Explain how to modify the parallelizing to facilitate a balanced parallel execution of all the
computational workload over 32 computers. By a balanced load is meant an equal
number of additions assigned to each computer with respect to both loops.

d. What is the minimum execution time resulting from the parallel execution on 32
computers? What is the resulting speedup over a single computer?

20.14 Consider the following two versions of a program to add two vectors:

L1:	 DO 10 I = 1, N

L2:	 A(I) = B(I) + C(I)

L3: 10	 CONTINUE

L4: 	 SUM = 0

L5: 	 DO 20J = 1, N

L6: 	 SUM = SUM + A(J)

L7: 20	 CONTINUE

	 DOALL K = 1, M

 	 DO 10 I = L(K- ​1)+1, KL
	 A(I) = B(I)+C(I)

 10 CONTINUE

 SUM(K) = 0

 DO 20 J = 1, L

 SUM(K) = SUM(K) + A(L(K- ​1)+J)
 20 CONTINUE

 ENDALL

a. The program on the left executes on a uniprocessor. Suppose each line of code L2, L4,
and L6 takes one processor clock cycle to execute. For simplicity, ignore the time
required for the other lines of code. Initially all arrays are already loaded in main memory
and the short program fragment is in the instruction cache. How many clock cycles are
required to execute this program?

b. The program on the right is written to execute on a multiprocessor with M processors. We
partition the looping operations into M sections with elements per section.

DOALL declares that all M sections are executed in parallel. The result of this program is
to produce M partial sums. Assume that k clock cycles are needed for each
interprocessor communication operation via the shared memory and that therefore the
addition of each partial sum requires k cycles. An l﻿-​level binary adder tree can merge all
the partial sums, where . How many cycles are needed to produce the final

sum?
c. Suppose elements in the array and . What is the speedup achieved by

using the multiprocessor? Assume . What percentage is this of the theoretical
speedup of a factor of 256?

I = 1

L = N / M

l = log2M

N = 220 M = 256

k = 200

Chapter 21 Multicore Computers

21.8 Key Terms, Review Questions, and Problems

Learning Objectives

After studying this chapter, you should be able to:

Understand the hardware performance issues that have driven the move to multicore computers.
Understand the software performance issues posed by the use of multithreaded multicore
computers.
Present an overview of the two principal approaches to heterogeneous multicore organization.
Have an appreciation of the use of multicore organization on embedded systems, PCs and
servers, and mainframes.

A multicore processor, also known as a chip multiprocessor, combines two or
more processor units (called cores) on a single piece of silicon (called a die).

21.1 Hardware Performance Issues
Increase in Parallelism and Complexity
Power Consumption

21.2 Software Performance Issues
Software on Multicore
Application Example: Valve Game Software

21.3 Multicore Organization
Levels of Cache
Simultaneous Multithreading

21.4 Heterogeneous Multicore Organization
Different Instruction Set Architectures
Equivalent Instruction Set Architectures
Cache Coherence and the MOESI Model

21.5 Intel Core i7-5960X
21.6 ARM Cortex-​A15 MPCore

Interrupt Handling
Cache Coherency
L2 Cache Coherency

21.7 IBM z13 Mainframe
Organization
Cache Structure

Typically, each core consists of all of the components of an independent
processor, such as registers, ALU, pipeline hardware, and control unit, plus L1
instruction and data caches. In addition to the multiple cores, contemporary
multicore chips also include L2 cache and, increasingly, L3 cache. The most highly
integrated multicore processors, known as systems on chip (SoCs), also include
memory and peripheral controllers.

This chapter provides an overview of multicore systems. We begin with a look at
the hardware performance factors that led to the development of multicore
computers and the software challenges of exploiting the power of a multicore
system. Next, we look at multicore organization. Finally, we examine three
examples of multicore products, covering personal computer and workstation
systems (Intel), embedded systems (ARM), and mainframes (IBM).

21.1 Hardware Performance Issues
As we discuss in Chapter 2, microprocessor
Microprocessor systems have experienced a steady
increase in execution performance for decades. This increase is due to a number of factors, including
increase in clock frequency, increase in transistor density, and refinements in the organization of the
processor on the chip.

Increase in Parallelism and Complexity

The organizational changes in processor design have primarily been focused on exploiting ILP, so that
more work is done in each clock cycle. These changes include, in chronological order (Figure 21.1):

Pipelining: Individual instructions are executed through a pipeline of stages so that while one
instruction is executing in one stage of the pipeline, another instruction is executing in another
stage of the pipeline.
Superscalar: Multiple pipelines are constructed by replicating execution resources. This enables
parallel execution of instructions in parallel pipelines, so long as hazards are avoided.
Simultaneous multithreading (SMT): Register banks are expanded so that multiple threads can
share the use of pipeline resources.

Figure 21.1 Alternative Chip Organizations

With each of these innovations, designers have over the years attempted to increase the performance
of the system by adding complexity. In the case of pipelining, simple three- ​stage pipelines were
replaced by pipelines with five stages. Intel’s Pentium 4 “Prescott” core had 31 stages for some
instructions.

There is a practical limit to how far this trend can be taken, because with more stages, there is the
need for more logic, more interconnections, and more control signals.

With superscalar organization, increased performance can be achieved by increasing the number of
parallel pipelines. Again, there are diminishing returns as the number of pipelines increases. More
logic is required to manage hazards and to stage instruction resources. Eventually, a single thread of
execution reaches the point where hazards and resource dependencies prevent the full use of the
multiple pipelines available. Also, compiled binary code rarely exposes enough ILP to take advantage
of more than about six parallel pipelines.

This same point of diminishing returns is reached with SMT, as the complexity of managing multiple
threads over a set of pipelines limits the number of threads and number of pipelines that can be
effectively utilized. SMT’s advantage lies in the fact that two (or more) program streams can be
searched for available ILP.

There is a related set of problems dealing with the design and fabrication of the computer chip. The
increase in complexity to deal with all of the logical issues related to very long pipelines, multiple
superscalar pipelines, and multiple SMT register banks means that increasing amounts of the chip
area are occupied with coordinating and signal transfer logic. This increases the difficulty of designing,
fabricating, and debugging the chips. The increasingly difficult engineering challenge related to
processor logic is one of the reasons that an increasing fraction of the processor chip is devoted to the
simpler memory logic. Power issues, discussed next, provide another reason.

Power Consumption

To maintain the trend of higher performance as the number of transistors per chip rises, designers
have resorted to more elaborate processor designs (pipelining, superscalar, SMT) and to high clock
frequencies. Unfortunately, power requirements have grown exponentially as chip density and clock
frequency have risen. This was shown in Figure 2.2.

One way to control power density is to use more of the chip area for cache memory. Memory
transistors are smaller and have a power density an order of magnitude lower than that of logic (see
Figure 21.2). As chip transistor density has increased, the percentage of chip area devoted to
memory has grown, and is now often half the chip area. Even so, there is still a considerable amount
of chip area devoted to processing logic.

Figure 21.2 Power and Memory Considerations

How to use all those logic transistors is a key design issue. As discussed earlier in this section, there
are limits to the effective use of such techniques as superscalar and SMT. In general terms, the
experience of recent decades has been encapsulated in a rule of thumb known as Pollack’s rule
[POLL99], which states that performance increase is roughly proportional to the square root of
increase in complexity. In other words, if you double the logic in a processor core, then it delivers only
40% more performance. In principle, the use of multiple cores has the potential to provide near- ​linear
performance improvement with the increase in the number of cores— ​but only for software that can
take advantage.

Power considerations provide another motive for moving toward a multicore organization. Because the
chip has such a huge amount of cache memory, it becomes unlikely that any one thread of execution
can effectively use all that memory. Even with SMT, multithreading is done in a relatively limited
fashion and cannot therefore fully exploit a gigantic cache, whereas a number of relatively
independent threads or processes has a greater opportunity to take full advantage of the cache
memory.

21.2 Software Performance Issues
A detailed examination of the software performance issues related to multicore organization is beyond
our scope. In this section, we first provide an overview of these issues, and then look at an example of
an application designed to exploit multicore capabilities.

Software on Multicore

The potential performance benefits of a multicore organization depend on the ability to effectively
exploit the parallel resources available to the application. Let us focus first on a single application
running on a multicore system. Recall from Chapter 2 that Amdahl’s law states that:

The law assumes a program in which a fraction of the execution time involves code that is
inherently sequential and a fraction f that involves code that is infinitely parallelizable with no
scheduling overhead.

This law appears to make the prospect of a multicore organization attractive. But as Figure 21.3a
shows, even a small amount of serial code has a noticeable impact. If only 10% of the code is
inherently serial running the program on a multicore system with eight processors yields a
performance gain of only a factor of 4.7. In addition, software typically incurs overhead as a result of
communication and distribution of work among multiple processors, and as a result of cache
coherence overhead. This overhead results in a curve where performance peaks and then begins to
degrade because of the increased burden of the overhead of using multiple processors (e.g.,
coordination and OS management). Figure 21.3b, from [MCDO05], is a representative example.

Speed up = time to execute program on a single processor
time to execute program on Nparallel processors

= 1
(1 − − f) +

f
N

(21.1)

(1 − −f)

(f =0.9) ,

Figure 21.3 Performance Effect of Multiple Cores

However, software engineers have been addressing this problem and there are numerous
applications in which it is possible to effectively exploit a multicore system. [MCDO05] analyzes the
effectiveness of multicore systems on a set of database applications, in which great attention was paid
to reducing the serial fraction within hardware architectures, operating systems, middleware, and the
database application software. Figure 21.4 shows the result. As this example shows, database

management systems and database applications are one area in which multicore systems can be
used effectively. Many kinds of servers can also effectively use the parallel multicore organization,
because servers typically handle numerous relatively independent transactions in parallel.

Figure 21.4 Scaling of Database Workloads on Multiple-​Processor Hardware

In addition to general- ​purpose server software, a number of classes of applications benefit directly
from the ability to scale throughput with the number of cores. [MCDO06] lists the following examples:

Multithreaded native applications (thread-​level parallelism): Multithreaded applications are
characterized by having a small number of highly threaded processes.
Multiprocess applications (process-​level parallelism): Multiprocess applications are
characterized by the presence of many single- ​threaded processes.
Java applications: Java applications embrace threading in a fundamental way. Not only does the
Java language greatly facilitate multithreaded applications, but the Java Virtual Machine is a
multithreaded process that provides scheduling and memory management for Java applications.
Multi-​instance applications (application-​level parallelism): Even if an individual application
does not scale to take advantage of a large number of threads, it is still possible to gain from
multicore architecture by running multiple instances of the application in parallel. If multiple
application instances require some degree of isolation, virtualization technology (for the hardware
of the operating system) can be used to provide each of them with its own separate and secure
domain.

Before turning to an example, we elaborate on the topic of thread- ​level parallelism by introducing the
concept of threading granularity, which can be defined as the minimal unit of work that can be
beneficially parallelized. In general, the finer the granularity the system enables, the less constrained
is the programmer in parallelizing a program. Consequently, finer grain threading systems allow
parallelization in more situations than coarse- ​grained ones. The choice of the target granularity of an
architecture involves an inherent tradeoff. On the one hand, the finer grain systems are preferable

because of the flexibility they afford to the programmer. On the other hand, the finer the threading
granularity, the more significant part of the execution is taken by the threading system overhead.

Application Example: Valve Game Software

Valve is an entertainment and technology company that has developed a number of popular games as
well as the Source engine, one of the most widely played game engines available. Source is an
animation engine used by Valve for its games and licensed to other game developers.

Valve has reprogrammed the Source engine software to use multithreading to exploit the scalability of
multicore processor chips from Intel and AMD [REIM06]. The revised Source engine code provides
more powerful support for Valve games such as Half Life 2.

From Valve’s perspective, threading granularity options are defined as follows [HARR06]:

Coarse- ​grained threading: Individual modules, called systems, are assigned to individual
processors. In the Source engine case, this means putting rendering on one processor, AI (artificial
intelligence) on another, physics on another, and so on. This is straightforward. In essence, each
major module is single threaded and the principal coordination involves synchronizing all the
threads with a timeline thread.
Fine-​grained threading: Many similar or identical tasks are spread across multiple processors.
For example, a loop that iterates over an array of data can be split up into a number of smaller
parallel loops in individual threads that can be scheduled in parallel.
Hybrid threading: This involves the selective use of fine- ​grain threading for some systems and
single threading for other systems.

Valve found that through coarse threading, it could achieve up to twice the performance across two
processors compared to executing on a single processor. But this performance gain could only be
achieved with contrived cases. For real- ​world gameplay, the improvement was on the order of a factor
of 1.2. Valve also found that effective use of fine-​grain threading was difficult. The time per work unit
can be variable, and managing the timeline of outcomes and consequences involved complex
programming.

Valve found that a hybrid threading approach was the most promising and would scale the best as
multicore systems with eight or sixteen processors became available. Valve identified systems that
operate very effectively when assigned to a single processor permanently. An example is sound
mixing, which has little user interaction, is not constrained by the frame configuration of windows, and
works on its own set of data. Other modules, such as scene rendering, can be organized into a
number of threads so that the module can execute on a single processor but achieve greater
performance as it is spread out over more and more processors.

Figure 21.5 illustrates the thread structure for the rendering module. In this hierarchical structure,
higher- ​level threads spawn lower- ​level threads as needed. The rendering module relies on a critical
part of the Source engine, the world list, which is a database representation of the visual elements in
the game’s world. The first task is to determine what are the areas of the world that need to be
rendered. The next task is to determine what objects are in the scene as viewed from multiple angles.
Then comes the processor- ​intensive work. The rendering module has to work out the rendering of
each object from multiple points of view, such as the player’s view, the view of TV monitors, and the
point of view of reflections in water.

Figure 21.5 Hybrid Threading for Rendering Module

Some of the key elements of the threading strategy for the rendering module are listed in [LEON07]
and include the following:

Construct scene- ​rendering lists for multiple scenes in parallel (e.g., the world and its reflection in
water).
Overlap graphics simulation.
Compute character bone transformations for all characters in all scenes in parallel.
Allow multiple threads to draw in parallel.

The designers found that simply locking key databases, such as the world list, for a thread was too
inefficient. Over 95% of the time, a thread is trying to read from a data set, and only 5% of the time at
most is spent in writing to a data set. Thus, a concurrency mechanism known as the
single- ​writer-​multiple- ​readers model works effectively.

21.3 Multicore Organization
At a top level of description, the main variables in a multicore organization are as follows:

The number of core processors on the chip
The number of levels of cache memory
How cache memory is shared among cores
Whether simultaneous multithreading (SMT) is employed
The types of cores

We explore all but the last of these considerations in this section, deferring a discussion of types of
cores to the next section.

Levels of Cache

Figure 21.6 shows four general organizations for multicore systems. Figure 21.6a is an organization
found in some of the earlier multicore computer chips, and is still seen in some embedded chips. In
this organization, the only on- ​chip cache is L1 cache, with each core having its own dedicated L1
cache. Almost invariably, the L1 cache is divided into instruction and data caches for performance
reasons, while L2 and higher- ​level caches are unified. An example of this organization is the ARM11
MPCore.

Figure 21.6 Multicore Organization Alternatives

The organization of Figure 21.6b is also one in which there is no on- ​chip cache sharing. In this, there
is enough area available on the chip to allow for L2 cache. An example of this organization is the AMD
Opteron. Figure 21.6c shows a similar allocation of chip space to memory, but with the use of a
shared L2 cache. The Intel Core Duo has this organization. Finally, as the amount of cache memory
available on the chip continues to grow, performance considerations dictate splitting off a separate,
shared L3 cache (Figure 21.6d), with dedicated L1 and L2 caches for each core processor. The Intel
Core i7 is an example of this organization.

The use of a shared higher- ​level cache on the chip has several advantages over exclusive reliance on
dedicated caches:

1. Constructive interference can reduce overall miss rates. That is, if a thread on one core
accesses a main memory location, this brings the line containing the referenced location into
the shared cache. If a thread on another core soon thereafter accesses the same memory
block, the memory locations will already be available in the shared on- ​chip cache.

2. A related advantage is that data shared by multiple cores is not replicated at the shared cache
level.

3. With proper line replacement algorithms, the amount of shared cache allocated to each core is

dynamic, so that threads that have less locality (larger working sets) can employ more cache.
4. Inter-​core communication is easy to implement, via shared memory locations.
5. The use of a shared higher- ​level cache confines the cache coherency problem to the lower

cache levels, which may provide some additional performance advantage.

A potential advantage to having only dedicated L2 caches on the chip is that each core enjoys more
rapid access to its private L2 cache. This is advantageous for threads that exhibit strong locality.

As both the amount of memory available and the number of cores grow, the use of a shared L3 cache
combined with dedicated percore L2 caches in Figure 21.6d seems likely to provide better
performance than simply a massive shared L2 cache or very large dedicated L2 caches with no
on-​chip L3. An example of this latter arrangement is the Xeon E5-2600/4600 chip processor (Figure
8.16).

Simultaneous Multithreading

Another organizational design decision in a multicore system is whether the individual cores will
implement simultaneous multithreading (SMT). For example, the Intel Core Duo uses pure
superscalar cores, whereas the Intel Core i7 uses SMT cores. SMT has the effect of scaling up the
number of hardware- ​level threads that the multicore system supports. Thus, a multicore system with
four cores and SMT that supports four simultaneous threads in each core appears the same to the
application level as a multicore system with 16 cores. As software is developed to more fully exploit
parallel resources, an SMT approach appears to be more attractive than a purely superscalar
approach.

21.4 Heterogeneous Multicore Organization
The quest to make optimal use of the silicon real estate on a processor chip is never ending. As clock
speeds and logic densities increase, designers must balance many design elements in their attempts
to maximize performance and minimize power consumption. We have so far examined a number of
such approaches, including the following:

1. Increase the percentage of the chip devoted to cache memory.
2. Increase the number of levels of cache memory.
3. Change the length (increase or decrease) and functional components of the instruction pipeline.
4. Employ simultaneous multithreading.
5. Use multiple cores.

A typical case for the use of multiple cores is a chip with multiple identical cores, known as
homogenous multicore organization. To achieve better results, in terms of performance and/or
power consumption, an increasingly popular design choice is heterogeneous multicore
organization, which refers to a processor chip that includes more than one kind of core. In this
section, we look at two approaches to heterogeneous multicore organization.

Different Instruction Set Architectures

The approach that has received the most industry attention is the use of cores that have distinct ISAs.
Typically, this involves mixing conventional cores, referred to in this context as CPUs, with specialized
cores optimized for certain types of data or applications. Most often, the additional cores are optimized
to deal with vector and matrix data processing.

CPU/GPU MULTICORE

The most prominent trend in terms of heterogeneous multicore design is the use of both CPUs and
graphics processing units (GPUs) on the same chip. Briefly, GPUs are characterized by the ability to
support thousands of parallel execution threads. Thus, GPUs are well matched to applications that
process large amounts of vector and matrix data. Initially aimed at improving the performance of
graphics applications, thanks to easy- ​to-​adopt programming models such as CUDA (Compute Unified
Device Architecture), these new processors are increasingly being applied to improve the
performance of general- ​purpose and scientific applications that involve large numbers of repetitive
operations on structured data.

To deal with the diversity of target applications in today’s computing environment, multicore containing
both GPUs and CPUs has the potential to enhance performance. This heterogeneous mix, however,
presents issues of coordination and correctness.

Figure 21.7 is a typical multicore processor organization. Multiple CPUs and GPUs share on- ​chip
resources, such as the last-​level cache (LLC), interconnection network, and memory controllers. Most
critical is the way in which cache management policies provide effective sharing of the LLC. The
differences in cache sensitivity and memory access rate between CPUs and GPUs create significant
challenges to the efficient sharing of the LLC.

Figure 21.7 Heterogenous Multicore Chip Elements

Table 21.1 illustrates the potential performance benefit of combining CPUs and GPUs for scientific
applications. This table shows the basic operating parameters of an AMD chip, the A10 5800K
[ALTS12]. For floating-​point calculations, the CPU’s performance at 121.6 GFLOPS is dwarfed by the
GPU, which offers 614 GFLOPS to applications that can utilize the resource effectively.

Table 21.1 Operating Parameters of AMD 5100K Heterogeneous Multicore Processor

CPU GPU

Clock frequency (GHz) 3.8 0.8

Cores 4 384

FLOPS/core 8 2

GFLOPS 121.6 614.4

Whether it is scientific applications or traditional graphics processing, the key to leveraging the added
GPU processors is to consider the time needed to transfer a block of data to the GPU, process it, then
return the results to the main application thread. In earlier implementations of chips that incorporated
GPUs, physical memory is partitioned between CPU and GPU. If an application thread is running on a
CPU that demands GPU processing, the CPU explicitly copies the data to the GPU memory. The
GPU completes the computation and then copies the result back to CPU memory. Issues of cache
coherence across CPU and GPU memory caches do not arise because the memory is partitioned. On
the other hand, the physical handing of data back and forth results in a performance penalty.

A number of research and development efforts are underway to improve performance over that
described in the preceding paragraph, of which the most notable is the initiative by the Heterogeneous
System Architecture (HSA) Foundation. Key features of the HSA approach include the following:

FLOPS = floating-point operations per second.
FLOPS / core = number of parallel floating-point operations that can be performed.

1. The entire virtual memory space is visible to both CPU and GPU. Both CPU and GPU can
access and allocate any location in the system’s virtual memory space.

2. The virtual memory system brings in pages to physical main memory as needed.
3. A coherent memory policy ensures that CPU and GPU caches both see an up- ​to-​date view of

data.
4. A unified programming interface that enables users to exploit the parallel capabilities of the

GPUs within programs that rely on CPU execution as well.

The overall objective is to allow programmers to write applications that exploit the serial power of
CPUs and the parallel- ​processing power of GPUs seamlessly with efficient coordination at the OS and
hardware level. As mentioned, this is an ongoing area of research and development.

CPU/DSP MULTICORE

Another common example of a heterogeneous multicore chip is a mixture of CPUs and digital signal
processors (DSPs). A DSP provides ultra- ​fast instruction sequences (shift and add; multiply and add),
which are commonly used in math- ​intensive digital signal processing applications. DSPs are used to
process analog data from sources such as sound, weather satellites, and earthquake monitors.
Signals are converted into digital data and analyzed using various algorithms such as Fast Fourier
Transform. DSP cores are widely used in myriad devices, including cellphones, sound cards, fax
machines, modems, hard disks, and digital TVs.

As a good representative example, Figure 21.8 shows a recent version of Texas Instruments (TI) K2H
SoC platform [TI12]. This heterogeneous multicore processor delivers power- ​efficient processing
solutions for high- ​end imaging applications. TI lists the performance as delivering up to 352 GMACS,
198 GFLOPS, and 19,600 MIPS. GMACS stands for giga (billions of) multiply- ​accumulate operations
per second, a common measure of DSP performance. Target applications for these systems include
industrial automation, video surveillance, high- ​end inspection systems, industrial printers/scanners,
and currency/counterfeit detection.

Figure 21.8 Texas Instruments 66AK2H12 Heterogenous Multicore Chip

The TI chip includes four ARM Cortex- ​A15 cores and eight TI C66x DSP cores.

Each DSP core contains 32 kB of L1 data cache and 32 kB of L1 program (instruction) cache. In
addition, each DSP has 1 MB of dedicated SRAM memory that can be configured as all L2 cache, all

main memory, or a mix of the two. The portion configured as main memory functions as a “local” main
memory, referred to simply as SRAM. This local main memory can be used for temporary data,
avoiding the need for traffic between cache and off- ​chip memory. The L2 cache of each of the eight
DSP cores is dedicated rather than shared with the other DSP cores. This is typical for a multicore
DSP organization: Each DSP works on a separate block of data in parallel, so there is little need for
data sharing.

Each ARM Cortex-​A15 CPU core has 32-kB L1 data and program caches, and the four cores share a
4-MB L2 cache.

The 6-MB multicore shared memory (MSM) is always configured as all SRAM. That is, it behaves like
main memory rather than cache. It can be configured to feed directly the L1 DSP and CPU caches, or
to feed the L2 DSP and CPU caches. This configuration decision depends on the expected application
profile. The multicore shared memory controller (MSMC) manages traffic among ARM cores, DSP,
DMA, other mastering peripherals, and the external memory interface (EMIF). MSMC controls access
to the MSM, which is accessible by all the cores and the mastering peripherals on the device.

Equivalent Instruction Set Architectures

Another recent approach to heterogeneous multicore organization is the use of multiple cores that
have equivalent ISAs but vary in performance or power efficiency. The leading example of this is
ARM’s big.Little architecture, which we examine in this section.

Figure 21.9 illustrates this architecture. The figure shows a multicore processor chip containing two
high- ​performance Cortex- ​A15 cores and two lower- ​performance, lower- ​power- ​consuming Cortex- ​A7
cores. The A7 cores handle less computation- ​intense tasks, such as background processing, playing
music, sending texts, and making phone calls. The A15 cores are invoked for high intensity tasks,
such as for video, gaming, and navigation.

Figure 21.9 big.Little Chip Components

The big.Little architecture is aimed at the smartphone and tablet market. These are devices whose
performance demands from users are increasing at a much faster rate than the capacity of batteries or

the power savings from semiconductor process advances. The usage pattern for smartphones and
tablets is quite dynamic. Periods of processing- ​intense tasks, such as gaming and web browsing,
alternate with typically longer periods of low processing- ​intensity tasks, such as texting, e-​mail, and
audio. The big.Little architecture takes advantage of this variation in required performance. The A15 is
designed for maximum performance within the mobile power budget. The A7 processor is designed
for maximum efficiency and high enough performance to address all but the most intense periods of
work.

A7 AND A15 CHARACTERISTICS

The A7 is far simpler and less powerful than the A15. But its simplicity requires far fewer transistors
than does the A15’s complexity— ​and fewer transistors require less energy to operate. The differences
between the A7 and A15 cores are seen most clearly by examining their instruction pipelines, as
shown in Figure 21.10.

Figure 21.10 Cortex A-​7 and A-​15 Pipelines

The A7 is an in-​order CPU with a pipeline length of 8 to 10 stages. It has a single queue for all of its
execution units, and two instructions can be sent to its five execution units per clock cycle. The A15,
on the other hand, is an out-of- ​order processor with a pipeline length of 15 to 24 stages. Each of its
eight execution units has its own multistage queue, and three instructions can be processed per clock
cycle.

The energy consumed by the execution of an instruction is partially related to the number of pipeline
stages it must traverse. Therefore, a significant difference in energy consumption between Cortex- ​A15
and Cortex- ​A7 comes from the different pipeline complexity. Across a range of benchmarks, the
Cortex-​A15 delivers roughly twice the performance of the Cortex- ​A7 per unit MHz, and the Cortex- ​A7
is roughly three times as energy efficient as the Cortex- ​A15 in completing the same workloads
[JEFF12]. The performance tradeoff is illustrated in Figure 21.11 [STEV13].

Figure 21.11 Cortex-​A7 and A15 Performance Comparison

SOFTWARE PROCESSING MODELS

The big.Little architecture can be configured to use one of two software processing models: migration
and multiprocessing (MP). The software models differ mainly in the way they allocate work to big or
Little cores during runtime execution of a workload.

In the migration model, big and Little cores are paired. To the OS kernel scheduler, each big/Little pair
is visible as a single core. Power management software is responsible for migrating software contexts
between the two cores. This model is a natural extension of the dynamic voltage and frequency
scaling (DVFS) operating points provided by current mobile platforms to allow the OS to match the
performance of the platform to the performance required by the application. In today’s smartphone
SoCs, DVFS drivers like cpu_freq sample the OS performance at regular and frequent intervals, and
the DVFS governor decides whether to shift to a higher or lower operating point or remain at the
current operating point. As shown in Figure 21.11, both the A7 and the A15 can execute at four
distinct operating points. The DVFS software can effectively dial in to one of the operating points on
the curve, setting a specific CPU clock frequency and voltage level.

These operating points affect the voltage and frequency of a single CPU cluster; however, in a
big.Little system there are two CPU clusters with independent voltage and frequency domains. This
allows the big cluster to act as a logical extension of the DVFS operating points provided by the Little

processor cluster. In a big.Little system under a migration mode of control, when Cortex- ​A7 is
executing, the DVFS driver can tune the performance of the CPU cluster to higher levels. Once
Cortex-​A7 is at its highest operating point, if more performance is required, a task migration can be
invoked that picks up the OS and applications and moves them to the Cortex- ​A15. In today’s
smartphone SoCs, DVFS drivers like cpu_freq sample the OS performance at regular and frequent
intervals, and the DVFS governor decides whether to shift to a higher or lower operating point or
remain at the current operating point.

The migration model is simple but requires that one of the CPUs in each pair is always idle. The MP
model allows any mixture of A15 and A7 cores to be powered on and executing simultaneously.
Whether a big processor needs to be powered on is determined by performance requirements of tasks
currently executing. If there are demanding tasks, then a big processor can be powered on to execute
them. Low demand tasks can execute on a Little processor. Finally, any processors that are not being
used can be powered down. This ensures that cores, big or Little, are only active when they are
needed, and that the appropriate core is used to execute any given workload.

The MP model is somewhat more complicated to implement but is also more efficient in its use of
resources. It assigns tasks appropriately and enables more cores to be running simultaneously when
the demand warrants it.

Cache Coherence and the MOESI Model

Typically, a heterogeneous multicore processor will feature dedicated L2 cache assigned to the
different processor types. We see this in the general depiction of a CPU/GPU scheme in Figure 21.7.
Because the CPU and GPU are engaged in quite different tasks, it makes sense that each has its own
L2 cache, shared among the similar CPUs. We also see this in the big.Little architecture (Figure
21.9), in which the A7 cores share an L2 cache and the A15 cores share a separate L2 cache.

When multiple caches exist, there is a need for a cache- ​coherence scheme to avoid access to invalid
data. Cache coherency may be addressed with software- ​based techniques. In the case where the
cache contains stale data, the cached copy may be invalidated and reread from memory when
needed again. When memory contains stale data due to a write- ​back cache containing dirty data, the
cache may be cleaned by forcing write back to memory. Any other cached copies that may exist in
other caches must be invalidated. This software burden consumes too many resources in a SoC chip,
leading to the use of hardware cache- ​coherent implementations, especially in heterogeneous
multicore processors.

As described in Chapter 20, there are two main approaches to hardware- ​implemented cache
coherence: directory protocols and snoopy protocols. ARM has developed a hardware coherence
capability called ACE (Advanced Extensible Interface Coherence Extensions) that can be configured
to implement either the directory or the snoopy approach, or even a combination. ACE has been
designed to support a wide range of coherent masters with differing capabilities. ACE supports
coherency between dissimilar processors such as the Cortex- ​A15 and Cortex- ​A7 processors, enabling
ARM big.Little technology. It supports I/O coherency for un- ​cached masters, supports masters with
differing cache line sizes, differing internal cache state models, and masters with write- ​back or
write-​through caches. As another example, ACE is implemented in the memory subsystem memory
controller (MSMC) in the TI SoC chip of Figure 21.8. MSMC supports hardware cache coherence
between the ARM CorePac L1/L2 caches and EDMA/IO peripherals for shared SRAM and DDR
spaces. This feature allows the sharing of MSMC SRAM and DDR data spaces by these masters on
the chip, without having to use explicit software cache maintenance techniques.

ACE makes use of a five-​state cache model. In each cache, each line is either Valid or Invalid. If a line

is Valid, it can be in one of four states, defined by two dimensions. A line may contain data that are
Shared or Unique. A Shared line contains data from a region of external (main) memory that is
potentially sharable. A Unique line contains data from a region of memory that is dedicated to the core
owning this cache. And the line is either Clean or Dirty, generally meaning either memory contains the
latest, most up-​to-​date data and the cache line is merely a copy of memory, or if it’s Dirty then the
cache line is the latest, most up- ​to-​date data and it must be written back to memory at some stage.
The one exception to the above description is when multiple caches share a line and it’s Dirty. In this
case, all caches must contain the latest data value at all times, but only one may be in the
Shared/Dirty state, the others being held in the Shared/Clean state. The Shared/Dirty state is thus
used to indicate which cache has responsibility for writing the data back to memory, and Shared/Clean
is more accurately described as meaning data is shared but there is no need to write it back to
memory.

The ACE states correspond to a cache coherency model with five states, known as MOESI (Figure
21.12). Table 21.2 compares the MOESI model with the MESI model described in Chapter 20.

Figure 21.12 ARM ACE Cache Line States

Table 21.2 Comparison of States in Snoop Protocols

(a) MESIM

Modified Exclusive Shared Invalid

Clean/Dirty Dirty Clean Clean N/A

Unique? Yes Yes No N/A

Can write? Yes Yes No N/A

Can
forward?

Yes Yes Yes N/A

Comments Must write back to share
or replace

Transitions to M
on write

Shared implies clean,
can forward

Cannot
read

(b) MOESI

Modified Owned Exclusive Shared Invalid

Clean/Dirty Dirty Dirty Clean Either N/A

Unique? Yes Yes Yes No N/A

Can write? Yes Yes Yes No N/A

Can
forward?

Yes Yes Yes No N/A

Comments Can share
without write

back

Must write back
to transition

Transitions to
M on write

Shared, can be
dirty or clean

Cannot
read

	21.5 INTEL Core i7-5960X
Intel has introduced a number of multicore products in recent years. In this section, we look at the Intel
Core i7-5960X.

The general structure of the Intel Core i7-5960X is shown in Figure 21.13. Each core has its own
dedicated L2 cache and the eight cores share a 20-MB L3 cache. One mechanism Intel uses to
make its caches more effective is prefetching, in which the hardware examines memory access
patterns and attempts to fill the caches speculatively with data that’s likely to be requested soon.

Figure 21.13 Intel Core i7-5960X Block Diagram

The Core i7-5960X chip supports two forms of external communications to other chips. The DDR4
memory controller brings the memory controller for the DDR main memory onto the chip. The
interface supports four channels that are 8 bytes wide for a total bus width of 256 bits, for an
aggregate data rate of up to 64 GB/s. With the memory controller on the chip, the Front Side Bus is
eliminated.

 The DDR synchronous RAM memory is discussed in Chapter 6.

The PCI Express is a peripheral bus. It enables high-speed communications among connected
processor chips. The PCI Express link operates at 8 GT/s (transfers per second). At 40 bits per
transfer, that adds up to 40 GB/s.

1

1

	21.6 ARM Cortex-​A15 MPCore
We have already seen two examples of heterogeneous multicore processors using ARM cores, in
Section 21.4: the big.Little architecture, which uses a combination of ARM Cortex- ​A7 and Cortex- ​A15
cores; and the Texas Instruments DSP SoC architecture, which combines Cortex- ​A15 cores with TI
DSP cores. In this section, we introduce the Cortex- ​A15 MPCore multicore chip, which is a
homogeneous multicore processor using multiple A15 cores. The A15 MPCore is a high- ​performance
chip targeted at applications including mobile computing, high- ​end digital home servers, and wireless
infrastructure.

Figure 21.14 presents a block diagram of the Cortex- ​A15 MPCore. The key elements of the system
are as follows:

Generic interrupt controller (GIC): Handles interrupt detection and interrupt prioritization. The
GIC distributes interrupts to individual cores.
Debug unit and interface: The debug unit enables an external debug host to: stop program
execution; examine and alter process and coprocessor state; examine and alter memory and
input/output peripheral state; and restart the processor.
Generic timer: Each core has its own private timer that can generate interrupts.
Trace: Supports performance monitoring and program trace tools.
Core: A single ARM Cortex- ​15 core.
L1 cache: Each core has its own dedicated L1 data cache and L1 instruction cache.
L2 cache: The shared L2 memory system services L1 instruction and data cache misses from
each core.
Snoop control unit (SCU): Responsible for maintaining L1/L2 cache coherency.

Figure 21.14 ARM Cortex-​A15 MPCore Chip Block Diagram

Interrupt Handling

The GIC collates interrupts from a large number of sources. It provides:

Masking of interrupts
Prioritization of the interrupts
Distribution of the interrupts to the target A15 cores
Tracking the status of interrupts
Generation of interrupts by software

The GIC is a single functional unit that is placed in the system alongside A15 cores. This enables the
number of interrupts supported in the system to be independent of the A15 core design. The GIC is
memory mapped; that is, control registers for the GIC are defined relative to a main memory base

address. The GIC is accessed by the A15 cores using a private interface through the SCU.

The GIC is designed to satisfy two functional requirements:

Provide a means of routing an interrupt request to a single CPU or multiple CPUs, as required.
Provide a means of interprocessor communication so that a thread on one CPU can cause activity
by a thread on another CPU.

As an example that makes use of both requirements, consider a multithreaded application that has
threads running on multiple processors. Suppose the application allocates some virtual memory. To
maintain consistency, the operating system must update memory translation tables on all processors.
The OS could update the tables on the processor where the virtual memory allocation took place, and
then issue an interrupt to all the other processors running this application. The other processors could
then use this interrupt’s ID to determine that they need to update their memory translation tables.

The GIC can route an interrupt to one or more CPUs in the following three ways:

An interrupt can be directed to a specific processor only.
An interrupt can be directed to a defined group of processors. The MPCore views the first
processor to accept the interrupt, typically the least loaded, as being best positioned to handle the
interrupt.
An interrupt can be directed to all processors.

From the point of view of software running on a particular CPU, the OS can generate an interrupt to all
but self, to self, or to specific other CPUs. For communication between threads running on different
CPUs, the interrupt mechanism is typically combined with shared memory for message passing. Thus,
when a thread is interrupted by an interprocessor communication interrupt, it reads from the
appropriate block of shared memory to retrieve a message from the thread that triggered the interrupt.
A total of 16 interrupt IDs per CPU are available for interprocessor communication.

From the point of view of an A15 core, an interrupt can be:

Inactive: An Inactive interrupt is one that is nonasserted, or which in a multiprocessing
environment has been completely processed by that CPU but can still be either Pending or Active
in some of the CPUs to which it is targeted, and so might not have been cleared at the interrupt
source.
Pending: A Pending interrupt is one that has been asserted, and for which processing has not
started on that CPU.
Active: An Active interrupt is one that has been started on that CPU, but processing is not
complete. An Active interrupt can be pre- ​empted when a new interrupt of higher priority interrupts
A15 core interrupt processing.

Interrupts come from the following sources:

Interprocessor interrupts (IPIs): Each CPU has private interrupts, ID0-ID15, that can only be
triggered by software. The priority of an IPI depends on the receiving CPU, not the sending CPU.
Private timer and/or watchdog interrupts: These use interrupt IDs 29 and 30.
Legacy FIQ line: In legacy IRQ mode, the legacy FIQ pin, on a per CPU basis, bypasses the
Interrupt Distributor logic and directly drives interrupt requests into the CPU.
Hardware interrupts: Hardware interrupts are triggered by programmable events on associated
interrupt input lines. CPUs can support up to 224 interrupt input lines. Hardware interrupts start at
ID32.

Figure 21.15 is a block diagram of the GIC. The GIC is configurable to support between 0 and 255
hardware interrupt inputs. The GIC maintains a list of interrupts, showing their priority and status. The
Interrupt Distributor transmits to each CPU Interface the highest Pending interrupt for that interface. It
receives back the information that the interrupt has been acknowledged, and can then change the

status of the corresponding interrupt. The CPU Interface also transmits End of Interrupt (EOI)
information, which enables the Interrupt Distributor to update the status of this interrupt from Active to
Inactive.

Figure 21.15 Generic Interrupt Controller Block Diagram

Cache Coherency

The MPCore’s Snoop Control Unit (SCU) is designed to resolve most of the traditional bottlenecks
related to access to shared data and the scalability limitation introduced by coherence traffic.

L1 CACHE COHERENCY

The L1 cache coherency scheme is based on the MESI protocol described in Chapter 20. The SCU
monitors operations with shared data to optimize MESI state migration. The SCU introduces three
types of optimization: direct data intervention, duplicated tag RAMs, and migratory lines.

Direct data intervention (DDI) enables copying clean data from one CPU L1 data cache to another
CPU L1 data cache without accessing external memory. This reduces read after read activity from the
Level 1 cache to the Level 2 cache. Thus, a local L1 cache miss is resolved in a remote L1 cache
rather than from access to the shared L2 cache.

Recall that main memory location of each line within a cache is identified by a tag for that line. The

tags can be implemented as a separate block of RAM of the same length as the number of lines in the
cache. In the SCU, duplicated tag RAMs are duplicated versions of L1 tag RAMs used by the SCU to
check for data availability before sending coherency commands to the relevant CPUs. Coherency
commands are sent only to CPUs that must update their coherent data cache. This reduces the power
consumption and performance impact from snooping into and manipulating each processor’s cache
on each memory update. Having tag data available locally lets the SCU limit cache manipulations to
processors that have cache lines in common.

The migratory lines feature enables moving dirty data from one CPU to another without writing to L2
and reading the data back in from external memory. The operation can be described as follows. In a
typical MESI protocol, when one processor has a modified line and another processor attempts to
read that line, the following actions occur:

1. The line contents are transferred from the modified line to the processor that initiated the read.
2. The line contents are written back to main memory.
3. The line is put in the shared state in both caches.

L2 Cache Coherency

The SCU uses hybrid MESI and MOESI protocols to maintain coherency between the individual L1
data caches and the L2 cache. The L2 memory system contains a snoop tag array that is a duplicate
copy of each of the L1 data cache directories. The snoop tag array reduces the amount of snoop
traffic between the L2 memory system and the L1 memory system. Any line that resides in the snoop
tag array in the Modified/Exclusive state belongs to the L1 memory system. Any access that hits
against a line in this state must be serviced by the L1 memory system and passed to the L2 memory
system. If the line is invalid or in the shared state in the snoop tag array, then the L2 cache can supply
the data. The SCU contains buffers that can handle direct cache- ​to-​cache transfers between cores
without reading or writing any data on the ACE. Lines can migrate back and forth without any change
to the MOESI state of the line in the L2 cache. Shareable transactions on the ACP are also coherent,
so the snoop tag arrays are queried as a result of ACP transactions. For reads where the shareable
line resides in one of the L1 data caches in the Modified/Exclusive state, the line is transferred from
the L1 memory system to the L2 memory system and passed back on the ACP.

21.7 IBM z13 Mainframe
In this section, we look at a mainframe computer organization that uses multicore processor chips.
The example we use is the IBM z13 mainframe computer [LASC16, BART15], which began shipping
in late 2015. Section 8.8 provides a general overview of the z13, together with a discussion of its I/O
structure.

Organization

The principal building block of the z13 is the processor node. Two nodes are connected together with
an inter-node S-Bus and housed in a drawer that fits into a slot of the mainframe cabinet. A-Bus
interfaces connect these two nodes with nodes in other drawers. A z13 configuration can have up to
four drawers.

The key components of a node are shown in Figure 21.16:

Figure 21.16 IBM z13 Drawer Structure

Processor unit (PU): There are three PU chips, each containing eight 5-GHz processor cores plus
three levels of cache. The PUs have external connections to main memory via memory control
units and to I/O via host channel adapters. Thus, each node includes 24 cores.
Storage control (SC): The two SC chips contain an additional level of cache (L4) plus
interconnection logic for connecting to other nodes.
DRAM memory slots: providing up to 1.28 GB of main memory.
PCie slots: Slots for connection to PCIe I/O drawers.

 Slots for connection to InfiniBand.GX + + :

S-Bus: Connection to other nodes in this drawer.
A-Bus: Connection to other drawers.
Processor support interface (PSI): connects to system control logic.

The microprocessor core features a wide superscalar, out-of-order pipeline that can decode six
z/Architecture CISC instructions per clock cycle and execute up to ten instructions per
cycle. Execution can occur out of program order. The instruction execution path is predicted by branch
direction and target prediction logic. Each core includes four integer units, two load/store units, two
binary floating-point units, two decimal floating-point units, and two vector floating-point units.

Cache Structure

The zEC12 incorporates a four-level cache structure. We look at each level in turn (Figure 21.17).

Figure 21.17 IBM z13 Cache Hierarchy in Single Node

Each core has a dedicated 96-kB L1 I-cache and a 128-kB L1 D-cache. The L1 cache is designed as
a write-through cache to L2, that is, altered data are also stored to the next level of memory. These
caches are eight-way set associative.

Each core also has a dedicated 2-MB L2, split equally into 1-MB data cache and 1-MB instruction
cache. The L2 caches are write-through to L3, and eight-way set associative.

Each eight-core processor unit chip includes a 64-MB L3 cache shared by all eight cores. Because L1
and L2 caches are write-through, the L3 cache must process every store generated by the eight cores
on its chip. This feature maintains data availability during a core failure. The L3 cache is 16-way set
associative. The z13 implements embedded DRAM (eDRAM) as L3 cache memory on the chip. While
this eDRAM memory is slower than static RAM (SRAM) traditionally used to implement cache
memory, the eDRAM can hold significantly more bits in a given surface area. For many workloads,
having more memory closer to the core is more important than having fast memory.

The three PUs in a node share a 480-MB L4 cache. The L4 cache is on a chip that also includes a

(< 0.18ns)

non-data inclusive coherent (NIC) directory that points to L3-owned lines that have not been included
in L4 cache. The principal motivation for incorporating a level 4 cache is that the very high clock speed
of the core processors results in a significant mismatch with main memory speed. The fourth cache
layer is needed to keep the cores running efficiently. The large shared L3 and L4 caches are suited to
transaction-processing workloads exhibiting a high degree of data sharing and task swapping. The L4
cache is 30-way set associative. The SC chip, which houses the L4 cache, also acts as a cross-point
switch for L4-to-L4 traffic to up to the other node in the same drawer and two other drawers by
bidirectional data buses. The L4 cache is the coherence manager, meaning that all memory fetches
must be in the L4 cache before that data can be used by the processor.

All four caches use a line size of 256 bytes.

The z13 is an interesting study in design trade-offs and the difficulty in exploiting the increasingly
powerful processors available with current technology. The large L4 cache is intended to drive the
need for access to main memory down to the bare minimum. However, the distance to the off-chip L4
cache costs a number of instruction cycles. Thus, the on-chip area devoted to cache is as large as
possible, even to the point of having fewer cores than possible on the chip. The L1 caches are small,
to minimize distance from the core and ensure that access can occur in one cycle. Each L2 cache is
dedicated to a single core, in an attempt to maximize the amount of cached data that can be accessed
without resorting to a shared cache. The L3 cache is shared by all four cores on a chip and is as large
as possible, to minimize the need to go to the L4 cache.

Because all of the nodes of the z13 share the workload, all of the L4 caches form a single L4 cache
memory. Thus, access to L4 means not only going off-chip but perhaps off-drawer, further increasing
access delay. This means relatively large distances exist between the higher-level caches in the
processors and the L4 cache content. Still, accessing L4 cache data on another node is faster than
accessing DRAM on the other node, which is why the L4 caches work this way.

To overcome the delays that are inherent to this design and to save cycles to access the off-node L4
content, the designers try to keep instructions and data as close to the cores as possible by directing
as much work as possible of a given logical partition workload to the cores located in the same node
as the L4 cache. This is achieved by having the system and the z/OS dispatcher work together to
keep as much work as possible within the boundaries of as few cores and L4 cache space (which is
best within a node boundary) as can be achieved without affecting throughput and response times.
Preventing the resource manager/scheduler and the dispatcher from assigning workloads to
processors where they might run less efficiently, contributes to overcoming latency in a high-frequency
processor design such as the z13.

21.8 Key Terms, Review Questions, and Problems

Key Terms

Amdahl’s law

chip multiprocessor

coarse- ​grained threading

fine-​grained threading

heterogeneous multicore organization

homogenous multicore organization

hybrid threading

MOESI protocol

multicore processor

pipelining

Pollack’s rule

simultaneous multithreading (SMT)

superscalar

threading granularity

Review Questions

Problems

21.1 Summarize the differences among simple instruction pipelining, superscalar, and
simultaneous multithreading.
21.2 Give several reasons for the choice by designers to move to a multicore organization
rather than increase parallelism within a single processor.
21.3 Why is there a trend toward giving an increasing fraction of chip area to cache memory?
21.4 List some examples of applications that benefit directly from the ability to scale throughput
with the number of cores.
21.5 At a top level, what are the main design variables in a multicore organization?
21.6 List some advantages of a shared L2 cache among cores compared to separate dedicated
L2 caches for each core.

21.1 Consider the following problem. A designer has a chip available and must decide what
fraction of the chip will be devoted to cache memory (L1, L2, L3). The remainder of the chip will
be devoted to one or more complex superscalar and/or SMT cores. Define the following
parameters:

 that can be contained on the chip.
 implemented .

n = maximum number of cores

k = actual number of cores (1 ≤ k ≤ n , where = n /k is an integer)

 by using the resources equivalent to r cores to form a
single processor, where .

 that is parallelizable across multiple cores.
Thus, if we construct a chip with n cores, we expect each core to provide sequential
performance of 1 and for the n cores to be able to exploit parallelism up to a degree of n parallel
threads. Similarly, if the chip has k cores, then each core should exhibit a performance of perf(r)
and the chip is able to exploit parallelism up to a degree of k parallel threads. We can modify
Amdhal’s law (Equation 21.1) to reflect this situation as follows:

a. Justify this modification of Amdahl’s law.
b. Using Pollack’s rule, we set Let We want to plot speedup as a

function of r for The results are available in a
document at box.com/COA11e (multicore- ​performance.pdf). What conclusions can you
draw?

c. Repeat part (b) for

21.2 The technical reference manual for the Cortex- ​A15 says that the GIC is memory mapped.
That is, the core processors use memory mapped I/O to communicate with the GIC. Recall from
Chapter 8 that with memory mapped I/O, there is a single address space for memory locations
and I/O devices. The processor treats the status and data registers of I/O modules as memory
locations and uses the same machine instructions to access both memory and I/O devices.
Based on this information, what path through the block diagram of Figure 21.15 is used for the
core processors to communicate with the GIC?
21.3 In this question we analyze the performance of the following C program on a multithreaded
architecture. You should assume that arrays A, B, and C do not overlap in memory.

for (i=0; i<328; i++) {
 A[i] = A[i]*B[i];
 C[i] = C[i]+A[i];
 }

Our machine is a single- ​issue, in-​order processor. It switches to a different thread every
cycle using fixed round robin scheduling. Each of the N threads executes one instruction
every N cycles. We allocate the code to the threads such that every thread executes every
Nth iteration of the original C code.
Integer instructions take 1 cycle to execute, floating- ​point instructions take 4 cycles and
memory instructions take 3 cycles. All execution units are fully pipelined. If an instruction
cannot issue because its data is not yet available, it inserts a bubble into the pipeline and
retries after I cycles.
Below is our program in assembly code for this machine for a single thread executing the
entire loop.

loop: ld f1, 0 (r1) ;f1 = A[i]
 ld f2, 0 (r2) ;f2 = B[i]
 fmul f4, f2, f1 ;f4 = f1*f2
 st f4 0(r1) ;A[i] = f4
 ld f3, 0(r3) ;f3 = C[i]

perf(r) = sequential performance gain

perf(1) = 1
f =fraction of software

Speedup =
1

1 − − f
perf (r) +

f × r
perf (r) × n

perf(r) = r . n = 16.
f =0.5 ; f =0.9 ; f =0.975 ; f =0.99 ; f =0.999.

n = 256.

 fadd f5, f4, f3 ;f5 = f4 + f3
 st f5 0(r3) ;C[i] = f5
 add r1, r1, 4 ;i++
 add r2, r2, 4
 add r3, r3, 4
 add r4, r4, −1
 bnez r4, loop ;loop

a. We allocate the assembly code of the loop to N threads such that every thread executes
every Nth iteration of the original loop. Write the assembly code that one of the N threads
would execute on this multithreaded machine.

b. What is the minimum number of threads this machine needs to remain fully utilized
issuing an instruction every cycle for our program?

c. Could we reach peak performance running this program using fewer threads by
rearranging the instructions? Explain briefly.

d. What will be the peak performance in flops/cycle for this program?

21.4 For the MOESI protocol, consider any pair of caches. Use the following matrix to indicate
which states are permitted for a given cache line; use X for forbidden and checkmark for
permitted.

M O E S I

M

O

E

S

I

21.5 Draw a state transition diagram, including labels on the transitions, for the MOESI protocol,
similar to Figure 20.6 .
21.6 In directory cache coherence protocols, such as those based on MESI or MOESI, a silent
transition is one in which a cache line transitions from one state to another without reporting this
change to the central controller.

a. For each state in the MESI protocol, indicate to which target states, if any, a silent
transition is possible.

b. Repeat for MOESI.

Appendix A System Buses
A.1 BUS STRUCTURE
A.2 MULTIPLE-BUS HIERARCHIES
A.3 ELEMENTS OF BUS DESIGN

Bus Types
Method of Arbitration
Timing

A bus is a communication pathway connecting two or more devices. A key
characteristic of a bus is that it is a shared transmission medium. Multiple devices
connect to the bus, and a signal transmitted by any one device is available for
reception by all other devices attached to the bus. If two devices transmit during
the same time period, their signals will overlap and become garbled. Thus, only
one device at a time can successfully transmit.

Typically, a bus consists of multiple communication pathways, or lines. Each line is
capable of transmitting signals representing binary 1 and binary 0. Over time, a
sequence of binary digits can be transmitted across a single line. Taken together,
several lines of a bus can be used to transmit binary digits simultaneously (in
parallel). For example, an 8-bit unit of data can be transmitted over eight bus lines.

Computer systems contain a number of different buses that provide pathways
between components at various levels of the computer system hierarchy. A bus
that connects major computer components (processor, memory, I/O) is called a
system bus. The most common computer interconnection structures are based on
the use of one or more system buses.

A.1 Bus Structure
A system bus consists, typically, of about 50 to hundreds of separate lines. Each line is assigned a
particular meaning or function. Although there are many different bus designs, on any bus the lines
can be classified into three functional groups (Figure A.1): data, address, and control lines. In
addition, there may be power distribution lines that supply power to the attached modules.

Figure A.1 Bus Interconnection Scheme

The data lines provide a path for moving data among system modules. These lines, collectively, are
called the data bus. The data bus may consist of 32, 64, 128, or even more separate lines, the
number of lines being referred to as the width of the data bus. Because each line can carry only 1 bit
at a time, the number of lines determines how many bits can be transferred at a time. The width of the
data bus is a key factor in determining overall system performance. For example, if the data bus is 32
bits wide and each instruction is 64 bits long, then the processor must access the memory module
twice during each instruction cycle.

The address lines are used to designate the source or destination of the data on the data bus. For
example, if the processor wishes to read a word (8, 16, or 32 bits) of data from memory, it puts the
address of the desired word on the address lines. Clearly, the width of the address bus determines
the maximum possible memory capacity of the system. Furthermore, the address lines are generally
also used to address I/O ports. Typically, the higher-order bits are used to select a particular module
on the bus, and the lower-order bits select a memory location or I/O port within the module. For
example, on an 8-bit address bus, address 01111111 and below might reference locations in a
memory module (module 0) with 128 words of memory, and address 10000000 and above refer to
devices attached to an I/O module (module 1).

The control lines are used to control the access to and the use of the data and address lines.
Because the data and address lines are shared by all components, there must be a means of
controlling their use. Control signals transmit both command and timing information among system
modules. Timing signals indicate the validity of data and address information. Command signals
specify operations to be performed. Typical control lines include:

Memory write: causes data on the bus to be written into the addressed location.
Memory read: causes data from the addressed location to be placed on the bus.
I/O write: causes data on the bus to be output to the addressed I/O port.
I/O read: causes data from the addressed I/O port to be placed on the bus.
Transfer ACK: indicates that data have been accepted from or placed on the bus.
Bus request: indicates that a module needs to gain control of the bus.
Bus grant: indicates that a requesting module has been granted control of the bus.
Interrupt request: indicates that an interrupt is pending.

Interrupt ACK: acknowledges that the pending interrupt has been recognized.
Clock: is used to synchronize operations.
Reset: initializes all modules.

The operation of the bus is as follows. If one module wishes to send data to another, it must do two
things: (1) obtain the use of the bus, and (2) transfer data via the bus. If one module wishes to request
data from another module, it must (1) obtain the use of the bus, and (2) transfer a request to the other
module over the appropriate control and address lines. It must then wait for that second module to
send the data.

A.2 Multiple-Bus Hierarchies
If a great number of devices are connected to the bus, performance will suffer. There are two main
causes:

1. In general, the more devices attached to the bus, the greater the bus length and hence the
greater the propagation delay. This delay determines the time it takes for devices to coordinate
the use of the bus. When control of the bus passes from one device to another frequently, these
propagation delays can noticeably affect performance.

2. The bus may become a bottleneck as the aggregate data transfer demand approaches the
capacity of the bus. This problem can be countered to some extent by increasing the data rate
that the bus can carry and by using wider buses (e.g., increasing the data bus from 32 to 64
bits). However, because the data rates generated by attached devices (e.g., graphics and video
controllers, network interfaces) are growing rapidly, this is a race that a single bus is ultimately
destined to lose.

Accordingly, most bus-based computer systems use multiple buses, generally laid out in a hierarchy.
A typical traditional structure is shown in Figure A.2a. There is a local bus that connects the
processor to a cache memory and that may support one or more local devices. The cache memory
controller connects the cache not only to this local bus, but also to a system bus to which are attached
all of the main memory modules. In contemporary systems, the cache is in the same chip as the
processor, and so an external bus or other interconnect scheme is not needed, although there may
also be an external cache. As is discussed in Chapter 4, the use of a cache structure insulates the
processor from a requirement to access main memory frequently. Hence, main memory can be moved
off of the local bus onto a system bus. In this way, I/O transfers to and from the main memory across
the system bus do not interfere with the processor’s activity.

Figure A.2 Example Bus Configurations

It is possible to connect I/O controllers directly onto the system bus. A more efficient solution is to
make use of one or more expansion buses for this purpose. An expansion bus interface buffers data
transfers between the system bus and the I/O controllers on the expansion bus. This arrangement
allows the system to support a wide variety of I/O devices and at the same time insulate memory-to-

processor traffic from I/O traffic.

Figure A.2a shows some typical examples of I/O devices that might be attached to the expansion
bus. Network connections include local area networks (LANs) such as a 10-Mbps Ethernet and
connections to wide area networks (WANs) such as a packet-switching network. SCSI (small
computer system interface) is itself a type of bus used to support local disk drives and other
peripherals. A serial port could be used to support a printer or scanner.

This traditional bus architecture is reasonably efficient but begins to break down as higher and higher
performance is seen in the I/O devices. In response to these growing demands, a common approach
taken by industry is to build a high-speed bus that is closely integrated with the rest of the system,
requiring only a bridge between the processor’s bus and the high-speed bus. This arrangement is
sometimes known as a mezzanine architecture.

Figure A.2b shows a typical realization of this approach. Again, there is a local bus that connects the
processor to a cache controller, which is in turn connected to a system bus that supports main
memory. The cache controller is integrated into a bridge, or buffering device, that connects to the
high-speed bus. This bus supports connections to high-speed LANs, such as Fast Ethernet at 100
Mbps, and video and graphics workstation controllers, as well as interface controllers to local
peripheral buses, including SCSI and FireWire. The latter is a high-speed bus arrangement
specifically designed to support high-capacity I/O devices. Lower-speed devices are still supported off
an expansion bus, with an interface buffering traffic between the expansion bus and the high-speed
bus.

The advantage of this arrangement is that the high-speed bus brings high-demand devices into closer
integration with the processor and at the same time is independent of the processor. Thus, differences
in processor and high-speed bus speeds and signal line definitions are tolerated. Changes in
processor architecture do not affect the high-speed bus, and vice versa.

A.3 Elements of Bus Design
Although a variety of different bus implementations exist, there are a few basic parameters or design
elements that serve to classify and differentiate buses. Table A.1 lists key elements.

Table A.1 Elements of Bus Design

Type

  Dedicated

  Multiplexed

Method of Arbitration

  Centralized

  Distributed

Timing

  Synchronous

  Asynchronous

Bus Width

  Address

  Data

Data Transfer Type

  Read

  Write

  Read-modify-write

  Read-after-write

  Block

Bus Types

Bus lines can be separated into two generic types: dedicated and multiplexed. A dedicated bus line is
permanently assigned either to one function or to a physical subset of computer components.

An example of functional dedication is the use of separate dedicated address and data lines, which is
common on many buses. However, it is not essential. For example, address and data information may
be transmitted over the same set of lines using an Address Valid control line. At the beginning of a
data transfer, the address is placed on the bus and the Address Valid line is activated. At this point,
each module has a specified period of time to copy the address and determine if it is the addressed
module. The address is then removed from the bus, and the same bus connections are used for the
subsequent read or write data transfer. This method of using the same lines for multiple purposes is
known as time multiplexing.

The advantage of time multiplexing is the use of fewer lines, which saves space and, usually, cost.
The disadvantage is that more complex circuitry is needed within each module. Also, there is a
potential reduction in performance because certain events that share the same lines cannot take place
in parallel.

Physical dedication refers to the use of multiple buses, each of which connects only a subset of
modules. A typical example is the use of an I/O bus to interconnect all I/O modules; this bus is then
connected to the main bus through some type of I/O adapter module. The potential advantage of
physical dedication is high throughput, because there is less bus contention. A disadvantage is the

increased size and cost of the system.

Method of Arbitration

In all but the simplest systems, more than one module may need control of the bus. For example, an
I/O module may need to read or write directly to memory, without sending the data to the processor.
Because only one unit at a time can successfully transmit over the bus, some method of arbitration is
needed. The various methods can be roughly classified as being either centralized arbitration or
distributed arbitration. In a centralized scheme, a single hardware device, referred to as a bus
controller or arbiter, is responsible for allocating time on the bus. The device may be a separate
module or part of the processor. In a distributed scheme, there is no central controller. Rather, each
module contains access control logic and the modules act together to share the bus. With both
methods of arbitration, the purpose is to designate one device, either the processor or an I/O module,
as master. The master may then initiate a data transfer (e.g., read or write) with some other device,
which acts as slave for this particular exchange.

Timing

Timing refers to the way in which events are coordinated on the bus. Buses use either synchronous
timing or asynchronous timing.

With synchronous timing, the occurrence of events on the bus is determined by a clock. The bus
includes a clock line upon which a clock transmits a regular sequence of alternating 1s and 0s of
equal duration. A single 1–0 transmission is referred to as a clock cycle or bus cycle and defines a
time slot. All other devices on the bus can read the clock line, and all events start at the beginning of a
clock cycle. Figure A.3 shows a typical, but simplified, timing diagram for synchronous read and write
operations. Most events occupy a single clock cycle. In this simple example, the processor places a
memory address on the address lines during the first clock cycle, and may assert various status lines.
Once the address lines have stabilized, the processor issues an address enable signal. For a read
operation, the processor issues a read command at the start of the second cycle. A memory module
recognizes the address and, after a delay of one cycle, places the data on the data lines. The
processor reads the data from the data lines and drops the read signal. For a write operation, the
processor puts the data on the data lines at the start of the second cycle and issues a write command
after the data lines have stabilized. The memory module copies the information from the data lines
during the third clock cycle.

Figure A.3 Timing of Synchronous Bus Operations

With asynchronous timing, the occurrence of one event on a bus follows and depends on the
occurrence of a previous event. In the simple read example of Figure A.4a, the processor places
address and status signals on the bus. After pausing for these signals to stabilize, it issues a read
command, indicating the presence of valid address and control signals. The appropriate memory
decodes the address and responds by placing the data on the data line. Once the data lines have
stabilized, the memory module asserts the acknowledged line to signal the processor that the data are
available. Once the master has read the data from the data lines, it deasserts the read signal. This
causes the memory module to drop the data and acknowledge lines. Finally, once the acknowledge
line is dropped, the master removes the address information.

Figure A.4 Timing of Asynchronous Bus Operations

Figure A.4b shows a simple asynchronous write operation. In this case, the master places the data
on the data line at the same time that is puts signals on the status and address lines. The memory
module responds to the write command by copying the data from the data lines and then asserting the
acknowledge line. The master then drops the write signal and the memory module drops the
acknowledge signal.

Synchronous timing is simpler to implement and test. However, it is less flexible than asynchronous
timing. Because all devices on a synchronous bus are tied to a fixed clock rate, the system cannot
take advantage of advances in device performance. With asynchronous timing, a mixture of slow and
fast devices, using older and newer technology, can share a bus.

Appendix B Victim Cache Strategies
B.1 VICTIM CACHE
B.2 SELECTIVE VICTIM CACHE

Incoming Blocks from Memory
Swap Between Direct-Mapped Cache and Victim Cache

This appendix looks at two cache strategies mentioned in Chapter 5: victim cache
and selective victim cache.

B.1 Victim Cache
Recall from Chapter 4 that an advantage of the direct mapping technique is that it is simple and
inexpensive to implement. Its main disadvantage is that there is a fixed cache location for any given
block. Thus, if a program happens to reference words repeatedly from two different blocks that map
into the same line, then the blocks will be continually swapped in the cache, and the hit ratio will be
low (a phenomenon known as thrashing). On the other hand, with fully associative mapping, there is
flexibility as to which block to replace when a new block is read into the cache. Replacement
algorithms are designed to maximize the hit ratio. The principal disadvantage of associative mapping
is the complex circuitry required to examine the tags of all cache lines in parallel.

The victim cache approach, proposed by Jouppi [JOUP90], is a strategy designed to combine the fast
hit time of direct mapping, yet still avoid thrashing. To achieve this objective, the direct-mapped cache
is supplemented with a small associative cache known as the victim cache. A line removed from the
direct-mapped cache is temporarily stored in the victim cache, which maintains a small number of
lines using a FIFO (first-in-first-out) replacement strategy. Jouppi found that a four-line victim cache
removed 20% to 95% of misses in the direct-mapped cache.

Figure B.1 is a simple block diagram illustrating the location of the victim cache in the overall memory
hierarchy. The victim cache can be considered to be part of the L1 cache system. The next lower level
of the memory hierarchy can be an L2 cache or the main memory.

Figure B.1 Position of Victim Cache

Figure B.2 provides a more detailed look at the victim cache organization. In Jouppi’s proposal, the
victim cache contains four lines of data. The L1 cache is direct-mapped, so that each cache line
consists of a block of data from memory plus a small tag (see Figures 5.7 and 5.8). The victim cache
is associative, so that each line contains one block of data from memory plus a large tag (see Figures
5.10 and 5.11). For clarity, the tag in the victim cache is depicted as consisting of a tag equal in length
to the direct-mapped cache and a comparator. In fact, looking back at Figures 5.8 and 5.11, the
comparator is equivalent to the line field in the direct-mapped scheme. The tag plus comparator in the
victim cache uniquely identify a block of memory, so that a memory reference from the processor can
do a parallel search of all entries in the associative cache to determine if the desired line is present.

Figure B.2 Victim Cache Organization

Figure B.3 suggests the operation of the victim cache. The data is arranged in such a way that the
same line is never present in both the L1 cache and the victim cache at the same time. There are two
cases to consider for managing the movement of data between the two caches:

Figure B.3 Victim Cache Operation

Case 1: Processor reference to memory misses in both the L1 cache and the victim cache.

a. The required block is fetched from main memory (or the L2 cache if present) and placed into the
L1 cache.

b. The replaced block in the main cache is moved to the victim cache. There is no replacement
algorithm. With a direct-mapped cache, the line to be replaced is uniquely determined.

c. The victim cache can be viewed as a FIFO queue or, equivalently, a circular buffer. The item
that has been in the victim cache the longest is removed to make room for the incoming line.
The replaced line is written back to the main memory if it is dirty (has been updated).

Case 2: Processor reference to memory misses the direct-mapped cache but hits the victim cache.

a. The block in the victim cache is promoted to the direct-mapped cache.
b. The replaced block in the main cache is swapped to the victim cache.

Note that with the FIFO discipline, the victim cache achieves true LRU (least recently used) behavior.
Any reference to the victim cache pulls the referenced block out of the victim cache; thus the LRU
block in the victim cache will, by definition, be the oldest one there.

The term victim is used for the following reason. When a new block is brought into the L1 cache, the
replacement algorithm chooses a line to be replaced. That line is the “victim” of the replacement
algorithm.

B.2 Selective Victim Cache
[STIL94] proposes an improvement to the victim cache scheme known as selective victim cache. In
this scheme, incoming blocks into the first-level cache are placed selectively in the main cache or the
victim cache by the use of a prediction scheme based on their past history of use. In addition,
interchanges of blocks between the main cache and the victim cache are also performed selectively.

Incoming Blocks from Memory

In the victim cache scheme, incoming blocks from memory (or L2 cache if present) are always loaded
into the direct-mapped cache, with one of the direct cache blocks being replaced and moved to the
victim cache, which in turn discards one of its blocks (writing it back to memory if necessary). The net
effect is that when a new block is brought into the L1 cache, it is a victim cache block that is replaced
in the total L1 cache system.

With the selective victim cache, a decision is made of whether to replace the corresponding line in the
direct-mapped cache (which is then moved to the victim cache) or to replace a line in the victim cache,
choosing the LRU line for replacement. A prediction algorithm is used to determine which of the two
conflicting lines is more likely to be referenced in the future. If the incoming line is found to have a
higher probability than the conflicting line in the main cache, the latter is moved to the victim cache
and the new line takes its place in the main cache; otherwise, the incoming line is directed to the
victim cache.

Swap Between Direct-Mapped Cache and Victim Cache

In the victim cache scheme, if there is a miss in the direct-mapped cache and a hit in the victim cache,
then there is a swap of lines between the direct-mapped cache and the victim cache. With the
selective victim cache, the prediction algorithm is invoked to determine if the accessed block in the
victim cache is more likely to be accessed in the future than the block in the main cache it is conflicting
with. If the prediction algorithm decides that the block in the victim cache is more likely to be
referenced again than the conflicting block in the main cache, an interchange is performed between
the two blocks; no such interchange is performed otherwise. In both cases, the block in the victim
cache is marked as the most recently used.

The prediction algorithm used in the selective victim cache scheme is referred to as the dynamic
exclusion algorithm, proposed in [MAFA92]. Both [MAFA92] and [STIL94] have good descriptions of
the algorithm.

Appendix C Interleaved Memory
Main memory is typically a series of DRAM chips. A number of these chips form a bank, with a port for
transfer of data to and from the processor or an intermediate cache. Multiple memory banks can be
connected together to form an interleaved memory system. Because each bank can service a request,
an interleaved memory system with K banks can service K requests simultaneously, increasing the
peak data transfer rate by a factor of K over the data transfer rate of a single bank. In most memory
systems, the number of banks is a power of 2; that is, for some integer k.

To get a feel for the use of interleaved memory, let us consider a simple system consisting of two
DRAM memory banks. If the memory controller does not support interleaving, then the memory
addresses are assigned sequentially in the first bank, followed by addresses in the second bank.
Figure C.1a shows this organization for two banks of N words (assuming addressing is at the word
level). Typically, the memory controller will perform a burst access (a single bus transaction that reads
or writes multiple words) to move data between cache and memory. For example, the cache may
have a line size of four 32-bit words and so data is transferred between memory and cache in blocks
of four words. All the words in the block come from one bank of DRAM in a non-interleaved memory
organization, so the time required to complete the transfer is a linear function of the number of words
transferred. Figure C.1b shows the timing of the transfer. Note that the time needed to transfer each
of the second, third, and fourth words is shorter than the time for the first word. This is because of a
feature of contemporary DRAMs known as page-mode access. This is, in effect, a form of on-chip
caching on the DRAM chip [JACO08].

If the memory controller supports interleaved memory, then memory addresses are organized as
shown in Figure C.1. Memory location addresses alternate between the two banks. This configuration
speeds up the burst transfer of four words, as shown in the timing diagram of Figure C.1d. Because
the four words of a burst access are spread across two physical banks of DRAM, the individual
accesses can be overlapped to hide part, or all, of the DRAM access time delay.

K = 2k

Figure C.1 Example of 2-Way Interleaved Memory

Figure C.2 shows the organization of an interleaved memory with DRAM banks. Multiple memory2k

banks are connected to a single bus (channel) and differentiated by the lower (least significant) k bits
of the address bus. They share the bus by time division and overlapping the operations. If the address
length is bits, then the upper (most significant) m bits of the address select a word within a
memory bank, while the lower k bits select the given memory bank.

Figure C.2 Interleaved Memory

The interleaved memory system is most effective when the number of memory banks is equal to or an
integer multiple of the number of words in a cache line.

m + k ,

Appendix D The International Reference Alphabet
A familiar example of data is text, or character strings. While textual data are most convenient for
human beings, they cannot, in character form, be easily stored or transmitted by data processing and
communications systems. Such systems are designed for binary data. Thus a number of codes have
been devised by which characters are represented by a sequence of bits. Perhaps the earliest
common example of this is the Morse code. Today, the most commonly used text code is the
International Reference Alphabet (IRA). Each character in this code is represented by a unique 7-bit
binary code; thus, 128 different characters can be represented. Table D.1 lists all of the code values.
In the table, the bits of each character are labeled from which is the most significant bit, to the
least significant bit. Characters are of two types: printable and control (Table D.2). Printable
characters are the alphabetic, numeric, and special characters that can be printed on paper or
displayed on a screen. For example, the bit representation of the character “K” is

 Some of the control characters have to do with controlling the printing or
displaying of characters; an example is carriage return. Other control characters are concerned with
communications procedures.

 IRA is defined in ITU-T Recommendation T.50 and was formerly known as International Alphabet Number 5 (IA5).

The U.S. national version of IRA is referred to as the American Standard Code for Information Interchange (ASCII).

IRA-encoded characters are almost always stored and transmitted using 8 bits per character. The
eighth bit is a parity bit used for error detection. The parity bit is the most significant bit and is
therefore labeled This bit is set such that the total number of binary 1s in each octet is always odd
(odd parity) or always even (even parity). Thus, a transmission error that changes a single bit, or any
odd number of bits, can be detected.

Table D.1 The International Reference Alphabet (IRA)

bit position

0 0 0 0 1 1 1 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

0 0 0 0 NUL DLE SP 0 @ P ` p

0 0 0 1 SOH DC1 ! 1 A Q a q

0 0 1 0 STX DC2 ” 2 B R b r

0 0 1 1 ETX DC3 # 3 C S c s

0 1 0 0 EOT DC4 $ 4 D T d t

1

b7, b1,

b7b6b5b4b3b2b1 = 1001011.

1

b8.

b7

b6

b5

b4 b3 b2 b1

0 1 0 1 ENQ NAK % 5 E U e u

0 1 1 0 ACK SYN & 6 F V f v

0 1 1 1 BEL ETB ’ 7 G W g w

1 0 0 0 BS CAN (8 H X h x

1 0 0 1 HT EM) 9 I Y i y

1 0 1 0 LF SUB * : J Z j z

1 0 1 1 VT ESC ; K [k

1 1 0 0 FF FS , L \ l

1 1 0 1 CR GS M] m

1 1 1 0 SO RS . N n

1 1 1 1 SI US / ? O _ o DEL

Table D.2 IRA Control Characters

Format Control

BS (Backspace): Indicates movement
of the printing mechanism or display
cursor backward one position.

HT (Horizontal Tab): Indicates
movement of the printing mechanism
or display cursor forward to the next
preassigned “tab” or stopping position.

LF (Line Feed): Indicates movement of
the printing mechanism or display
cursor to the start of the next line.

VT (Vertical Tab): Indicates movement of the printing
mechanism or display cursor to the next of a series or
preassigned printing lines.

FF (Form Feed): Indicates movement of the printing
mechanism or display cursor to the starting position of the
next page, form, or screen.

CR (Carriage Return): Indicates movement of the printing
mechanism or display cursor to the starting position of the
same line.

Transmission Control

SOH (Start of Heading): Used to
indicate the start of a heading, which
may contain address or routing

ACK (Acknowledge): A character transmitted by a
receiving device as an affirmation response to a sender. It
is used as a positive response to polling messages.

+ {

< |

− = }

> ∧ ∼

information.

STX (Start of Text): Used to indicate
the start of the text and so also
indicates the end of the heading.

ETX (End of Text): Used to terminate
the text that was started with STX.

EOT (End of Transmission): Indicates
the end of a transmission, which may
have included one or more “texts” with
their headings.

ENQ (Enquiry): A request for a
response from a remote station. It may
be used as a “’WHO ARE YOU”
request for a station to identify itself.

NAK (Negative Acknowledgment): A character
transmitted by a receiving device as a negative response
to a sender. It is used as a negative response to polling
messages.

SYN (Synchronous/Idle): Used by a synchronous
transmission system to achieve synchronization. When no
data is being sent a synchronous transmission system
may send SYN characters continuously.

ETB (End of Transmission Block): Indicates the end of a
block of data for communication purposes. It is used for
blocking data where the block structure is not necessarily
related to the processing format.

Information Separator

FS (File Separator)

GS (Group Separator)

RS (Record Separator)

US (Unit Separator)

Information separators are to be used in an optional
manner, except that their hierarchy shall be FS (the most
inclusive) to US (the least inclusive).

Miscellaneous

NUL (Null): No character. Used for
filling in time or filling space on tape
when there are no data.

BEL (Bell): Used when there is need
to call human attention. It may control
alarm or attention devices.

SO (Shift Out): Indicates that the code
combinations that follow shall be
interpreted as outside of the standard
character set until a SI character is
reached.

DLE (Data Link Escape): A character that shall change
the meaning of one or more contiguously following
characters. It can provide supplementary controls, or
permits the sending of data characters having any bit
combination.

DC1, DC2, DC3, DC4 (Device Controls): Characters for
the control of ancillary devices or special terminal
features.

CAN (Cancel): Indicates that the data that precedes it in a
message or block should be disregarded (usually
because an error has been detected).

SI (Shift In): Indicates that the code
combinations that follow shall be
interpreted according to the standard
character set.

DEL (Delete): Used to obliterate
unwanted characters; for example, by
overwriting.

SP (Space): A nonprinting character
used to separate words, or to move
the printing mechanism or display
cursor forward by one position.

EM (End of Medium): Indicates the physical end of a tape
or other medium, or the end of the required or used
portion of the medium.

SUB (Substitute): Substituted for a character that is found
to be erroneous or invalid.

ESC (Escape): A character intended to provide code
extension in that it gives a specified number of
continuously following characters an alternate meaning.

Appendix E Stacks
E.1 STACKS
E.2 STACK IMPLEMENTATION
E.3 EXPRESSION EVALUATION

The stack is a fundamental and important concept in computer science and
engineering, with a wide range of uses. This appendix provides an overview.

E.1 Stacks
A stack is an ordered set of elements, only one of which can be accessed at a time. The point of
access is called the top of the stack. The number of elements in the stack, or length of the stack, is
variable. The last element in the stack is the base of the stack. Items may only be added to or deleted
from the top of the stack. For this reason, a stack is also known as a pushdown list or a last-in-first-
out (LIFO) list.

 A better term would be place-on-top-of list because the existing elements of the list are not moved in memory, but

a new element is added at the next available memory address.

Figure E.1 shows the basic stack operations. We begin at a point in time when the stack contains
some number of elements. A PUSH operation appends one new item to the top of the stack. A POP
operation removes the top item from the stack. In both cases, the top of the stack moves accordingly.
Binary operators, which require two operands (e.g., multiply, divide, add, subtract), use the top two
stack items as operands, pop both items, and push the result back onto the stack. Unary operations,
which require only one operand (e.g., logical NOT), use the item on the top of the stack. All of these
operations are summarized in Table E.1.

Figure E.1 Basic Stack Operation (full/descending)

Table E.1 Stack-Oriented Operations

PUSH Append a new element on the top of the stack.

POP Delete the top element of the stack.

1

1

Unary
operation

Perform operation on top element of stack. Replace top element with result.

Binary
operation

Perform operation on top two elements of stack. Delete top two elements of stack.
Place result of operation on top of stack.

E.2 Stack Implementation
The stack is a useful structure to provide as part of a processor implementation. One use, discussed
in Section 13.4, is to manage procedure calls and returns. Stacks may also be useful to the
programmer. An example of this is expression evaluation, discussed later in this section.

The implementation of a stack depends in part on its potential uses. If it is desired to make stack
operations available to the programmer, then the instruction set will include stack-oriented operations,
including PUSH, POP, and operations that use the top one or two stack elements as operands.
Because all of these operations refer to a unique location, namely the top of the stack, the address of
the operand or operands is implicit and need not be included in the instruction. These are the zero-
address instructions referred to in Section 13.1.

If the stack mechanism is to be used only by the processor, for such purposes as procedure handling,
then there will not be explicit stack-oriented instructions in the instruction set. In either case, the
implementation of a stack requires that there be some set of locations used to store the stack
elements. A typical approach is illustrated in Figure E.2. A contiguous block of locations is reserved in
main memory (or virtual memory) for the stack. Most of the time, the block is partially filled with stack
elements and the remainder is available for stack growth.

Figure E.2 Typical Stack Organization (full/descending)

Three addresses are needed for proper operation, and these are often stored in processor registers:

Stack pointer (SP): Contains the address of the top of the stack. If an item is appended to or
deleted from the stack, the pointer is incremented or decremented to contain the address of the
new top of the stack.
Stack base: Contains the address of the bottom location in the reserved block. If an attempt is
made to POP when the stack is empty, an error is reported.
Stack limit: Contains the address of the other end of the reserved block. If an attempt is made to
PUSH when the block is fully utilized for the stack, an error is reported.

Stack implementations have two key attributes:

Ascending/descending: An ascending stack grows in the direction of ascending addresses,
starting from a low address and progressing to a higher address. That is, an ascending stack is
one in which the SP is incremented when items are pushed and decremented when items are
pulled. A descending stack grows in the direction of descending addresses, starting from a high
address and progressing to a lower one. Most machines implement descending stacks as a
default.
Full/empty: This is a misleading terminology, because is does not refer to whether the stack is
completely full or completely empty. Rather, the SP can either point to the top item in the stack (full
method), or the next free space on the stack (an empty method). For the full method, when the
stack is completely full, the SP points to the upper limit of the stack. For the empty method, when
the stack is completely empty, the SP points to the base of the stack.

Figure E.1 is an example of a descending/full implementation (assuming that numerically lower
addresses are depicted higher on the page). The ARM architecture allows the system programmer to
specify the use of ascending or descending, empty or full stack operations. The x86 architecture uses
a descending/empty convention.

E.3 Expression Evaluation
Mathematical formulas are usually expressed in what is known as infix notation. In this form, a binary
operator appears between the operands (e.g.,). For complex expressions, parentheses are used
to determine the order of evaluation of expressions. For example, will yield a different result
than To minimize the use of parentheses, operations have an implied precedence.
Generally, multiplication takes precedence over addition, so that is equivalent to

An alternative technique is known as reverse Polish, or postfix, notation. In this notation, the
operator follows its two operands. For example,

Note that, regardless of the complexity of an expression, no parentheses are required when using
reverse Polish.

The advantage of postfix notation is that an expression in this form is easily evaluated using a stack.
An expression in postfix notation is scanned from left to right. For each element of the expression, the
following rules are applied:

1. If the element is a variable or constant, push it onto the stack.
2. If the element is an operator, pop the top two items of the stack, perform the operation, and

push the result.

After the entire expression has been scanned, the result is on the top of the stack.

The simplicity of this algorithm makes it a convenient one for evaluating expressions. Accordingly,
many compilers will take an expression in a high-level language, convert it to postfix notation, and
then generate the machine instructions from that notation. Figure E.3 shows the sequence of machine
instructions for evaluating using stack-oriented instructions. The figure also
shows the use of one-address and two-address instructions. Note that, even though the stack-oriented
rules were not used in the last two cases, the postfix notation served as a guide for generating the
machine instructions. The sequence of events for the stack program is shown in Figure E.4.

Stack General Registers Single Register

Push a

Push b

Subtract

Push c

Push d

Load R1, a

Subtract R1, b

Load R2, d

Multiply R2, e

Add R2, c

Load d

Multiply e

Add c

Store f

Load a

a + b
a + (b × c)

(a + b) × c.
a + b × c a + (b × c) .

a + b becomes a b +
a + (b × c) becomes a b c × +
(a + b) × c becomes a b + c ×

f= (a − b) / (c + d × e)

Push e

Multiply

Add

Divide

Pop f

Divide R1, R2

Store R1, f

Subtract b

Divide f

Store f

Number of instructions 10 7 8

Memory access
10op + 6d 7op + 6d 8op + 8d

Figure E.3 Comparison of Three Programs to Calculate f =
a − b

c + (d × e)

Figure E.4 Use of Stack to Compute

The process of converting an infix expression to a postfix expression is itself most easily
accomplished using a stack. The following algorithm is due to Dijkstra [DIJK63]. The infix expression
is scanned from left to right, and the postfix expression is developed and output during the scan. The
steps are as follows:

1. Examine the next element in the input.
2. If it is an operand, output it.

f = (a − b) / [(d × e) + c]

3. If it is an opening parenthesis, push it onto the stack.
4. If it is an operator, then

If the top of the stack is an opening parenthesis, then push the operator.
If it has higher priority than the top of the stack (multiply and divide have higher priority than
add and subtract), then push the operator.
Else, pop operation from stack to output, and repeat step 4.

5. If it is a closing parenthesis, pop operators to the output until an opening parenthesis is
encountered. Pop and discard the opening parenthesis.

6. If there is more input, go to step 1.
7. If there is no more input, unstack the remaining operands.

Figure E.5 illustrates the use of this algorithm. This example should give the reader some feel for the
power of stack-based algorithms.

Figure E.5 Conversion of an Expression from Infix to Postfix Notation

Input Output Stack (top on right)

empty empty

A empty

A

A B

A B

A B C

F

empty

empty empty

A + B × C + (D + E) × F

+B × C + (D + E) × F

B × C + (D + E) × F +

×C + (D + E) × F +

C + (D + E) × F + ×

+ (D + E) × F + ×

(D + E) × F A B C × + +

D + E) × F A B C × + + (

+E) × F A B C × + D + (

E) × F A B C × + D + (+

) × F A B C × + D E + (+

×F A B C × + D E+ +

A B C × + D E+ + ×

A B C × + D E + F + ×

A B C × + D E + F × +

Appendix F Recursive Procedures
F.1 RECURSION
F.2 ACTIVATION TREE REPRESENTATION

Fibonacci Numbers
Ackermann’s Function

F.3 STACK IMPLEMENTATION
F.4 RECURSION AND ITERATION

Recursion is an important concept that cuts across many areas of computer
science. Daniel McCracken, a noted computer science educator [MCCR87]
considers recursion to be fundamental in computer science, whether understood
as a mathematical concept, a programming technique, a way of expressing an
algorithm, or a problem-solving approach.

Chapter 13 briefly mentions recursive procedures and the concept warrants
elaboration, which is done in this appendix. Many students find recursion a difficult
concept to grasp. Accordingly, this appendix covers a number of examples and
uses various methods of description and presentation.

F.1 Recursion
One of the classic examples of recursion is the factorial function. The factorial of a positive integer is
computed as that integer times all of the integers below it up to and including 1. For example,
factorial(5) is the same as and factorial(3) is Now suppose that you want to
compute the factorial of 27, and you already know the value of factorial(26). Then, you don’t need to
compute Instead, you need only compute Similarly, if you

know the value of factorial(53), then the value of factorial(54) is computed as

Thus, in general, we can state that However, as written, this
definition involves an infinite recurrence, with the procedure calling itself recursively indefinitely. We
need a condition that will stop the recursion; this is known as a base case. For the factorial function,
the base case is with We can then write the factorial function in C as follows:

int factorial(int n)
{
 if(n == 1)
 return 1;
 else
 return n * factorial(n - 1);
}

The base case, or halting case, of a function is the value that can be expressed without any more
recursive calls. Every recursive function must have at least one base case (many functions have more
than one). If it doesn’t, the function will not work correctly most of the time, and will most likely cause
the program to crash. The general case is one in which a recursive call takes place. In the case of a
factorial, the general case occurs when meaning we use the equation and recursive definition

The reader may at first be uncomfortable with the concept of a function or procedure that calls itself.
We look at how to implement such a function in a later section. For now, just assume that it does work
—that a function can call itself without causing an error condition in the operating system.

So far, what we have seen presents the essence of recursion in programming. First, it involves a
function that calls itself. And second, the function definition must include a base case that enables the
function to terminate the recursive process.

The factorial function is an example of the use of recursion to program a mathematical algorithm.
However, recursion is far more versatile. It is often appropriate for dealing with linked lists, tree
structures, and search and sort algorithms. As an example, consider the binary search algorithm. Let
sortedArray[] be an array sorted in descending order. The binary search algorithm locates a particular
value in the sorted list. If the value is found, the algorithm returns the position of the value. If the value
is not in the list, then the algorithm returns the negative of the insertion position:

int BinarySearch(int sortedArray[], int key, int first, int last) {
 if (first <= last) {
 int mid = (first + last) / 2;

5 × 4 × 3 × 2 × 1, 3 × 2 × 1.

27 × 26 × 25 × … × 1. 27 × factorial(26) .

factorial(54) = 54 × factorial(53) .

factorial(n) = n × factorial(n − 1) .

n = 1, factorial(1) = 1.

n > 1,n ! = n * (n − 1) !

 if (key == sortedArray[mid])
 return mid; /* found */
 else if (key < sortedArray[mid])
 return BinarySearch(sortedArray, key, first, mid-1);
 else /* key > sortedArray[mid] */
 return BinarySearch(sortedArray, key, mid+1, last);
 }
 return -(first); /* not found */
}

F.2 Activation Tree Representation
To facilitate the understanding of recursive procedures, [HAYN95] introduced the activation tree. The
recursion tree is a tree where each node is the “current environment.” That is, each node contains
parameters, local variables, and return values. Using this technique, it is easy to identify a node as a
particular procedure executing in a particular environment. The parent of a node is the procedure that
called the node. The children of a node are the procedures, which that node calls.

Figure F.1a shows the generic form of an activation tree node. The node includes the function name,
the parameters passed to the function, and the values returned by the function. If the function name
appears multiple times in the function definition, then each is distinguished by a unique subscript.
Figure F.1b shows an example of the call/return structure of a procedure that has been called. The
circled numbers in the nodes indicate the order in which nodes are activated. The dynamic execution
of the program follows depth first traversal of the activation tree. The top node is the first invocation of
the function. Multiple invocations from a node are listed as children, with the invocations left to right.
All of this should be clear as we examine two examples.

Figure F.1 Activation Record Conventions

Fibonacci Numbers

Fibonacci numbers are defined as follows:

That is, each Fibonacci number is the sum of the preceding two numbers. It turns out that Fibonacci
series occurs in many contexts in nature. The start of the series is as follows:

1 1 2 3 5 8 13 21 34 55 89 144 233 377 610 987

Here is a recursive program for the Fibonacci series:

int function fib(n)
{
 if (n == 1 || n == 2)
 return 1;
 else
 return fib(n-1) + fib(n-2);
}

Figure F.2a shows the activation tree for fib(5), which yields a result of 5. The topology of the tree is
derived from the execution, and the execution is closely tied to the inductive definition (which was
used to write the function). For example, the activation tree shows that the node for Fib(5) has two
children: Fib(4) and Fib(3). That is, the value calculated for Fib(5) must use the values calculated for
Fib(4) and Fib(3). The activation tree has the return values placed in the right-side box, making the
return value accessible to the student. According to the definition of Fib, the values for Fib(4) and
Fib(3) must be added together in order to obtain the value for Fib(5). If we replace the “5” in Fib(5) by
“n”, then the activation tree tells us that Fib(n) is a function of and The leaves
of the activation tree correspond to the base case(s) of the inductive definition. Thus, Fib(2) returns
immediately with the value of 1.

Fib (k) = Fib (k − l) + Fib (k − 2) ;
Fib (2) = 1;
Fib (l) = 1;

Fib (n − 1) Fib (n − 2) .

Figure F.2 Recursion Examples

Here is a corresponding execution trace:

Entering: FIB , Argument list: (5)
 Entering: FIB , Argument list: (4)
 Entering: FIB , Argument list: (3)
 Entering: FIB , Argument list: (2)
 Exiting: FIB , Value: 1
 Entering: FIB , Argument list:. (1)
 Exiting: FIB , Value: 1
 Exiting: FIB , Value: 2
 Entering: FIB , Argument list: (2)

 Exiting: FIB , Value: 1
 Exiting: FIB , Value: 3
 Entering: FIB , Argument list: (3)
 Entering: FIB , Argument list: (2)
 Exiting: FIB , Value: 1
 Entering: FIB , Argument list: (1)
 Exiting: FIB , Value: 1
 Exiting: FIB , Value: 2
Exiting: FIB , Value: 5

Figure F.3a repeats Figure F.2a, showing the sequence in which the activation records are visited.
This is a depth-first traversal of the tree, with a left-to-right sequence at each level.

Figure F.3 Recursion Examples: Execution Trace

Ackermann’s Function

A more interesting recursive function is the deceptively simple Ackermann’s function:

int ack(int m, int n) {
 if (m==O) return (n + 1);
 if (n==O) return (ack (m-l,1));
 return (ack (m-l, ack(m, n-l)));
}

 In this case, the function is invoked recursively but more than that, the function appears as an
argument inside the recursive use of the function. The value of this function grows very rapidly, even
for small inputs, and even though increases only result from addition of 1.. For example, A(4, 2)
contains 19,729 decimal digits.

To clarify the operation of this function, we label each recursive call with a unique subscript. In each
case, it is the same function; the subscripts simply make it easier to keep track of what is happening:

int ack(int m, int n) {
 if (m==O) return (n + 1);
 if (n==O) return (ack (m-l,1));
 return (ack (m-l, ack (m, n-l)));
}

Figure F.2b shows the activation tree for ack(2, 1), which has the following execution trace:

1

2 3

Entering: ACK, Argument list: (2 1) //(a)
 Entering: ACK, Argument list: (2 0)
 Entering: ACK, Argument list: (1 1) //(b)
 Entering: ACK, Argument list: (1 0)
 Entering: ACK, Argument list: (0 1)//(c)
 Exiting: ACK, Value: 2
 Exiting: ACK, Value: 2
 Entering: ACK, Argument list: (0 2)
 Exiting: ACK, Value: 3
 Exiting: ACK, Value: 3
 Exiting: ACK, Value: 3
 Entering: ACK, Argument list: (1 3)
 Entering: ACK, Argument list: (1 2) //(d)
 Entering: ACK, Argument list: (1 1)
 Entering: ACK, Argument list: (1 0)
 Entering: ACK, Argument list: (0 1)
 Exiting: ACK, Value: 2
 Exiting: ACK, Value: 2
 Entering: ACK, Argument list: (0 2)
 Exiting: ACK, Value: 3
 Exiting: ACK, Value: 3
 Entering: ACK, Argument list: (0 3)
 Exiting: ACK, Value: 4
 Exiting: ACK, Value: 4
 Entering: ACK, Argument list: (0 4) //(e)
 Exiting: ACK, Value: 5
 Exiting: ACK, Value: 5
Exiting: ACK, Value: 5

Some of the lines in the execution trace have labels that correspond to labels on the activation tree.
This is for illustrative purposes only.

Figure F.3b shows the sequence in which the activation records are visited.

	F.3 Stack Implementation
Implementation of recursive procedures in programming languages almost always involves the use of
a stack. Each call of the procedure causes a stack frame, or activation record instance, to be pushed
onto the control stack. As discussed in Chapter 13 (Figure 13.10), a stack frame includes a return
address, passed parameters, a frame pointer, and perhaps other bookkeeping information. When the
called procedure returns to the calling procedure, the stack for the called procedure is popped from
the stack.

The exact contents and organization of a stack frame depend on the implementation. For our
purposes, we consider a “model” stack frame that includes the following elements, illustrated with the
top of the stack at the top of the diagram:

param-n

•

•

•

parem-1

old frame pointer

(points to preceding frame)

return address

(return to calling program)

Associated with the stack are a stack pointer, which points to the current top element of the stack, and
a frame pointer, which points to the old frame pointer field in the top frame. When a call is made from
the current program, a new frame is created by:

1. Push the return address of the calling program.
2. Push the current frame pointer.
3. Push all parameters to be passed to the called program.

The called program my a access the passed parameters. The called program may call another
program, resulting in a new stack frame being pushed onto the stack. When the called program
returns:

1. Pop all the elements of the current frame from the stack.
2. If any parameters are to be returned to the calling program, push these onto the stack, where

they become part of the calling program’s stack frame.
3. Update the stack pointer to the new top of the stack.
4. Update the frame pointer to the value that was in the old frame pointer field that has just been

popped from the stack.
5. Resume execution at the return address that has just been popped from the stack.

The preceding technique works whether the programs are distinct or all the same. That is, the same
technique works with a recursive program that calls itself as well as the more usual situation.

Figure F.4 shows the control stack at the labeled points in Figure F.2b for the function Ackermann (2,
1).

Figure F.4 Snapshots of Stack During Execution of Figure F.2b

F.4 Recursion And Iteration
It can be shown that any recursive definition of an algorithm can be rewritten using only iteration, that
is, using only loop constructs [RICE65]. In many cases, the recursive definition is more compact in a
programming language that allows recursion, and is more understandable, particularly if the function
operates on a recursive data structure such as a tree. However, typically a recursive program uses
both more memory and more processing time than an equivalent iterative solution.

As an example, consider the factorial function, which we defined as:

int factorial(int n)
{
 if(n == 1)
 return 1;
 else
 return n * factorial(n - 1);
}

This can easily be rewritten iteratively as:

int factorial(int n)
{
 int nfactorial;
 for (nfactorial = 1; n != 0; --n)
 nfactorial *= n;
 return nfactorial;
}

Now, to compute factorial(n) recursively would require n instances of the variable to be created on the
control stack and n calls and returns, which generates n stack frame creations and deletions. In the
iterative solution, there is a single variable, and only one stack frame created.

However, there are many cases in which the recursive technique is more natural and easier to
program. Consider the binary search algorithm introduced earlier. To repeat, the recursive version is
as follows:

int BinarySearch(int sortedArray[], int key, int first, int last) {
 if (first <= last) {
 int mid = (first + last) / 2;
 if (key == sortedArray[mid])
 return mid; /* found */
 else if (key < sortedArray[mid])
 return BinarySearch(sortedArray, key, first, mid-1);
 else /* key > sortedArray[mid] */
 return BinarySearch(sortedArray, key, mid+1, last);
 }
 return -(first); /* not found */

}

Here is an iterative version:

int BinarySearch(int sortedArray[], int key, int first, int last) {
 int low = first;
 int high = last;
 while (low <= high) {
 int mid = (low + high) / 2;
 if (key == sortedArray[mid])
 return mid; /* found */
 else if (key < sortedArray[mid])
 high = mid - 1;
 else /* key > sortedArray[mid] */
 low = mid + 1;
 }
 return -(first); /* not found */
}

The iterative algorithm requires two temporary variables, and even given knowledge of the algorithm it
is more difficult to understand the process by simple inspection, although the two algorithms are very
similar in their steps.

Table F.1 summarizes some of the differences between recursion and iteration.

Table F.1 Properties of Iteration and Recursion

Property Iteration Loop Recursive Procedure

Repetition Execute the same block of code repeatedly to
obtain the result; signal the intent to repeat by
looping back to the loop entrance.

Execute the same block of code
repeatedly to obtain the result;
signal the intent to repeat by
calling itself.

Terminating
conditions

In order to guarantee that it will terminate, a
loop must have one or more conditions that
cause it to terminate and it must be guaranteed
at some point to hit one of these conditions.

In order to guarantee that it will
terminate, a recursive function
requires a base case that causes
the function to stop recursing.

State Current state is updated as the loop progresses. Current state is passed as
parameters.

Appendix G Additional Instruction Pipeline Topics
G.1 PIPELINE RESERVATION TABLES

Reservation Tables for Dynamic Pipelines
Instruction Pipeline Example

G.2 REORDER BUFFERS
In-Order Completion
Out-of-Order Completion

G.3 TOMASULO’S ALGORITHM
G.4 SCOREBOARDING

Scoreboard Operation
Scoreboard Example

This appendix expands on some topics referenced in Chapters 16 through 18.

 G.1 Pipeline Reservation Tables
A central problem in pipeline design is that of ensuring that the pipeline can achieve the highest
throughput consistent with avoiding structural hazards. That is, we would like to feed instructions into
the pipeline at the highest rate that can be achieved without having collisions in the use of a shared
resource. One of the earliest techniques introduced for this purpose is the reservation table ([DAVI71],
[DAVI75], [PATE76]).

A reservation table is a timing diagram that shows the flow of data through a pipeline and indicates
which resources are needed at each time interval by an instruction flowing through the pipeline.

Reservation Tables for Dynamic Pipelines

First, we look at the more general case of a dynamic pipeline. A dynamic pipeline is one that can be
reconfigured to support different functions at different times. Further, such a pipeline might involve
feedforward and feedback connections. Most instruction pipelines will not exhibit all of this flexibility,
although some dynamic features may appear in some implementations. In any case, a static pipeline,
which performs a fixed function without feedback or feedforward loops is just a special case for which
the same principles apply.

Figure G.1a shows a multifunction dynamic pipeline. Two reservation tables are shown in Figures
G.1b and G.1c, corresponding to a function X and a function Y. In the reservation table, the rows
correspond to resources (in this case pipeline stages), the columns to time units, and an entry in row i,
column j indicates that station i is busy at time j.

Figure G.1 Pipeline with Feedforward and Feedback Connections for Two Different Functions

The number of time units (clock cycles) between two initiations of a pipeline is the latency between
them. Any attempt by two or more initiations to use the same pipeline resource at the same time will
cause a collision. It is readily seen that a collision will occur if two instructions are initiated with a
latency equal to the distance between two entries in a given row. From an examination of the
reservation table, we can obtain a list of these forbidden latencies and build a collision vector:

 The online simulation used with this book defines the collision vector beginning with However, a latency of 0

1

1 C0.

will always produce a collision, so this convention is not followed in the literature. Also, some treatments of
reservation tables use the reverse order for the collision vector:

where

 if i is a forbidden latency; that is, initiating a pipeline instruction i time units after the preceding
instruction results in a resource collision

 if i is a permitted latency

 in the collision list.

Although these examples do not show it, there may be multiple consecutive entries in a row. This
corresponds to a case in which a given pipeline stage requires multiple time units. There may also be
multiple entries in a column, indicating the use of multiple resources in parallel.

To determine whether a given latency is forbidden or permitted, we can take two copies of the
reservation table pattern and slide one to the right and see if any collisions occur at a given latency.
Figure G.2 shows that latencies 2 and 5 are forbidden. In the figure, the designation refers to the
first initiation of function X, and refers to the second initiation. By inspection, we can also see that
latencies 2, 4, 5, and 7 are all forbidden.

Figure G.2 Collisions with Forbidden Latencies 2 and 5 Using the Pipeline in Figure G.1 for the
Function X

Latencies 1, 3, and 6 are permitted. Any latency greater than 7 is clearly permitted. Thus, the collision

(C1 , C2 , … , Cn) .

(C1 , C2 , … , Cn)

Ci = 1

Ci = 0

n = largest value

X1

X2

vector for function X is:

We must be careful how we interpret the collision vector. Although a latency of 1 is permitted, we
cannot issue a sequence of instructions, each with a latency of 1 to the preceding instruction. To see
this, consider that the third instruction would have a latency of 2 relative to the first instruction, which is
forbidden. Instead, we need a sequence of latencies that are permissible with respect to all preceding
instructions. A latency cycle is a latency sequence that repeats the same subsequence indefinitely.

Figure G.3 illustrates latency cycles for our example that do not cause collisions. For example, Figure
G.3a implies that successive initiations of new tasks are separated by one cycle and eight cycles
alternately.

Figure G.3 Successful Latencies for the Pipeline in Figure G.1 for the Function x

Instruction Pipeline Example

CX = (0101101)

Let us look now at the construction of a reservation table for a typical pipeline. Consider the following
example. Figure G.4 illustrates the pipeline and indicates the approximate amount of time for each
stage. A straightforward attempt to develop a reservation table yields the result in Figure G.5a. To
develop this table, we use a fixed clock rate and synchronize all processing with this fixed clock. Each
stage performs its function within one or more clock periods and shifts results to the next stage on the
clock edge. For this example, we choose a 20-ns clock.

Figure G.4 An Instruction Pipeline

Figure G.5 Reservation Table for an Instruction Pipeline

However, we need to keep in mind that the rows of the table are supposed to correspond to
resources, not simply pipeline stages. In Figure G.5b, we modify the reservation table to reflect that
the memory operations are using the same functional unit. Here, the only permissible latency is 15.

Now suppose that we implement an on-chip cache and reduce memory access time to one clock
cycle. The revised reservation table is shown in Figure G.6a. By sliding one copy of the reservation
table pattern over another, we easily discover that the collision vector is 011010. The question then
arises as to what schedule will provide the lowest average latency. As Figure G.3 indicates, there are
a number of possibilities for any given collision vector.

Figure G.6 Reservation Table and State Transition Diagram for Revised Instruction Pipeline

A convenient tool for determining when we can initiate a new process into the pipeline and avoid
collisions, when some operations are already in the pipeline, is the collision vector state transition
diagram. The procedure for creating the state diagram is as follows:

1. Shift the collision vector left one position, inserting a 0 in the rightmost position. Each 1-bit shift
corresponds to an increase in latency by 1.

2. Continue shifting until a 0 bit emerges from the left end. When a 0 bit emerges after p shifts, this
means that p is a permissible latency.

3. The resulting collision vector represents the collisions that can be caused by the instruction
currently in the pipeline. The original collision vector represents the collisions that can be
caused by the instruction that we now insert into the pipeline. To represent all the collision
possibilities, we create a new state by bitwise-ORing the initial collision vector with the shifted
register.

4. Repeat this process from the initial state for all permissible shifts.
5. Repeat this process from all newly created states for all permissible shifts. In each case, bitwise

OR with the original collision vector.

Figure G.6b shows the result for the reservation table of Figure G.6a. The state diagram shows that,
after we have initiated an operation into an empty pipeline, we can initiate a new operation into the
pipeline after 1 cycle. However, this brings us to a state where we cannot initiate another operation
until 6 more time units. This gives us an average latency of 3.5 for a seven-stage pipeline, which is not
very good. Alternatively, we can wait for 4 time units after the initial operation begins, and then initiate
a new operation every 4 cycles. This yields even poorer performance, with an average latency of 4.

A clever way to achieve better performance is to actually introduce a deliberate delay into the pipeline.
Suppose that we put a one-cycle delay after the execute stage. This results, in effect, in an 8-stage
pipeline. The reservation table is shown in Figure G.7a, where the entry D indicates a delay. This
yields a collision vector of 0011010. We now have latency possibilities of 1, 2, 4, and 7. Figure G.7b
shows the resulting state transition diagram. We now look for a closed loop, or cycle, through the
state diagram that yields the minimum average latency.

 All the states have an arc back to the beginning with a latency of 7, in addition to those noted. These are not

shown for clarity.

2

2

Figure G.7 Reservation Table and State Transition Diagram for Instruction Pipeline with Delay
Inserted

One possibility is the greedy cycle. A greedy cycle is one whose edges are all made with minimum

latencies from their respective starting positions; that is, at each state, they choose the exiting edge
with the smallest latency value. In this case, the greedy cycle has latency values 1, 1, 7, so that the
average latency is A careful study of the diagram shows that, in this case, no other cycle
produces a smaller average latency.

9 / 3 = 3.

G.2 Reorder Buffers
As was mentioned in Chapter 18, a
common superscalar technique to support out-of-order
completion is the reorder buffer [SMIT88]. The reorder buffer is temporary storage for results
completed out of order that are then committed to the register file in program order.

To explain the operation of the reorder buffer, we first need to look at a technique that supports in-
order completion, known as the result shift register.

In-Order Completion

With in-order completion, an instruction is dispatched and allowed to modify the machine state
(register values, interrupt status) only if no preceding instruction has caused an interrupt condition.
This restriction ensures that an instruction will not be retired until preceding instructions have
completed any changes to the register file.

The processor controls the writing of results to registers by means of a result shift register. The
result shift register is a table with as many entries (rows) as there are pipeline stages in the longest
execution pipeline (Figure G.8). Each entry, if valid, refers to a single instruction, and consists of four
fields:

 The term shift register is somewhat misleading. The shift is not a bitwise shift, left or right, but rather a shift of all of

the entries in the data structure up one entry position, with the topmost entry shifted out of the structure.

Figure G.8 Result Shift Register

Functional unit source: the functional unit that will be supplying the result.
Destination register: the destination register for the result.
Valid bit: indicates whether this entry currently contains valid information.
Program counter: location of the instruction.

An instruction that takes i clock periods reserves stage i of the result shift register at the time it issues.
If the valid bit of stage i is already set, then instruction issue is held until the next clock period, and

3

3

stage i is checked once again. When an entry can be made, the four fields of the entry are filled in. At
the same time, all entries in the result shift register from 1 through that are not in use are filled
with null information, but the valid bit is set. This prevents a following short-latency instruction from
reserving any of the lines preceding i, and therefore ensures that no instruction is issued if it will finish
execution before a logically preceding instruction.

Finally, at each clock cycle, entry 1 of the register is deleted, the remaining entries are shifted up one
row, and a null entry is place in row N.

Out-of-Order Completion

The reorder buffer is used to support out-of-order completion by delaying the retiring of a completed
instruction until results can be posted in the logically correct order. Figure G.9a shows the
organization for this approach. A modified result shift register is still used, but this now provides input
to the reorder buffer. Results from completed instructions also provide input to the reorder buffer. The
update of registers with results from completed instructions takes place through the reorder buffer,
which, as the name suggests, reorders results from completed instructions to assure correct
execution.

i − 1

Figure G.9 Reorder Buffer Implementation

Figure G.9b shows the details of the two data structures used in this approach. The reorder buffer is
a circular buffer with head and tail pointers. Entries between the head and the tail are considered
valid. When an instruction issues, the next available reorder buffer entry, pointed to by the tail
pointer, is given to the issuing instruction. The entry number value for this instruction is used as a tag
to identify the entry in the buffer reserved for the instruction. The tag is placed in the result shift
register along with other control information. The tail pointer is then incremented, modulo the buffer
size. The result shift register differs from the one used earlier because there is a field containing a
reorder tag instead of a field specifying a destination register.

4

 If the head is greater than the tail, the valid entries are from the head to the end of the buffer, then from the

beginning of the buffer to the tail.

When an instruction completes, results are sent to the reorder buffer. The tag from the result shift
register is used to guide them to the correct reorder buffer entry. When an entry at the head of the
reorder buffer contains valid results (its instruction has completed), the results are written into the
registers.

Note that the entries in the reorder buffer are in the order in which the instructions are issued. Thus
the reorder buffer enforces a write to the registers in the logically correct order. That is, the reorder
buffer serves as temporary storage for results that may be completed out of order, and then commits
these results to the register file in program order. The result shift register is not strictly necessary in
this arrangement, but does provide an indexing mechanism into the reorder buffer so that it is not
necessary to do an associative lookup after each instruction completion.

4

G.3 Tomasulo’s Algorithm
Tomasulo’s algorithm was developed for the IBM 360/91 floating point unit [TOMA67]. It was
subsequently used in a number of IBM 360/370 machines, CDC 6600/7600 machines, PowerPC
implementations, and other processors. The algorithm minimizes RAW hazards by tracking when
operands for instructions are available. It also minimizes WAW and WAR hazards by the renaming of
registers to remove artificial dependencies and the use of buffers, known as reservation stations, that
permit data to be temporarily stored, thus eliminating the need to read from the register file once the
data are available.

The reservation stations fetch and store instruction operands as soon as they are available. Source
operands point to either the register file or to other reservation stations. Each reservation station
corresponds to one instruction. Once all source operands are available, the instruction is sent for
execution, provided a functional unit is also available. Once execution is complete, the result is
buffered at the reservation station. Thus, the functional unit is free to execute another instruction. The
reservation station then sends the result to the register file and any other reservation station that is
waiting on that result. WAW hazards are handled since only the last instruction (in program order)
actually writes to the registers. The other results are buffered in other reservation stations and are
eventually sent to any instructions waiting for those results. WAR hazards are handled since
reservation stations can get source operands from either the register file or other reservation stations
(in other words, from another instruction). In Tomasulo’s algorithm, the control logic is distributed
among the reservation stations.

An example of the organization for Tomasulo’s algorithm is shown in Figure G.10. This is the
organization for the original implementation of the floating point unit of the IBM 360/91.

Figure G.10 Basic Structure of a Floating-Point Unit Using Tomasulo’s Algorithm

To get a feel for the algorithm, let us follow an instruction through the stages of a typical Tomasulo
processor. Note that each stage here may correspond to more than one actual pipeline stage:

Fetch: Just like in a simple scalar processor, instructions are fetched from instruction memory.
Unlike a simple scalar processor, instructions are likely to be fetched in batches of two or more at a
time.
Issue: The processor determines which reservation station to issue the instruction to, based on
what type of functional unit it requires, and the availability of space in the reservation stations.
Instructions can be issued to reservation stations regardless of whether or not their operands are
available. If an operand is not available to be read from the register file immediately, this must be
because the value associated with that register has not yet been calculated. If this is the case, then
the operand will be updated with the result of an instruction that has already been issued, which
instruction is therefore already assigned to a reservation station. Hence, as the issue unit issues
the instruction to its reservation station, it renames any references to outstanding registers with an
identifier tag which indicates which functional unit will produce the result, and which virtual register
identifier the result will be identified as. The issue unit also renames any result registers associated
with the new instruction to a virtual register identifier so that it can tell subsequent instructions
where to find the results of this instruction.
Execute: The execution stage of a processor implementing Tomasulo’s algorithm consists of a
number of functional units, each with their own reservation station. The reservation station holds a
small number of instructions that have been issued, but cannot yet be executed. When an
instruction becomes ready to be executed because of operand values becoming available (by

being broadcast on the common data bus), and the functional unit is ready to accept a new
instruction, the reservation station passes the instruction to the functional unit, where the
instruction’s real execution takes place: arithmetic operations are calculated, memory is accessed.
Writeback: The final stage an instruction goes through is writeback. This is similar in many ways to
a simple pipelined machine: when the result of an instruction has been calculated, the value is
driven on one of a number of common data buses, to be sent to the register file. This bus is also
monitored by other parts of the machine so that the value may be used immediately by waiting
instructions.

To get a feel for the algorithm, we present an example for a typical processor organization using
Tomasulo’s algorithm. We assume that each instruction includes references to three floating-point
registers as operands. Up to two instructions can be dispatched (in program order) at a time. We also
assume that an instruction can begin execution in the same cycle that it dispatched to a reservation
station. Latencies for floating point add and multiply operations are two and three cycles per
instruction, respectively. An instruction can forward its result to dependent instructions during its last
execution cycle, and a dependent instruction can begin execution in the next cycle. Tag values 1, 2,
and 3 are used to identify the three reservation stations of the adder functional unit, while values 4 and
5 are used to identify the two reservation stations of the multiply/divide functional unit.

The example sequence consists of the following program fragment:

w: R4 ← R0 + R8
x: R2 ← R0 × R4
y: R4 ← R4 + R8
z: R8 ← R4 × R2

The initial values of registers R0, R2, R4, and R8 are 6.0, 3.5, 10.0, and 7.8, respectively. Figure
G.11 illustrates six cycles of execution of the program.

Figure G.11 Illustration of Tomasulo’s Algorithm on an Example Instruction Sequence

Cycle 1: Instructions w and x are dispatched (in order) to reservation stations (RSs) 1 and 4,
respectively. The busy bits of the destination registers for these instructions (R4 for w, R2 for x) are
set in the floating point register (FLR) file. The tag field for R2 is set to 4, indicating that the
instruction in RS 4 will produce the result for updating R2. Similarly, the tag field for R4 is set to 1,
indicating that the instruction in RS a will produce the result for updating R4. Note that in the RS
entries, one of the two source operands is placed in the sink field. This serves as a temporary
storage location. The other operand will be combined with the value in the sink field to produce the
destination operand value. Both operands for instruction w are available, so it begins execution
immediately (indicated by the w next to the Adder function). Instruction x requires the result (R4) of
instruction w, so it cannot yet execute. Instead, the tag bit for the source operand is set to 1,
referring to entry 1 in the RS file. This tag indicates that the instruction in RS 1 will produce the
needed source operand.
Cycle 2: Instructions y and z are dispatched (in order) to RSs 2 and 5, respectively. The busy bit
for the destination register of z (R8) is set in the FLR file. Instruction y needs R8 as a source
register. Because the busy bit is set for this R8, indicating that the value in the FLR is no longer
valid, the tag for R4 is picked up and placed in the RS entry for that source register. Furthermore,
because R4 will be updated by y, the tag for R4 is updated to the value 2, indicating that the value
for R4 in the FLR file will not be valid until the completion of instruction y. Similarly, when z is
dispatched, it is placed in RS entry 5. Instruction z needs R4 and R8 as sources and so the tags for
these registers are put in the RS entry for z. Also, the adder function for w completes at the end of
cycle 2, and the result will be fed to the two RS entries with a tag value of 1. These RS entries will
pick up the result via the common data bus (CBD). This value (13.8) will show up at the beginning
of cycle 3. Instruction z will update R8, so its tag value (5) is entered in the FLR file entry for R8.
Cycle 3: At the beginning of this cycle, the appropriate value for R4 (13.8) is placed in the
instruction entries for y and x. Instruction y begins execution in the adder unit and instruction x
begins execution in the multiply/divide unit.
Cycle 4: Instruction y completes at the end of this cycle, and broadcasts its result (21.6). This
result is recorded in the RS entry for instruction z and in R4 itself in the FLR. Note that this result is
posted to R4 even though the preceding instruction (x) has not completed. This out-of-order
completion is possible because, in effect, instructions work with renamed registers, with the
register name consisting of the original register name plus the associated tag value at the time the
instruction is dispatched.
Cycle 5: Instruction x completes at the end of this cycle and broadcasts its result (82.8). This result
is recorded in the RS entry for instruction z and the FLR entry for R2.
Cycle 6: Instruction z begins execution. R8 is thus not valid until z completes.

G.4 Scoreboarding
Scoreboarding is hardware-based dynamic instruction scheduling technique that is used as an
alternative to register renaming to achieve pipeline efficiency. In essence, scoreboarding is a
bookkeeping technique that allows instructions to execute whenever they are not dependent on
previous instructions and no structural hazards are present. This technique, also known as Thornton’s
algorithm, was initially developed for the CDC 6600 [THOR64, THOR70, THOR80]. Variations on the
scoreboarding technique have been implemented on a number of machines.

Figure G.12 is a block diagram that illustrates the role of the scoreboard in a processor organization.
We assume a single instruction pipeline for the fetch, decode, and instruction issue stages. The
remainder of the pipeline is a superscalar architecture with parallel pipelines for different functional
units and/or replicated functional units, with each parallel pipeline including one or more execute
stages and a write backstage. The scoreboard is a central unit that exchanges information with the
issue stage and the execute stages. It also interacts with the register file.

Figure G.12 Block Diagram of a CDC 6600-Style Processor

Scoreboard Operation

The scoreboard can be viewed as consisting of two tables, one with an entry for each functional unit,
and one with an entry for each register. Each functional unit entry indicates whether there is an
instruction pending for the functional unit, and if so which instruction is pending. The entry also
indicates which registers are reserved by this functional unit for input, and whether the registers are
currently available for this instruction. Each register entry tells which functional unit, if any, has this
register reserved for output. As each new instruction is brought up, the conditions at the instant of
issuance are set in the scoreboard. If no waiting is required, the execution of the instruction is begun
immediately under control of the functional unit. If waiting is required (for example, an input operand
may not yet be available in the register file), the scoreboard controls the delay, and when ready,
allows the unit to begin its execution.

From the point of view of an instruction, execution proceeds as follows:

1. Check availability of functional unit and result register. If either is already reserved, the
instruction is not issued until the reserved resource becomes available. This is a resource
hazard or a WAW hazard, depending on where the conflict occurred. New reservations get
stalled. An example of a functional unit conflict:

R6 ← R1 + R2
R5 ← R3 + R4

Both instructions use the Add functional unit, a situation in which the second instruction must
wait for the first to complete that functional unit. However, if there are multiple Add units, the
instructions may proceed in parallel. An example of a result register conflict:

R6 ← R1 + R2
R6 ← R4 × R5

Both instructions call for register R6 for the result, thus the second instruction must wait for the
first to be completed.

2. Enter reservations for functional unit and result register. If one or both source registers is
reserved, the instruction cannot be issued, but the machine can keep entering reservations.
This is a RAW hazard. For example:

R6 ← R1 / R2
R7 ← R5 + R6 (conflict on this instruction)
R3 ← R2 × R4 (this instruction free to execute)

The second instruction is issued but held in the Divide unit until R6 is ready.
3. When source registers contain valid data, read the data and issue the instruction to the

functional unit. The functional unit now executes the instruction under local control.
4. When the functional unit has completed the instruction, it checks to see if it can write its output

to its result register (this is impossible if the register is reserved as a source by another
functional unit, and that functional unit already has it marked as available, a WAR hazard). For
example:

R3 ← R1 / R2
R5 ← R4 × R3 (RAW conflict on R3)
R4 ← R0 + R6 (WAR conflict on R4)

In this example, the WAR conflict on R4 is the direct result of a RAW conflict on R3. Because
the instructions are issued on consecutive cycles and because the Add function is much faster
than the Divide or Multiply, the addition is accomplished and ready for entry in the result register
R4 in advance of the start of Multiply. The RAW conflict on R3 causes the Multiply to hold until
that input operand is ready. This holds up the entry of R4 into the Multiply unit also. The WAR
conflicts are resolved by holding the result in the functional unit until the register is available.

Scoreboard control thus directs the functional unit in starting, obtaining its operands, and storing its
results. Each unit, once started, proceeds independently until just before the result is produced. The
unit then sends a signal to the scoreboard requesting permission to release its results to the result
register. The scoreboard determines when the path to the result register is clear and signals the
requesting unit to release its result. The releasing unit’s reservations are then cleared, and all units

waiting for the result are signaled to read the result for their respective computations.

Scoreboard Example

Consider the following example. Assume a pipeline organization with three execute stages. Consider
the following program fragment:

R1 ← (Y) Load register R1 from memory location Y
R2 ← (Z) Load register R2 from memory location Z
R3 ← R1 +f R2 Floating add R1 and R2; store in R3
(X) ← R3 Store result in memory location X
R4 ← (B) Load register R4 from memory location B
R5 ← (C) Load register R5 from memory location C
R6 ← R4 *f R5 Floating multiply R4 and R5; store in R6
(A) ← R6 Store result in memory location A

Figure G.13a shows a straightforward pipeline implementation that assumes no parallel execution
units and no attempts to circumvent hazards. The diagram assumes that load and store instructions
take three execution cycles, as do multiply and add instructions. Figure G.13b shows the result of
instruction scheduling at compile time. With instructions appropriately reordered, six clock cycles are
saved. Finally, Figure G.13c shows the result of using the hardware scoreboard rather than the
compiler to improve performance. In this example, 4 cycles are saved compared to the original
pipeline.

Figure G.13 Pipelined Execution Example

Glossary
absolute address

An address in a computer language that identifies a storage location or a device without the use of
any intermediate reference.

accumulator
The name of the CPU register in a single-address instruction format. The accumulator, or AC, is
implicitly one of the two operands for the instruction.

address bus
That portion of a system bus used for the transfer of an address. Typically, the address identifies a
main memory location or an I/O device.

address space
The range of addresses (memory, I/O) that can be referenced.

arithmetic and logic unit (ALU)
A part of a computer that performs arithmetic operations, logic operations, and related operations.

ASCII
American Standard Code for Information Interchange. ASCII is a 7-bit code used to represent
numeric, alphabetic, and special printable characters. It also includes codes for control characters,
which are not printed or displayed but specify some control function.

assembly language
A computer-oriented language whose instructions are usually in one-to-one correspondence with
computer instructions and that may provide facilities such as the use of macroinstructions.
Synonymous with computer-dependent language.

associative memory
A memory whose storage locations are identified by their contents, or by a part of their contents,
rather than by their names or positions.

asynchronous timing
A technique in which the occurrence of one event on a bus follows and depends on the occurrence
of a previous event.

autoindexing
A form of indexed addressing in which the index register is automatically incremented or
decremented with each memory reference.

base
In the numeration system commonly used in scientific papers, the number that is raised to the
power denoted by the exponent and then multiplied by the mantissa to determine the real number
represented (e.g., the number 10 in the expression).

base address
A numeric value that is used as a reference in the calculation of addresses in the execution of a
computer program.

binary operator
An operator that represents an operation on two and only two operands.

2.7 × 102 = 270

bit
In the pure binary numeration system, either of the digits 0 and 1.

block multiplexor channel
A multiplexer channel that interleaves blocks of data. See also byte multiplexor channel. Contrast
with selector channel.

branch prediction
A mechanism used by the processor to predict the outcome of a program branch prior to its
execution.

buffer
Storage used to compensate for a difference in rate of flow of data, or time of occurrence of events,
when transferring data from one device to another.

bus
A shared communications path consisting of one or a collection of lines. In some computer
systems, a common bus connects the CPU, memory, and I/O components. Since the lines are
shared by all components, only one component at a time can successfully transmit.

bus arbitration
The process of determining which competing bus master will be permitted access to the bus.

bus master
A device attached to a bus that is capable of initiating and controlling communication on the bus.

byte
A sequence of eight bits. Also referred to as an octet.

byte multiplexor channel
A multiplexer channel that interleaves bytes of data. See also block multiplexor channel. Contrast
with selector channel.

cache
A relatively small fast memory interposed between a larger, slower memory and the logic that
accesses the larger memory. The cache holds recently accessed data, and is designed to speed
up subsequent access to the same data.

cache coherence protocol
A mechanism to maintain data validity among multiple caches so that every data access will
always acquire the most recent version of the contents of a main memory word.

cache hit
A required memory location is found in the cache. That is, there is a cache line assigned to the
block of memory containing the required memory location.

cache line
A block of data associated with a cache tag and the unit of transfer between cache and memory.

cache memory
A special buffer storage, smaller and faster than main storage, that is used to hold a copy of
instructions and data in main storage that are likely to be needed next by the processor and that
have been obtained automatically from main storage.

cache miss
A failure to find the required memory location in the cache. That is, there is no cache line assigned
to the block of memory containing the required memory location.

CD-ROM
Compact Disk Read-Only Memory. A nonerasable disk used for storing computer data. The
standard system uses 12-cm disks and can hold more than 550 Mbytes.

central processing unit (CPU)
That portion of a computer that fetches and executes instructions. It consists of an Arithmetic and
Logic Unit (ALU), a control unit, and registers. Often simply referred to as a processor. In today’s
multicore era, the term CPU has fallen out of favor.

chip
A small unpackaged functional element made by subdividing a wafer of semiconductor material.
Sometimes referred to as a die.

CISC
Complex Instruction Set Computer. A processor where each instruction can perform several low-
level operations. Instructions may be variable in length and use a number of addressing modes,
requiring complex circuitry to decode them.

cluster
A group of interconnected, whole computers working together as a unified computing resource that
can create the illusion of being one machine. The term whole computer means a system that can
run on its own, apart from the cluster.

combinational circuit
A logic device whose output values, at any given instant, depend only upon the input values at that
time. A combinational circuit is a special case of a sequential circuit that does not have a storage
capability. Synonymous with combinatorial circuit.

compact disk (CD)
A nonerasable disk that stores digitized audio information.

computer architecture
Those attributes of a system visible to a programmer or, put another way, those attributes that
have a direct impact on the logical execution of a program. Examples of architectural attributes
include the instruction set, the number of bits used to represent various data types (e.g., numbers,
characters), I/O mechanisms, and techniques for addressing memory.

computer instruction
An instruction that can be recognized by the processing unit of the computer for which it is
designed. Synonymous with machine instruction.

computer instruction set
A complete set of the operators of the instructions of a computer together with a description of the
types of meanings that can be attributed to their operands. Synonymous with machine instruction
set.

computer organization
Refers to the operational units and their interconnections that realize the architectural
specifications. Organizational attributes include those hardware details transparent to the

programmer, such as control signals; interfaces between the computer and peripherals; and the
memory technology used.

conditional jump
A jump that takes place only when the instruction that specifies it is executed and specified
conditions are satisfied. Contrast with unconditional jump.

condition code
A code that reflects the result of a previous operation (e.g., arithmetic). A CPU may include one or
more condition codes, which may be stored separately within the CPU or as part of a larger control
register. Also known as a flag.

control bus
That portion of a system bus used for the transfer of control signals.

control registers
CPU registers employed to control CPU operation. Most of these registers are not user visible.

control storage
A portion of storage that contains microcode.

control unit
That part of the CPU that controls CPU operations, including ALU operations, the movement of
data within the CPU, and the exchange of data and control signals across external interfaces (e.g.,
the system bus).

core
An individual processing unit on a processor chip (see processor). A core is equivalent in
functionality to a CPU on a single-CPU system.

daisy chain
A method of device interconnection for determining interrupt priority by connecting the interrupt
sources serially.

data bus
That portion of a system bus used for the transfer of data.

data communication
Data transfer between devices. The term generally excludes I/O.

decoder
A device that has a number of input lines of which any number may carry signals and a number of
output lines of which not more than one may carry a signal, there being a one-to-one
correspondence between the outputs and the combinations of input signals.

demand paging
The transfer of a page from auxiliary storage to real storage at the moment of need.

direct access
The capability to obtain data from a storage device or to enter data into a storage device in a
sequence independent of their relative position, by means of addresses that indicate the physical
location of the data.

direct address

An address that designates the storage location of an item of data to be treated as operand.
Synonymous with one-level address.

direct memory access (DMA)
A form of I/O in which a special module, called a DMA module, controls the exchange of data
between main memory and an I/O module. The CPU sends a request for the transfer of a block of
data to the DMA module and is interrupted only after the entire block has been transferred.

disabled interrupt
A condition, usually created by the CPU, during which the CPU will ignore interrupt request signals
of a specified class.

diskette
A flexible magnetic disk enclosed in a protective container. Synonymous with flexible disk.

disk pack
An assembly of magnetic disks that can be removed as a whole from a disk drive, together with a
container from which the assembly must be separated when operating.

disk stripping
A type of disk array mapping in which logically contiguous blocks of data, or strips, are mapped
round-robin to consecutive array members. A set of logically consecutive strips that maps exactly
one strip to each array member is referred to as a stripe.

dynamic RAM
A RAM whose cells are implemented using capacitors. A dynamic RAM will gradually lose its data
unless it is periodically refreshed.

emulation
The imitation of all or part of one system by another, primarily by hardware, so that the imitating
system accepts the same data, executes the same programs, and achieves the same results as
the imitated system.

enabled interrupt
A condition, usually created by the CPU, during which the CPU will respond to interrupt request
signals of a specified class.

erasable optical disk
A disk that uses optical technology but that can be easily erased and rewritten. Both 3.25-inch and
5.25-inch disks are in use. A typical capacity is 650 Mbytes.

error-correcting code
A code in which each character or signal conforms to specific rules of construction so that
deviations from these rules indicate the presence of an error and in which some or all of the
detected errors can be corrected automatically.

error-detecting code
A code in which each character or signal conforms to specific rules of construction so that
deviations from these rules indicate the presence of an error.

execute cycle
That portion of the instruction cycle during which the CPU performs the operation specified by the
instruction opcode.

fetch cycle
That portion of the instruction cycle during which the CPU fetches from memory the instruction to
be executed.

firmware
Microcode stored in read-only memory.

fixed-point representation system
A radix numeration system in which the radix point is implicitly fixed in the series of digit places by
some convention upon which agreement has been reached.

flip-flop
A circuit or device containing active elements, capable of assuming either one of two stable states
at a given time. Synonymous with bistable circuit, toggle.

floating-point representation system
A numeration system in which a real number is represented by a pair of distinct numerals, the real
number being the product of the fixed-point part, one of the numerals, and a value obtained by
raising the implicit floating-point base to a power denoted by the exponent in the floating-point
representation, indicated by the second numeral.

G
Prefix meaning

gate
An electronic circuit that produces an output signal that is a simple Boolean operation on its input
signals.

general-purpose register
A register, usually explicitly addressable, within a set of registers, that can be used for different
purposes, for example, as an accumulator, as an index register, or as a special handler of data.

global variable
A variable defined in one portion of a computer program and used in at least one other portion of
that computer program.

high-performance computing (HPC)
A research area dealing with supercomputers and the software that runs on supercomputers. The
emphasis is on scientific applications, which may involve heavy use of vector and matrix
computation, and parallel algorithms.

immediate address
The contents of an address part that contains the value of an operand rather than an address.
Synonymous with zero-level address.

indexed address
An address that is modified by the content of an index register prior to or during the execution of a
computer instruction.

indexing
A technique of address modification by means of index registers.

index register
A register whose contents can be used to modify an operand address during the execution of

230.

computer instructions; it can also be used as a counter. An index register may be used to control
the execution of a loop, to control the use of an array, as a switch, for table lookup, or as a pointer.

indirect address
An address of a storage location that contains an address.

indirect cycle
That portion of the instruction cycle during which the CPU performs a memory access to convert an
indirect address into a direct address.

input-output (I/O)
Pertaining to either input or output, or both. Refers to the movement of data between a computer
and a directly attached peripheral.

instruction address register
A special-purpose register used to hold the address of the next instruction to be executed.

instruction cycle
The processing performed by a CPU to execute a single instruction.

instruction format
The layout of a computer instruction as a sequence of bits. The format divides the instruction into
fields, corresponding to the constituent elements of the instruction (e.g., opcode, operands).

instruction issue
The process of initiating instruction execution in the processor’s functional units. This occurs when
an instruction moves from the decode stage of the pipeline to the first execute stage of the pipeline.

instruction register
A register that is used to hold an instruction for interpretation.

instruction set architecture (ISA)
Defines instruction formats, instruction opcodes, registers, instruction and data memory, the effect
of executed instructions on the registers and memory, and an algorithm for controlling instruction
execution.

integrated circuit (IC)
A tiny piece of solid material, such as silicon, upon which is etched or imprinted a collection of
electronic components and their interconnections.

interrupt
A suspension of a process, such as the execution of a computer program, caused by an event
external to that process, and performed in such a way that the process can be resumed.
Synonymous with interruption.

interrupt cycle
That portion of the instruction cycle during which the CPU checks for interrupts. If an enabled
interrupt is pending, the CPU saves the current program state and resumes processing at an
interrupt-handler routine.

interrupt-driven I/O
A form of I/O. The CPU issues an I/O command, continues to execute subsequent instructions, and
is interrupted by the I/O module when the latter has completed its work.

I/O channel
A relatively complex I/O module that relieves the CPU of the details of I/O operations. An I/O
channel will execute a sequence of I/O commands from main memory without the need for CPU
involvement.

I/O controller
A relatively simple I/O module that requires detailed control from the CPU or an I/O channel.
Synonymous with device controller.

I/O module
One of the major component types of a computer. It is responsible for the control of one or more
external devices (peripherals) and for the exchange of data between those devices and main
memory and/or CPU registers.

I/O processor
An I/O module with its own processor, capable of executing its own specialized I/O instructions or,
in some cases, general-purpose machine instructions.

isolated I/O
A method of addressing I/O modules and external devices. The I/O address space is treated
separately from main memory address space. Specific I/O machine instructions must be used.
Compare to memory-mapped I/O.

k
Prefix meaning Thus, .

local variable
A variable that is defined and used only in one specified portion of a computer program.

locality of reference
The tendency of a processor to access the same set of memory locations repetitively over a short
period of time.

M
Prefix meaning Thus,

magnetic disk
A flat circular plate with a magnetizable surface layer, on one or both sides of which data can be
stored.

magnetic tape
A tape with a magnetizable surface layer on which data can be stored by magnetic recording.

mainframe
A term originally referring to the cabinet containing the central processor unit or “main frame” of a
large batch machine. After the emergence of smaller minicomputer designs in the early 1970s, the
traditional larger machines were described as mainframe computers, or mainframes. Typical
characteristics of a mainframe are that it supports a large database, has elaborate I/O hardware,
and is used in a central data processing facility.

main memory
Program-addressable storage from which instructions and other data can be loaded directly into
registers for subsequent execution or processing.

210 = 1024. 2kb = 2048bits

220 = 1,048,576. 2Mb = 2,097,152bits.

memory address register (MAR)
A register, in a processing unit, that contains the address of the storage location being accessed.

memory buffer register (MBR)
A register that contains data read from memory or data to be written to memory.

memory cycle time
The inverse of the rate at which memory can be accessed. It is the minimum time between the
response to one access request (read or write) and the response to the next access request.

memory management unit (MMU)
A hardware module that supports virtual memory and paging by translating virtual addresses into
physical addresses.

memory-mapped I/O
A method of addressing I/O modules and external devices. A single address space is used for both
main memory and I/O addresses, and the same machine instructions are used both for memory
read/write and for I/O.

memory protection unit (MPU)
A hardware module that prohibits one program in memory from accidentally accessing memory
assigned to another active program. Using various methods, a protective boundary is created
around the program, and instructions within the program are prohibited from referencing data
outside of that boundary.

microcomputer
A computer system whose processing unit is a microprocessor. A basic microcomputer includes a
microprocessor, storage, and an input/output facility, which may or may not be on one chip.

microinstruction
An instruction that controls data flow and sequencing in a processor at a more fundamental level
than machine instructions. Individual machine instructions and perhaps other functions may be
implemented by microprograms.

micro-operation
An elementary CPU operation, performed during one clock pulse.

microprocessor
A processor whose elements have been miniaturized into one or a few integrated circuits.

microprogram
A sequence of microinstructions that are in special storage where they can be dynamically
accessed to perform various functions.

microprogrammed CPU
A CPU whose control unit is implemented using microprogramming.

microprogramming language
An instruction set used to specify microprograms.

multiplexer
A combinational circuit that connects multiple inputs to a single output. At any time, only one of the
inputs is selected to be passed to the output.

multiplexor channel
A channel designed to operate with a number of I/O devices simultaneously. Several I/O devices
can transfer records at the same time by interleaving items of data. See also byte multiplexor
channel, block multiplexor channel.

multiprocessor
A computer that has two or more processors that have common access to a main storage.

multiprogramming
A mode of operation that provides for the interleaved execution of two or more computer programs
by a single processor.

multitasking
A mode of operation that provides for the concurrent performance or interleaved execution of two
or more computer tasks. The same as multiprogramming, using different terminology.

nonuniform memory access (NUMA) multiprocessor
A shared-memory multiprocessor in which the access time from a given processor to a word in
memory varies with the location of the memory word.

nonvolatile memory
Memory whose contents are stable and do not require a constant power source.

nucleus
That portion of an operating system that contains its basic and most frequently used functions.
Often, the nucleus remains resident in main memory.

ones complement representation
Used to represent binary integers. A positive integer is represented as in sign magnitude. A
negative integer is represented by reversing each bit in the representation of a positive integer of
the same magnitude.

opcode
Abbreviated form for operation code.

operand
An entity on which an operation is performed.

operating system
Software that controls the execution of programs and that provides services such as resource
allocation, scheduling, input/output control, and data management.

operation code
A code used to represent the operations of a computer. Usually abbreviated to opcode.

orthogonality
A principle by which two variables or dimensions are independent of one another. In the context of
an instruction set, the term is generally used to indicate that other elements of an instruction
(address mode, number of operands, length of operand) are independent of (not determined by)
opcode.

page
In a virtual storage system, a fixed-length block that has a virtual address and that is transferred as

a unit between real storage and auxiliary storage.

page fault
Occurs when the page containing a referenced word is not in main memory. This causes an
interrupt and requires the operating system to bring in the needed page.

page frame
An area of main storage used to hold a page.

parity bit
A binary digit appended to a group of binary digits to make the sum of all the digits either always
odd (odd parity) or always even (even parity).

peripheral equipment
In a computer system, with respect to a particular processing unit, any equipment that provides the
processing unit with outside communication. Synonymous with peripheral device.

pipeline
A processor organization in which the processor consists of a number of stages, allowing multiple
instructions to be executed concurrently.

predicated execution
A mechanism that supports the conditional execution of individual instructions. This makes it
possible to execute speculatively both branches of a branch instruction and retain the results of the
branch that is ultimately taken.

printed circuit board
A rigid, flat board that holds and interconnects chips and other electronic components.

process
A program in execution. A process is controlled and scheduled by the operating system.

process control block
The manifestation of a process in an operating system. It is a data structure containing information
about the characteristics and state of the process.

processor
A physical piece of silicon containing one or more cores. The processor is the computer
component that interprets and executes instructions. A processor may contain multiple cores.

processor cycle time
The time required for the shortest well-defined CPU micro-operation. It is the basic unit of time for
measuring all CPU actions. Synonymous with machine cycle time.

program counter
Instruction address register.

programmable logic array (PLA)
An array of gates whose interconnections can be programmed to perform a specific logical
function.

programmable read-only memory (PROM)
Semiconductor memory whose contents may be set only once. The writing process is performed
electrically and may be performed by the user at a time later than original chip fabrication.

programmed I/O
A form of I/O in which the CPU issues an I/O command to an I/O module and must then wait for the
operation to be complete before proceeding.

program status word (PSW)
An area in storage used to indicate the order in which instructions are executed, and to hold and
indicate the status of the computer system. Synonymous with processor status word.

random-access memory (RAM)
Memory in which each addressable location has a unique addressing mechanism. The time to
access a given location is independent of the sequence of prior access.

read-only memory (ROM)
Semiconductor memory whose contents cannot be altered, except by destroying the storage unit.
Nonerasable memory.

redundant array of independent disks (RAID)
A disk array in which part of the physical storage capacity is used to store redundant information
about user data stored on the remainder of the storage capacity. The redundant information
enables regeneration of user data in the event that one of the array’s member disks or the access
path to it fails.

registers
High-speed memory internal to the CPU. Some registers are user visible; that is, available to the
programmer via the machine instruction set. Other registers are used only by the CPU, for control
purposes.

RISC
Reduced Instruction Set Computer. A processor architecture that reduces chip complexity by using
simpler instructions of constant length.

rounding
The elimination of the rightmost digits in the significand to produce a result that is close to the exact
result but which fits into the available bits.

scalar
A quantity characterized by a single value.

secondary memory
Memory located outside the computer system itself; that is, it cannot be processed directly by the
processor. It must first be copied into main memory. Examples include disk and tape.

selector channel
An I/O channel designed to operate with only one I/O device at a time. Once the I/O device is
selected, a complete record is transferred one byte at a time. Contrast with block multiplexor
channel, multiplexor channel.

semiconductor
A solid crystalline substance, such as silicon or germanium, whose electrical conductivity is
intermediate between insulators and good conductors. Used to fabricate transistors and solid-state
components.

semiconductor memory

An electronic data storage device, often used as computer memory, implemented on a
semiconductor-based integrated circuit. Examples of semiconductor memory include non-volatile
memory such as read-only memory (ROM), magnetoresistive random access memory (MRAM),
and flash memory. It also includes volatile memory such as static random access memory (SRAM)
and dynamic random access memory (DRAM).

sequential circuit
A digital logic circuit whose output depends on the current input plus the state of the circuit.
Sequential circuits thus possess the attribute of memory.

sign–magnitude representation
Used to represent binary integers. In an N-bit word, the leftmost bit is the sign

 and the remaining bits comprise the magnitude of the number.

solid-state component
A component whose operation depends on the control of electric or magnetic phenomena in solids
(e.g., transistor crystal diode, ferrite core).

solid state drive
An all-electronic storage device that is an alternative to a hard disk drive. Also called a “solid state
disk” and “electronic disk.” Employed in myriad products, such as smartphones, MP3 players,
digital cameras and laptop computers, solid state drives (SSDs) are faster than hard disks because
there is zero latency (no read/write head to move). They are also more rugged and offer greater
protection in hostile environments.

speculative execution
The execution of instructions along one path of a branch. If it later turns out that this branch was
not taken, then the results of the speculative execution are discarded.

stack
An ordered list in which items are appended to and deleted from the same end of the list, known as
the top. That is, the next item appended to the list is put on the top, and the next item to be
removed from the list is the item that has been in the list the shortest time. This method is
characterized as last-in-first-out.

static RAM
A RAM whose cells are implemented using flip-flops. A static RAM will hold its data as long as
power is supplied to it; no periodic refresh is required.

superpipelined processor
A processor design in which the instruction pipeline consists of many very small stages, so that
more than one pipeline stage can be executed during one clock cycle and so that a large number
of instructions may be in the pipeline at the same time.

superscalar processor
A processor design that includes multiple-instruction pipelines, so that more than one instruction
can be executing in the same pipeline stage simultaneously.

symmetric multiprocessing (SMP)
A form of multiprocessing that allows the operating system to execute on any available processor
or on several available processors simultaneously.

synchronous timing

(0 = positive , 1 = negative) N − 1

A technique in which the occurrence of events on a bus is determined by a clock. The clock defines
equal-width time slots, and events begin only at the beginning of a time slot.

system bus
A bus used to interconnect major computer components (CPU, memory, I/O).

truth table
A table that describes a logic function by listing all possible combinations of input values and
indicating, for each combination, the output value.

twos complement representation
Used to represent binary integers. A positive integer is represented as in sign magnitude. A
negative number is represented by taking the Boolean complement of each bit of the
corresponding positive number, then adding 1 to the resulting bit pattern viewed as an unsigned
integer.

unary operator
An operator that represents an operation on one and only one operand.

unconditional jump
A jump that takes place whenever the instruction that specified it is executed.

uniprocessing
Sequential execution of instructions by a processing unit, or independent use of a processing unit
in a multiprocessing system.

user-visible registers
CPU registers that may be referenced by the programmer. The instruction-set format allows one or
more registers to be specified as operands or addresses of operands.

vector
A quantity usually characterized by an ordered set of scalars.

very long instruction word (VLIW)
Refers to the use of instructions that contain multiple operations. In effect, multiple instructions are
contained in a single word. Typically, a VLIW is constructed by the compiler, which places
operations that may be executed in parallel in the same word.

virtual storage
The storage space that may be regarded as addressable main storage by the user of a computer
system in which virtual addresses are mapped into real addresses. The size of virtual storage is
limited by the addressing scheme of the computer system and the amount of auxiliary storage
available, but not by the actual number of main storage locations.

volatile memory
A memory in which a constant electrical power source is required to maintain the contents of
memory. If the power is switched off, the stored information is lost.

word
An ordered set of bytes or bits that is the normal unit in which information may be stored,
transmitted, or operated on within a given computer. Typically, if a processor has a fixed-length
instruction set, then the instruction length equals the word length.

References

Abbreviations

ACM Association for Computing Machinery

IEEE Institute of Electrical and Electronics Engineers

NIST National Institute of Standards and Technology

AGAR89 Agarwal, A. Analysis of Cache Performance for Operating Systems and Multiprogramming.
Boston: Kluwer Academic Publishers, 1989.

AGER87 Agerwala, T., and Cocke, J. High Performance Reduced Instruction Set Processors.
Technical Report RC12434 (#55845). Yorktown, NY: IBM Thomas J. Watson Research Center,
January 1987.

AHO07 Aho, A.; Lam, M.; Sethi, R.; and Ullman, J. Compilers: Principles, Techniques, & Tools.
Boston, MA: Pearson/Addison Wesley, 2007.

ALLA13 Allan, G. “DDR4 Bank Groups in Embedded Applications.” Chip Design, August 26, 2013.
chipdesignmag.com

ALTS12 Alschuler, F., and Gallmeier, J. “Heterogeneous System Architecture: Multicore Image
Processing Use a Mix of CPU and GPU Elements.” Embedded Computing Design, December 6,
2012.

AMDA67 Amdahl, G. “Validity of the Single-Processor Approach to Achieving Large-Scale Computing
Capability.” Proceedings, of the AFIPS Conference, 1967.

AMDA13 Amdahl, G. “Computer Architecture and Amdahl’s Law.” Computer, December 2013.

ANDE67a Anderson, D.; Sparacio, F.; and Tomasulo, F. “The IBM System/360 Model 91: Machine
Philosophy and Instruction Handling.” IBM Journal of Research and Development, January 1967.

ANDE67b Anderson, S., et al. “The IBM System/360 Model 91: Floating-Point Execution Unit.” IBM
Journal of Research and Development, January 1967. Reprinted in [SWAR90, Volume 1].

ANTH08 Anthes, G. “What’s Next for the x86?” ComputerWorld, June 16, 2008.

http://chipdesignmag.com/

AROR12 Arora, M., et al. “Redefining the Role of the CPU in the Era of CPU-GPU Integration.” IEEE
Micro, November/December 2012.

ATKI96 Atkins, M. “PC Software Performance Tuning.” IEEE Computer, August 1996.

AZIM92 Azimi, M.; Prasad, B.; and Bhat, K. “Two Level Cache Architectures.” Proceedings
COMPCON ’92, February 1992.

BACO94 Bacon, F.; Graham, S.; and Sharp, O. “Compiler Transformations for High-Performance
Computing.” ACM Computing Surveys, December 1994.

BAEN97 Baentsch, M., et al. “ Enhancing the Web’s Infrastructure — From Caching to Replication.”
Internet Computing, March/April 1997.

BAIL93 Bailey, D. “RISC Microprocessors and Scientific Computing.” Proceedings, Supercomputing
’93, 1993.

BART15 Bartlett. S. “The IBM z Systems and the New IBM z13 — Ready to Transform Your
Enterprise.” The Clipper Group Navigator, January 14, 2015. http://www.clipper.com

BELL70 Bell, C.; Cady, R.; McFarland, H.; Delagi, B.; O’Loughlin, J.; and Noonan, R. “A New
Architecture for Minicomputers—The DEC PDP-11.” Proceedings, Spring Joint Computer
Conference, 1970.

BELL71 Bell, C., and Newell, A. Computer Structures: Readings and Examples. New York: McGraw-
Hill, 1971.

BELL78a Bell, C.; Mudge, J.; and McNamara, J. Computer Engineering: A DEC View of Hardware
Systems Design. Bedford, MA: Digital Press, 1978.

BELL78b Bell, C.; Newell, A.; and Siewiorek, D. “Structural Levels of the PDP-8.” In [BELL78a].

BELL78c Bell, C.; Kotok, A.; Hastings, T.; and Hill, R. “The Evolution of the DEC System-10.”
Communications of the ACM, January 1978.

BENH92 Benham, J. “A Geometric Approach to Presenting Computer Representations of Integers.”
SIGCSE Bulletin, December 1992.

BLEM15 Blem, E., et al. “ISA Wars: Understanding the Relevance of ISA being RISC or CISC to
Performance, Power, and Energy on Modern Architectures.” ACM Transactions on Computer
Systems, March 2015.

http://www.clipper.com/
http://www.clipper.com/
http://www.clipper.com/

BLUM99 Blum, N.; Charles, H.; and Francomacaro, A. “Multichip Module Substrates.” Johns Hopkins
Technical Digest, Vol. 20, No. 1, 1999.

BOOT51 Booth, A. “A Signed Binary Multiplication Technique.” The Quarterly Journal of Mechanics
and Applied Mathematics. Vol. 4, No. 2, 1951

BORK03 Borkar, S. “Getting Gigascale Chips: Challenges and Opportunities in Continuing Moore’s
Law.” ACM Queue, October 2003.

BRAD91a Bradlee, D.; Eggers, S.; and Henry, R. “The Effect on RISC Performance of Register Set
Size and Structure Versus Code Generation Strategy.” Proceedings, 18th Annual International
Symposium on Computer Architecture, May 1991.

BRAD91b Bradlee, D.; Eggers, S.; and Henry, R. “Integrating Register Allocation and Instruction
Scheduling for RISCs.” Proceedings, Fourth International Conference on Architectural Support for
Programming Languages and Operating Systems, April 1991.

BREW97 Brewer, E. “Clustering: Multiply and Conquer.” Data Communications, July 1997.

BURK46 Burks, A.; Goldstine, H.; and von Neumann, J. Preliminary Discussion of the Logical Design
of an Electronic Computer Instrument. Report prepared for U.S. Army Ordnance Dept., 1946.

CANT01 Cantin, J., and Hill, H. “Cache Performance for Selected SPEC CPU2000 Benchmarks.”
Computer Architecture News, September 2001.

CART06 Carter, P. PC Assembly Language. July 23, 2006. http://www.drpaulcarter.com/pcasm/.

CEKL97 Cekleov, M., and Dubois, M. “Virtual-Address Caches, Part 1: Problems and Solutions in
Uniprocessors.” IEEE Micro, September/October 1997.

CHAI82 Chaitin, G. “Register Allocation and Spilling via Graph Coloring.” Proceedings, SIGPLAN
Symposium on Compiler Construction, June 1982.

CHOW86 Chow, F.; Himmelstein, M.; Killian, E.; and Weber, L. “Engineering a RISC Compiler
System.” Proceedings, COMPCON Spring ’86, March 1986.

CHOW87 Chow, F.; Correll, S.; Himmelstein, M.; Killian, E.; and Weber, L. “How Many Addressing
Modes Are Enough?” Proceedings, Second International Conference on Architectural Support for
Programming Languages and Operating Systems, October 1987.

CHOW90 Chow, F., and Hennessy, J. “The Priority-Based Coloring Approach to Register Allocation.”
ACM Transactions on Programming Languages, October 1990.

http://www.drpaulcarter.com/pcasm/
http://www.drpaulcarter.com/pcasm/
http://www.drpaulcarter.com/pcasm/
http://www.drpaulcarter.com/pcasm/

CITR06 Citron, D.; Hurani, A.; and Gnadrey, A. “The Harmonic or Geometric Mean: Does it Really
Matter?” Computer Architecture News, September 2006.

COHE81 Cohen, D. “On Holy Wars and a Plea for Peace.” Computer, October 1981.

COOK82 Cook, R., and Dande, N. “An Experiment to Improve Operand Addressing.” Proceedings,
Symposium on Architecture Support for Programming Languages and Operating Systems, March
1982.

COON81 Coonen J. “Underflow and Denormalized Numbers.” IEEE Computer, March 1981.

COUT86 Coutant, D.; Hammond, C.; and Kelley, J. “Compilers for the New Generation of Hewlett-
Packard Computers.” Proceedings, COMPCON Spring ’86, March 1986.

CRAG79 Cragon, H. “An Evaluation of Code Space Requirements and Performance of Various
Architectures.” Computer Architecture News, February 1979.

CRAW90 Crawford, J. “The i486 CPU: Executing Instructions in One Clock Cycle.” IEEE Micro,
February 1990.

DATT93 Dattatreya, G. “A Systematic Approach to Teaching Binary Arithmetic in a First Course.”
IEEE Transactions on Education, February 1993.

DAVI71 Davidson, E. “The Design and Control of Pipelined Function Generators,” Proceedings, IEEE
Conference on Systems, Networks, and Computers, January 1971.

DAVI75 Davidson, E.; Thomas, A.; Shar, L.; and Patel, J. “Effective Control for Pipelined Processors,”
IEEE COMPCON, March 1975.

DENN72 Denning, P. “On Modeling Program Behavior.” Spring Joint Computer Conference, 1972

DENN05 Denning, P. “The Locality Principle.” Communications of the ACM, July 2005.

DERO87 DeRosa, J., and Levy, H. “An Evaluation of Branch Architectures.” Proceedings, Fourteenth
Annual International Symposium on Computer Architecture, 1987.

DEWA90 Dewar, R., and Smosna, M. Microprocessors: A Programmer’s View. New York: McGraw-
Hill, 1990.

DEWD84 Dewdney, A. “ In the Game Called Core War Hostile Programs Engage in a Battle of Bits.”

Scientific American, May 1984.

DIJK63 Dijkstra, E. “Making an ALGOL Translator for the X1.” In Annual Review of Automatic
Programming, Volume 4. Pergamon, 1963.

EISC07 Eischen, C. “RAID 6 Covers More Bases.” Network World, April 9, 2007.

ELAY85 El-Ayat, K., and Agarwal, R. “The Intel 80386—Architecture and Implementation.” IEEE
Micro, December 1985.

FATA08 Fatahalian, K., and Houston, M. “A Closer Look at GPUs.” Communications of the ACM,
October 2008.

FEIT15 Feitelson, D. Workload Modeling for Computer Systems Performance Evaluation. Cambridge,
UK: Cambridge University Press, 2015.

FLEM86 Fleming, P., and Wallace, J. “How Not to Lie with Statistics: The Correct Way to Summarize
Benchmark Results.” Communications of the ACM, March 1986.

FLYN72 Flynn, M. “Some Computer Organizations and Their Effectiveness.” IEEE Transactions on
Computers, September 1972.

FOG17 Fog, A. Optimizing Subroutines in Assembly Language: An Optimization Guide for x86
Platforms. Copenhagen University College of Engineering, 2017. http://www.agner.org/optimize/

FRAI83 Frailey, D. “Word Length of a Computer Architecture: Definitions and Applications.” Computer
Architecture News, June 1983.

GENU04 Genu, P. A Cache Primer. Application Note AN2663. Freescale Semiconductor, Inc., 2004.

GHAI98 Ghai, S.; Joyner, J.; and John, L. Investigating the Effectiveness of a Third Level Cache.
Technical Report TR-980501-01, Laboratory for Computer Architecture, University of Texas at
Austin.

GIBB04 Gibbs, W. “A Split at the Core.” Scientific American, November 2004.

GIFF87 Gifford, D., and Spector, A. “Case Study: IBM’s System/360-370 Architecture.”
Communications of the ACM, April 1987.

GILA95 Giladi, R., and Ahituv, N. “SPEC as a Performance Evaluation Measure.” Computer, August
1995.

http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://www.agner.org/optimize/
http://www.agner.org/optimize/

GOER12 Goering, R. “New Memory Technologies Challenge NAND Flash and DRAM.” Cadence
Industry Insight Blogs, August 22, 2012. http://community.cadence.com/cadence_blogs_8/b/ii/
archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram

GOLD54 Goldstine, H.; Pomerene, J.; and Smith, C. Final Progress Report on the Physical
Realization of an Electronic Computing Instrument. The Institute for Advanced Study Electronic
Computer Project, Princeton, 1954.

GSOE08 Gsoedl, J. “Solid State: New Frontier in Storage.” Storage, July 2008.

GUST88 Gustafson, J. “Reevaluating Amdahl’s Law.” Communications of the ACM, May 1988.

HAND98 Handy, J. The Cache Memory Book. San Diego: Academic Press, 1998.

HARR06 Harris, W. “Multi-Core in the Source Engine.” bit-tech.net technical paper, November 2,
2006.

HAYE98 Hayes, J. Computer Architecture and Organization. New York: McGraw-Hill, 1998.

HAYN95 Haynes, S. “Explaining Recursion to the Unsophisticated.” SIGSCE Bulletin, September
1995.

HEAT84 Heath, J. “Re-Evaluation of RISC 1.” Computer Architecture News, March 1984.

HENN82 Hennessy, J., et al. “Hardware/Software Tradeoffs for Increased Performance.” Proceedings,
Symposium on Architectural Support for Programming Languages and Operating Systems, March
1982.

HENN84 Hennessy, J. “VLSI Processor Architecture.” IEEE Transactions on Computers, December
1984.

HENN12 Hennessy, J., and Patterson, D. Computer Architecture: A Quantitative Approach. Waltham,
MA: Morgan Kaufman, 2012.

HILL64 Hill, R. “Stored Logic Programming and Applications.” Datamation, February 1964.

HILL89 Hill, M. “Evaluating Associativity in CPU Caches.” IEEE Transactions on Computers,
December 1989.

HUCK83 Huck, T. Comparative Analysis of Computer Architectures. Stanford University Technical

http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram
http://community.cadence.com/cadence_blogs_8/b/ii/archive/2012/08/22/keynote-new-memory-technologies-challenge-nand-flash-and-dram

Report No. 83-243, May 1983.

HUGG05 Huggahalli, R.; Iyer, R.; and Tetrick, S. “Direct Cache Access for High Bandwidth Network
I/O.” Proceedings, 32nd Annual International Symposium on Computer Architecture, 2005.

HUGU91 Huguet, M., and Lang, T. “Architectural Support for Reduced Register Saving/Restoring in
Single-Window Register Files.” ACM Transactions on Computer Systems, February 1991.

HWAN93 Hwang, K. Advanced Computer Architecture. New York: McGraw-Hill, 1993.

HWAN99 Hwang, K, et al. “Designing SSI Clusters with Hierarchical Checkpointing and Single I/O
Space.” IEEE Concurrency, January-March 1999.

INTE04 Intel Research and Development. Architecting the Era of Tera. Intel White Paper, February
2004.

INTE08 Intel Corp. Integrated Network Acceleration Features of Intel I/O Acceleration Technology and
Microsoft Windows Server 2008. Intel White Paper, February 2004.

INTE98 Intel Corp. Pentium Pro and Pentium II Processors and Related Products. Aurora, CO, 1998.

INTE12 Intel Corp. Intel Data Direct I/O Technology (Intel DDIO): A Primer. Intel White Paper,
February 2012.

ITRS14 The International Technology Roadmap For Semiconductors, 2013 Edition, 2014. http://
www.itrs.net

JACO95 Jacob, B., and Mudge, T. “Notes on Calculating Computer Performance.” University of
Michigan Tech Report CSE-TR-231-95, March 1995.

JACO08 Jacob, B.; Ng, S.; and Wang, D. Memory Systems: Cache, DRAM, Disk. Boston: Morgan
Kaufmann, 2008.

JAIN91 Jain, R. The Art of Computer System Performance Analysis. New York: Wiley, 1991.

JAME90 James, D. “Multiplexed Buses: The Endian Wars Continue.” IEEE Micro, September 1983.

JEFF12 Jeff, B. Advances in big.LITTLE Technology for Power and Energy Savings. ARM White
Paper, September, 2012.

http://www.itrs.net/
http://www.itrs.net/
http://www.itrs.net/

JOHN91 Johnson, M. Superscalar Microprocessor Design. Englewood Cliffs, NJ: Prentice Hall, 1991.

JOHN04 John, L. “More on finding a Single Number to indicate Overall Performance of a Benchmark
Suite.” Computer Architecture News, March 2004.

JOUP88 Jouppi, N. “Superscalar versus Superpipelined Machines.” Computer Architecture News,
June 1988.

JOUP89a Jouppi, N., and Wall, D. “Available Instruction-Level Parallelism for Superscalar and
Superpipelined Machines.” Proceedings, Third International Conference on Architectural Support
for Programming Languages and Operating Systems, April 1989.

JOUP89b Jouppi, N. “The Nonuniform Distribution of Instruction-Level and Machine Parallelism and
Its Effect on Performance.” IEEE Transactions on Computers, December 1989.

JOUP90 Jouppi, N. “Improving Direct-Mapped Cache Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers.” Proceedings, 17 Annual International Symposium on
Computer Architecture, May 1990.

KAPP00 Kapp, C. “Managing Cluster Computers.” Dr. Dobb’s Journal, July 2000.

KATE83 Katevenis, M. Reduced Instruction Set Computer Architectures for VLSI. PhD dissertation,
Computer Science Department, University of California at Berkeley, October 1983. Reprinted by
MIT Press, Cambridge, MA, 1985.

KATZ89 Katz, R.; Gibson, G.; and Patterson, D. “Disk System Architecture for High Performance
Computing.” Proceedings of the IEEE, December 1989.

KULT13 Kulrursay, E., et al. “Evaluating STT-RAM as an Energy-Efficient Main Memory Alternative.”
IEEE International Symposium on Performance Analysis of Systems and Software (ISPASS),
2013.

KUMA07 Kumar, A., and Huggahalli, R. “Impact of Cache Coherence Protocols on the Processing of
Network Traffic.” 40th IEEE/ACM International Symposium on Microarchitecture, 2007.

LASC16 Lascu, O., et al. IBM z13 Technical Guide. IBM Redbook SG24-8251-01, May 2016.

LEE10 Lee, B., et al. “Phase-Change Technology and the Future of Main Memory.” IEEE Micro,
January/February 2010.

LEON06 Leon, E., and Maccabe, A. “Reducing Memory Bandwidth for Chip-Multiprocessors using
Cache Injection.” 15th IEEE Symposium on High-Performance Interconnects, August 2007.

th

LEON07 Leonard, T. “Dragged Kicking and Screaming: Source Multicore.” Proceedings, Game
Developers Conference 2007, March 2007.

LILJ88 Lilja, D. “Reducing the Branch Penalty in Pipelined Processors.” Computer, July 1988.

LILJ93 Lilja, D. “Cache Coherence in Large-Scale Shared-Memory Multiprocessors: Issues and
Comparisons.” ACM Computing Surveys, September 1993.

LILJ00 Lilja, D. Measuring Computer Performance: A Practitioner’s Guide. Cambridge, UK:
Cambridge University Press, 2000.

LITT61 Little, J. “A Proof for the Queuing Formula: ” Operations Research. May-June, 1961.

LITT11 Little, J. “Little’s Law as Viewed on Its 50th Anniversary.” Operations Research. May-June,
2011.

LOVE96 Lovett, T., and Clapp, R. “Implementation and Performance of a CC-NUMA System.”
Proceedings, 23rd Annual International Symposium on Computer Architecture, May 1996.

LUND77 Lunde, A. “Empirical Evaluation of Some Features of Instruction Set Processor
Architectures.” Communications of the ACM, March 1977.

MACD84 MacDougall, M. “Instruction-level Program and Process Modeling.” IEEE Computer, July
1984.

MASH95 Mashey, J. “CISC vs. RISC (or what is RISC really).” USENET comp.arch newsgroup, article
46782, February 1995.

MASH04 Mashey, J. “War of the Benchmark Means: Time for a Truce.” Computer Architecture News,
September 2004.

MAYB84 Mayberry, W., and Efland, G. “Cache Boosts Multiprocessor Performance.” Computer
Design, November 1984.

MCCR87 McCracken, D. “Ruminations on Computer Science Curricula.” Communications of the ACM,
January 1987.

MCDO05 McDougall, R. “Extreme Software Scaling.” ACM Queue, September 2005.

L=λW.

MCDO06 McDougall, R., and Laudon, J. “Multi-Core Microprocessors are Here.” ;login, October 2006.

MCFA92 McFarling, S. “Cache Replacement with Dynamic Exclusion.” Proceedings, 19 Annual
International Symposium on Computer Architecture, May 1992.

MCMA93 McMahon, F., “L.L.N.L Fortran Kernels Test” source. October 1993. www.netlib.org/
benchmark/livermore

MITT17a Mittal, S. “A survey of techniques for designing and managing CPU register files.”
Concurrency and Computation: Practice and Experience, February 2017.

MITT17b Mittal, S. “A Survey of Techniques for Architecting TLBs.” Concurrency and Computation:
Practice and Experience, May 2017.

MOOR65 Moore, G. “Cramming More Components Onto Integrated Circuits.” Electronics Magazine,
April 19, 1965. Reprinted in Proceedings of the IEEE, January 1998.

MOOR17 Moor Insights & Strategy. SPEC CPU2017 & Changing Performance. White Paper, June
2017. http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-
Performance.pdf

MORR74 Morris, M. “Kiviat Graphs—Conventions and Figures of Merit.” ACM SIGMETRICS
Performance Evaluation Review, October 1974.

MORS78 Morse, S.; Pohlman, W.; and Ravenel, B. “The Intel 8086 Microprocessor: A 16-bit Evolution
of the 8080.” Computer, June 1978.

MYER78 Myers, G. “The Evaluation of Expressions in a Storage-to-Storage Architecture.” Computer
Architecture News, June 1978.

NASM17 The NASM Development Team. NASM—The Netwide Assembler. http://nasm.us/. 2017.

NOVI93 Novitsky, J.; Azimi, M.; and Ghaznavi, R. “Optimizing Systems Performance Based on
Pentium Processors.” Proceedings COMPCON ’92, February 1993.

PADE81 Padegs, A. “System/360 and Beyond.” IBM Journal of Research and Development,
September 1981.

PAGI06 Pagiamtzis, K., and Sheikholeslami, A. “ Content-Addressable Memory (CAM) Circuits and
Architectures: A Tutorial and Survey.” IEEE Journal of Solid-State Circuits, March 2006.

th

http://www.netlib.org/benchmark/livermore
http://www.netlib.org/benchmark/livermore
http://www.netlib.org/benchmark/livermore
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://www.amd.com/system/files/2017-06/SPEC-CPU-2017-and-Changing-Performance.pdf
http://nasm.us/
http://nasm.us/
http://nasm.us/

PARH10 Parhami, B. Computer Arithmetic: Algorithms and Hardware Design. Oxford: Oxford
University Press, 2010.

PATE76 Patel, J., and Davidson, E. “Improving the Throughput of a Pipeline by Insertion of Delays.”
Proceedings of the 3rd Annual Symposium on Computer Architecture, 1976.

PATT82a Patterson, D., and Sequin, C. “A VLSI RISC.” Computer, September 1982.

PATT82b Patterson, D., and Piepho, R. “Assessing RISCs in High-Level Language Support.” IEEE
Micro, November 1982.

PATT88 Patterson, D.; Gibson, G.; and Katz, R. “A Case for Redundant Arrays of Inexpensive Disks
(RAID).” Proceedings, ACM SIGMOD Conference of Management of Data, June 1988.

PEIR99 Peir, J.; Hsu, W.; and Smith, A. “Functional Implementation Techniques for CPU Cache
Memories.” IEEE Transactions on Computers, February 1999.

PELE97 Peleg, A.; Wilkie, S.; and Weiser, U. “Intel MMX for Multimedia PCs.” Communications of the
ACM, January 1997.

PFIS98 Pfister, G. In Search of Clusters. Upper Saddle River, NJ: Prentice Hall, 1998.

PHAN07 Phansalkar, A.; Joshi, A.; and John, L. “Analysis of Redundancy and Application Balance in
the SPEC CPU2006 Benchmark Suite.” 34th Annual International Symposium on Computer
Architecture, June 2007.

POLL99 Pollack, F. “New Microarchitecture Challenges in the Coming Generations of CMOS Process
Technologies (keynote address).” Proceedings of the 32nd Annual ACM/IEEE International
Symposium on Microarchitecture, 1999.

POWE01 Powell, M., et al. Reducing Set-Associative Cache Energy via Way-Prediction and Selective
Direct-Mapping.” 34th International Symposium on Microarchitecture (MICRO), 2001.

PRES01 Pressel, D. “Fundamental Limitations on the Use of Prefetching and Stream Buffers for
Scientific Applications.” Proceedings, ACM Symposium on Applied Computing, March 2001.

PROP11 Prophet, G. “Use GPUs to Boost Acceleration.” IDN, December 2, 2011.

PRZY88 Przybylski, S.; Horowitz, M.; and Hennessy, J. “Performance Trade-offs in Cache Design.”
Proceedings, Fifteenth Annual International Symposium on Computer Architecture, June 1988.

PRZY90 Przybylski, S. “The Performance Impact of Block Size and Fetch Strategies.” Proceedings,
17th Annual International Symposium on Computer Architecture, May 1990.

RADI83 Radin, G. “The 801 Minicomputer.” IBM Journal of Research and Development, May 1983.

RAGA83 Ragan-Kelley, R., and Clark, R. “Applying RISC Theory to a Large Computer.” Computer
Design, November 1983.

RAOU09 Raouk, S., et al. “Phase-Change Random Access Memory: A Scalable Technology.” IBM
Journal of Research and Development, July/September 2008.

RECH98 Reches, S., and Weiss, S. “Implementation and Analysis of Path History in Dynamic Branch
Prediction Schemes.” IEEE Transactions on Computers, August 1998.

REDD76 Reddi, S., and Feustel, E. “A Conceptual Framework for Computer Architecture.” Computing
Surveys, June 1976.

REIM06 Reimer, J. “Valve Goes Multicore.” ars technica, November 5, 2006. arstechnica.com/
articles/paedia/cpu/valve-multicore.ars

RICE65 Rice, H. “Recursion and Iteration.” “ Communications of the ACM, February 1965.

ROBI07 Robin, P. “Experiment with Linux and ARM Thumb-2 ISA.” Embedded Linux Conference,
2007.

SEAG17 Seagate. Transition to Advanced Format 4K Sector Hard Drives. Seagate Technical Article,
Retrieved 23 August 2017. http://www.seagate.com/tech-insights/advanced-format-4k-sector-
hard-drives-master-ti/

SHAN38 Shannon, C. “Symbolic Analysis of Relay and Switching Circuits.” AIEE Transactions, vol.
57, 1938.

SHAR03 Sharma, A. Advanced Semiconductor Memories. Piscataway, NJ: IEEE Press, 2003.

SIEW82 Siewiorek, D.; Bell, C.; and Newell, A. Computer Structures: Principles and Examples. New
York: McGraw-Hill, 1982.

SIMO96 Simon, H. The Sciences of the Artificial. Cambridge, MA: MIT Press, 1996.

SMIT82 Smith, A. “Cache Memories.” ACM Computing Surveys, September 1982.

http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars
http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars
http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars
http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars
http://arstechnica.com/articles/paedia/cpu/valve-multicore.ars
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/
http://www.seagate.com/tech-insights/advanced-format-4k-sector-hard-drives-master-ti/

SMIT88 Smith, J. “Characterizing Computer Performance with a Single Number.” Communications of
the ACM, October 1988.

SMIT89 Smith, M.; Johnson, M.; and Horowitz, M. “Limits on Multiple Instruction Issue.” Proceedings,
Third International Conference on Architectural Support for Programming Languages and
Operating Systems, April 1989.

SMIT95 Smith, J., and Sohi, G. “The Microarchitecture of Superscalar Processors.” Proceedings of
the IEEE, December 1995.

STAL16 Stallings, W. Foundations of Modern Networking: SDN, NFV, QoEIoT, and Cloud.
Indianapolis, IN: Pearson, 2016.

STAL18 Stallings, W. Operating Systems, Internals and Design Principles, Ninth Edition. Upper
Saddle River, NJ: Pearson, 2018.

STEN90 Stenstrom, P. “A Survey of Cache Coherence Schemes of Multiprocessors.” Computer, June
1990.

STEV64 Stevens, W. “The Structure of System/360, Part II: System Implementation.” IBM Systems
Journal, Vol. 3, No. 2, 1964.

STEV13 Stevens, A. Introduction to AMBS 4 ACE and big.LITTLE Processing Technology. ARM
White Paper, July 29, 2013.

STIL94 Stiliadis, D., and Varma, A. “Selective Victim Caching: A Method to Improve the Performance
of Direct-Mapped Caches.” Communications of the ACM, January 1987.

STRE78 Strecker, W. “VAX-11/780: A Virtual Address Extension to the DEC PDP-11 Family.”
Proceedings, National Computer Conference, 1978.

STRI79 Stritter, E., and Gunter, T. “A Microprocessor Architecture for a Changing World: The
Motorola 68000.” Computer, February 1979.

TAMI83 Tamir, Y., and Sequin, C. “Strategies for Managing the Register File in RISC.” IEEE
Transactions on Computers, November 1983.

TANE78 Tanenbaum, A. “Implications of Structured Programming for Machine Architecture.”
Communications of the ACM, March 1978.

THOR64 Thornton, J. “Parallel Operation in the Control Data 6600.” Proceedings of the Fall Joint
Computer Conference, 1964.

THOR70 Thornton, J. The Design of a Computer: The Control Data 6600. Glenville, IL: Scott,
Foreman, and Company, 1970.

THOR80 Thornton, J. “The CDC 6600 Project.” Annals of the History of Computing, October 1980.

TI12 Texas Instruments. 66AK2H12/06 Multicore KeyStone II System-on-Chip (SoC). Data

Manual SPRS866, November 2012.

TOMA67 Tomasulo, R. “An Efficient Algorithm for Exploiting Multiple Arithmetic Units.” IBM Journal,
January 1967.

TOON81 Toong, H., and Gupta, A. “An Architectural Comparison of Contemporary 16-Bit
Microprocessors.” IEEE Micro, May 1981.

TSEN09 Tseng, C., and Chen, H. “The Design of Way-Prediction Schemes in Set-Associative Caches
for Energy Efficient Embedded Systems.” International Conference on Communications and Mobile
Computing, 2009.

UNGE02 Ungerer, T.; Rubic, B.; and Silc, J. “Multithreaded Processors.” The Computer Journal, No.
3, 2002.

UNGE03 Ungerer, T.; Rubic, B.; and Silc, J. “ A Survey of Processors with Explicit Multithreading.”
ACM Computing Surveys, March, 2003.

VANC14 Vance, A. “99% of the World’s Mobile Devices Contain an ARM Chip.” Business Week,
February 10, 2014.

VONN45 Von Neumann, J. First Draft of a Report on the EDVAC. Moore School, University of
Pennsylvania, 1945. Reprinted in IEEE Annals on the History of Computing, No. 4, 1993.

VRAN80 Vranesic, Z., and Thurber, K. “Teaching Computer Structures.” Computer, June 1980.

WANG99 Wang, G., and Tafti, D. “Performance Enhancement on Microprocessors with Hierarchical
Memory Systems for Solving Large Sparse Linear Systems.” International Journal of
Supercomputing Applications, vol 13, 1999.

WEIC90 Weicker, R. “An Overview of Common Benchmarks.” Computer, December 1990.

WEIN75 Weinberg, G. An Introduction to General Systems Thinking. New York: Wiley, 1975.

DSP+ARM

WHIT97 Whitney, S., et al. “The SGI Origin Software Environment and Application Performance.”
Proceedings, COMPCON Spring ’97, February 1997.

WILK51 Wilkes, M. “The Best Way to Design an Automatic Calculating Machine.” Proceedings,
Manchester University Computer Inaugural Conference, July 1951.

WILL90 Williams, F., and Steven, G. “Address and Data Register Separation on the M68000 Family.”
Computer Architecture News, June 1990.

YEH91 Yeh, T., and Patt, N. “Two-Level Adapting Training Branch Prediction.” Proceedings, 24
Annual International Symposium on Microarchitecture, 1991.

ZHOU09 Zhou, P., et al. “A Durable and Energy Efficient Main Memory Using Phase Change Memory
Technology.” ACM International Symposium on Computer Architecture, ISCA’09, 2009.

th

Supplemental Materials
“The student resources that accompany this text are available online at www.pearson.com/
stallings.”

http://www.pearson.com/stallings
http://www.pearson.com/stallings

Index

A

Absolute loading, 528

Absolute load module, 530

Absolute scalability, 723

Access control, 329–330

Access efficiency, 130, 131

Access time (latency), 120, 217

Accumulator (AC), 14, 77, 438

ACE (Advanced Extensible Interface Coherence Extensions), 754–755

Acorn RISC Machine (ARM), 29. See also ARM architecture

Active secondary clustering method, 726

Adders, 411–414

4-bit, 413

implementation of an, 413

multiple-bit, 413–414

single-bit, 413

Addition, 353–356

binary, 411

overflow rule, 353–354

twos complement, 354–355

Addressable unit, 119

Address binding, 529

Address bus, 93

Addresses, 417–420

Addressing modes, 477–483

ARM, 486–489, 576–578

autoindexing, 482

base-register, 482

basic, 479

direct, 479

displacement, 481–483

effective address (EA), 478

immediate, 479

indexing, 482–483

indirect, 479–480

Intel x86, 483–486

MIPS R4000, 611–612

mode field, 478

PC-relative, 481

postindexing, 482–483

preindexing, 483

register, 480–481

register indirect, 481

relative, 481

SPARC, 619

stack, 483

Address lines, 93

Address modify instructions, 16

Address registers, 540

Address space, 320–321

Advanced RISC Machines. See ARM architecture

Algebraic simplification, 399

Alignment check (AC), 570

Alignment Mask (AM), 572

Allocation, Pentium 4 processor, 568

Amdahl, Gene, 45

Amdahl’s law, 45–47, 740

American Standard Code for Information Interchange (ASCII), 249, 441

AND gate, 407

AND operation, 450

Antidependency, 558, 641

Application-level parallelism, 742

Application processors, 27

Application-specific integrated circuit (ASIC), 197

Arbitration, 94

Arithmetic and logic unit (ALU), 539, 542, 593, 680

addition, 353–356

ARM Cortex-A8, 656

division, 363–366

flag values, 345–346

floating-point notation, 366–374

IAS computer, 11, 12, 15

inputs and outputs, 346

integers, 346–366

microprogrammed control unit, 694

multicore computer, 8

multiplication, 356–363

operands for, 345

single-processor computer, 6

SPARC architecture, 618

subtraction, 353–356

Arithmetic instructions, 436, 441, 449, 463

Arithmetic mean, 52, 54

Arithmetic operations, 449, 450

Arithmetic shift, 361, 450

ARM addressing modes, 486–489, 576–578

abort mode, 578

branch instruction, 488

data processing instructions, 488

exception modes, 577–578

fast interrupt mode, 578

indexing methods, 486–487

interrupt mode, 578

load and store, 486–488

load/store multiple addressing, 488–489

offset value, 486–487

postindexing, 488

preindexing, 487

privileged modes, 577

supervisor mode, 578

system mode, 578

undefined mode, 578

user mode, 577

ARM architecture, 29–34

ACE cache line states, 755

alignment checking, 444

branch instructions, 464

condition codes, 464–465

data-processing instructions, 464

data types, 443–425

Endian support, 445

evolution, 29–30

extend instructions, 464

instruction set, 30

instructions of, 437

load and store instructions, 464

multiply instructions, 464

nonaligned access, 443

parallel addition and subtraction instructions, 464

products, 30–34

SETEND instruction, 445

status register access instructions, 464

unaligned access, 444

use of condition codes in, 464–465

VLSI, 29, 30

ARM Cortex, 161

ARM Cortex-A7 core, 751–753

ACE cache line states, 755

energy consumption, 753

pipelines, 752

ARM Cortex-A8, 652–658

address generation unit (AGU), 653

branch target buffer (BTB), 653

dual-issue restrictions, 658

flow of instructions, block diagram, 652, 653

global history buffer (GHB), 655–656

in-order issue, 652

instruction decode unit, 655–656

instruction fetch unit, 652–655

integer execute unit, 656–657

integer pipeline, 654

load/store pipeline, 657

memory system effects on instruction timings, 657

SIMD and floating-point instructions, 657–658

ARM Cortex-A15 core, 750–753

ACE cache line states, 755

energy consumption, 753

pipelines, 752

ARM Cortex-A15 MPCore, 757–762

active interrupt, 760

block diagram of, 757–758

cache coherency, 760–761

core, 757

CPU interface, 760

debug unit and interface, 758

direct data intervention (DDI), 760

duplicated tag RAMs, 760

generic interrupt controller (GIC), 757

generic timer, 758

hardware interrupts, 760

inactive interrupt, 759–760

interprocessor interrupts (IPIs), 760

interrupt handling, 759–760

L1 cache coherency, 760–761

L2 cache coherency, 761–762

legacy FIQ line, 760

migratory lines, 761

pending interrupt, 760

private timer and/or watchdog interrupts, 760

program trace, 758

snoop control unit (SCU), 758, 760–761

ARM Cortex-M3, 658–663

branch forwarding, 661–662

branch speculation, 662

bus matrix, 661

data watchpoint and trace (DWT), 661

dealing with branches, 661–663

debug access port, 661

decode stage, 661

embedded trace macrocell, 661

flash patch and breakpoint unit, 659

memory protection unit, 658

nested vectored interrupt controller (NVIC), 659

pipeline, 662

pipeline structure, 661

processor core, 658

serial wire viewer, 661

Thumb-2 instruction, 661

wake-up interrupt controller (NVIC), 659

ARM instruction format, 499–502

immediate constants, 499

Thumb-2 instruction set, 501–502

Thumb instruction set, 499–501

ARM memory management, 325–330

access control, 329–330

Domain Access Control Register, 330

formats, 326–329

organization of memory, 325–326

parameters, 329

translation lookaside buffer (TLB), 325–326

virtual memory address translation, 326–327

ARM processor, 575–581

attributes, 575–576

interrupt processing, 580–581

processor organization, 576

registers, 578–580

Array processor, 703

Assembler, 508, 510

one-pass assembler, 525–526

two-pass assembler, 523–525

types of, 523

Assembly language, 433, 435. See also Instruction formats

advantages of, 511

concepts, 507–510

disadvantages of, 510–511

elements, 512–518

programming, motivation for, 510–512

Assembly program

for moving a string, 522

for prime numbers generation, 521

Asserting, signal, 395

Associative access, 120

Associative mapping, 151–153

Associative memory, 120

Autoindexing, 482

Auxiliary memory, 126

B

Backward compatibility, 24

Balanced transmission, 96

Bank groups, 196

Base, 323, 367

Base address, 313

Base digit, 335

Base metric, 62

Base-register addressing, 482

Batch system, 296

Benchmark, 62

Benchmark programs, 60

BFU (binary floating-point unit), 11

Biased representation, 367

Big-endian ordering, 472–475

Big.Little Chip, 751

Binary adder, 355

Binary addition, 411

Binary Coded Decimal (BCD), 403

Binary system, 337

Bit-interleaved parity disk performance (RAID level 3), 228

Bit length conversion, 348

Bit ordering, endian, 475

Bloc access time, 217

Blocked multithreaded scalar, 722

Blocked multithreaded superscalar, 722

Blocked multithreaded VLIW, 723

Blocked multithreading, 720

Block-level distributed parity disk performance (RAID level 5), 229

Block-level parity disk performance (RAID level 4), 229

Block multiplexor, 279

Blocks, 119

Booth’s algorithm, 362–363

cache, 133

I/O, 427

logic, 427

m, 142, 146–147

memory, 146, 148, 154–155, 706

packets or protocol, 274

process control, 543

SDRAMs, 194

SPLD, 425

tape, 240

Blu-ray DVD, 235, 239

Boolean algebra, 389–394, 411

algebra of sets, 390–392

basic identities of, 393

Boolean identities, 393–394

Boolean operators, 391

exclusive-or (XOR) operation, 390

NAND function, 390

NOT operation, 390

AND operation, 390

OR operation, 390

Boolean functions, implementation of

algebraic simplification, 399

canonical form, 400

Karnaugh maps, 399–404

NAND and NOR gates, 406

Quine–McCluskey method, 403–406

rules for simplification, 402

sum of products (SOP) form, 397

of three combinations, 397

Boolean (logic) instructions, 436

Boolean operators, 391

Boole, George, 389

Booth’s algorithm, 360–363

Branches

conditional instructions, 558–564

control hazard (branch hazard), 558

as correlator, 564

Cortex-M3 processor, 661–663

delayed, 564, 608–609

dynamic strategies, 560–561

history approach, 562–564

history table, 562

instruction fetch stage, 562–563

loop buffer for, 559–560

loop-closing, 564

multiple streams for, 558–559

pipelining and, 558–564

prediction, 560–564, 644–645, 649

prefetched branch target, 559

Branch instructions, 436, 453–434

Branch prediction, 39–40, 560–564, 644–645

Branch target buffer (BTB), 562, 649

British Broadcasting Corporation (BBC), 29

Buffers, 75

Bus, 92

Bus arbitration technique, I/O, 260

Bus interconnection, 92–94

Bus master, 161

Bus watching approach, 161

Byte, 102

Byte multiplexor, 279

Byte ordering, endian, 472–475

C

Cache, 6

Cortex-R, 31

injection, 276

miss, 143, 161, 166, 275–276, 278, 326, 635, 649, 720, 722, 758, 760

Cache block, 140

Cache coherence, 709–718

ARM cortex-A15 MPCORE, 760–761

directory protocols, 711

hardware-based solutions, 711–712

multicore computers, 754–755

snoopy protocols, 711–712

software, 710–711

write-invalidate approach, 712

write policies, 710

write-update protocol, 712

Cache-coherent nonuniform memory access (CC-NUMA)

advantages and disadvantages, 730

organization, 727–728

Cache Disable (CD), 572

Cache hit, 143, 163

Cache line, 146

Cache memory, 6, 115, 125, 139–143, 587

addresses, 143–144

high-performance computing (HPC), 143

lines, 142

line size, 142, 161

logical cache, 144

miss, 124

multilevel cache, 162–164

number of caches, 162–164

physical cache, 144

read operation, 142

replacement algorithms, 159

sizes, 145

split cache, 164

structure of, 140

tag, 142

unified cache, 164

virtual address, 144

virtual cache, 144

write policy, 159–161

Cache miss, 143

Cache performance improvement techniques, 172

Cache performance models

cache timing model, 169–171

design option, 171–173

Cache set, 154

Cache timing equations, 171

Cache timing model, 169–171

Cache write policy, 169

Calculate operands (CO), 550

Call/return instructions, 458–459

Capacitors, 17

Capacity, 119

Carry lookahead, 414

CD recordable (CD-R), 237

CD rewritable (CD-RW), 235, 237

CD-ROM, 234–237

Central processing complex (CPC), 168

Central processing unit (CPU), 75

Intel 8085, 683

interconnection, 6

internal structure, 539

involvement in I/O channels, 278–279

memory and, 75

multicore computer, 6, 747–751

single-processor computer, 5

Chaining, 317

Character data operands, 490

Characteristic table, 416

Characters, operands, 441

Chip multiprocessing, 720

Chip multiprocessor (multicore), 718–723, 737

Chips, 8, 18

ARM, 29

DDR, 195

DRAM memory, 184–185

EPROM package of, 184–185

four-core, 44

high-speed, 42

integrated circuit, 18

Intel Quad-Core Xeon processor, 8

I/O controller, 8

memory, 8, 9, 39–40, 184–185

microcontrollers, 27–28

microprocessor, 27–28

multicore, 94, 737, 743, 745, 748, 762

PU, 762

RAM, 409

semiconductor memory, 182–184

two-core, 44

Chipset, PCI Express, 100

Clock (bus) cycle, 49

Clocked S–R flip-flop, 416, 417

Clock rate, 49

Clock speed, 49

Clock tick, 49

Clock time, 49

Clusters, 703, 723–726

active secondary, 726

benefits and limitations, 723, 725

configurations, 724–726

passive standby, 725

separate server, 726

server, 725

shared-disk, 725

shared disk approach, 726

shared nothing approach, 726

Coarse-grained threading, 743

CodeBlue assembly language, 534

Coherence, 128

Combinational circuit

Boolean equations, 397

decoders, 408–410

defined, 396

graphical symbols, 397

multiplexers, 406–408

read-only memory (ROM), 410–411

sequential circuits, 414–423

truth table of, 396

Comment, 514

Commercial computers, 11

Committing (retiring) instructions, 645

Communication devices, 248

Compact disk (CD), 234–237

CD recordable (CD-R), 237

CD rewritable (CD-RW), 237

CD-ROM (compact disk read-only memory), 234–237

CD-R optical disk, 237

Compact disk read-only memory (CD-ROM), 234–237

Compaction, I/O memory, 312

Compiler, 508

Compiler-based register optimization, 598–600

Complex instruction set computer (CISC), 23, 591

characteristics, 589

motivations for contemporary, 600–602

vs. RISC design, 604–606, 623–625

Complex PLDs (CPLDs), 425

Computer architecture, 2

Computer instruction, 433

Computer on a chip, 28

Computer organization, 2

Computers

architecture, 2

components, 73–75

family concept, 587

function, 75–88

fundamental elements of, 11

generation-to-generation compatibility of, 3

instruction, fetch and execute function, 76–89

instruction set architecture (ISA), 2

interconnection structures, 90–92

microcomputers, 3

organization, 2

structure and function, 3–11

Computer system performance

Amdahl’s law, 45–47

benchmark principles, 59–60

calculating a mean value, 51–59

clock speed, 49

designing for, 38–44

following improvements in chip organization and architecture, 42–44

general-purpose computing on GPUs (GPGPU), 44–45

graphics processing units (GPUs), 44–45

instruction execution rate, 50–51

Little’s law, 47–48

many integrated core (MIC), 44

microprocessor speed, 39–40

multiple processors, 44

performance balance, 40–42

SPEC benchmarks, 60–66

Conditional branch instructions, 453

Conditional jump, 459

Condition codes, 541

advantages and disadvantages, 542

ARM architecture, 464–465

EFLAGS register, 569

Intel x86, 458–460

program status word (PSW), 542

RISC-based machines, 611

Constant angular velocity (CAV), 214, 236

Constant linear velocity (CLV), 236

Content-addressable memory (CAM), 149–151, 318

Control, 77

access, 329–330

interrupt, 682

I/O modules, 248–250

lines, 93–94

logical, 13

machine instructions, 436

storage control (SC), 762

and timing, 249–250

Control address register, 693

Control buffer register, 693

Control bus, 678, 679

Control hazard (branch hazard), pipelining, 558

Controllers

cache, 711

disk, 99

disk drive, 248

fanouts, 286

I/O, 100, 118, 252, 253, 279

mass storage, 30

memory and peripheral, 737, 748

microcontrollers, 27–28

network interface, 99

Controllers cache, 161

microcontrollers, 202

Control lines, 93

Control memory, 692, 693

Control paths, 679, 680

Control registers, 571–572

Control signals, 678–681

Control unit (CU), 4, 6, 17, 539

characterization of, 677

control signals, 678–681

execute cycle, 674–675

fetch cycle, 671–673

functional requirements, 676–677

hardwired implementation, 686–689

IAS computer, 12, 14

indirect cycle, 673–674

inputs and outputs, 678–679

instruction cycle, 675–676

internal processor organization and, 681–682

interrupt cycle, 674

micro-operations, 670–676

of processor, 676–686

Control word, 690

COP (dedicated co-processor), 11

Core, 6, 24

Core i7 EE 4960X microprocessor, 24

Core pervasive unit (PC), 11

Cortex-A, 30

Cortex-M3 processor, 31, 33

Cortex-M7, 31

Cortex-M23, 31

Cortex-M33, 31

Cortex-M series processors, 31–34

analog interfaces, 34

bus matrix, 33

clock management, 34

core, 33–34

debug access port (DAP), 33

debug logic, 33

embedded trace macrocell (ETM) module, 33

energy management, 34

ICode interface, 33

memory, 33–34

memory protection unit, 33

nested vector interrupt controller (NVIC), 33

parallel I/O ports, 34

peripheral bus, 34

security, 34

serial interfaces, 34

SRAM & peripheral interface, 33

32-bit bus, 34

timers and triggers, 34

Cortex-R, 30–31

Counters, 420–423

ripple, 420–421

synchronous, 421–423

CRAY C90, 119

Critical word first, 142, 173

Cross-assembler, 523

Current program status registers (CPSR), ARM, 578

Cycles per instruction (CPI) for a program, 50

Cycle stealing, 266

Cycle time, 49–50, 576, 613, 708

instruction, 549–550, 678

memory, 50, 120

pipeline, 553–555

processor, 50

Cyclic redundancy check (CRC), 97

Cylinder, 216

D

Daisy chain technique, I/O, 260

Database scaling, 706

Data buffering, I/O modules, 250

Data bus, 93

Data cache, 165, 616

Data communications, 4

Data exchanges, 726

Data flow analysis, 40

Data flow, instruction cycles, 547–548

Data formatting, magnetic disks, 212–216

Data forwarding, pipelining, 623

Data hazards, pipelining, 557–558

Data-L2, 11

Data (bus) lines, 93

Data locality, 117

Data movement, 4, 17

Data processing, 4, 17, 77, 441, 464, 656, 747

ARM, 576

instruction addressing, 488

load/store model of, 576

machine instructions, 436

Data reference instructions, 527

Data registers, 540

Data spatial locality, 116

Data storage, 4, 17, 121, 179, 282

machine instructions, 436

Data temporal locality, 117

Data transfer, 448–449

IAS computer, 15

instructions, 448–449

I/O modules, 248

packetized, 95

Data types

ARM architecture, 443–425

IEEE 754 standard, 444

Intel x86 architecture, 442–443

packed SIMD, 442

DDR4 memory controller, 756

Debug access port (DAP), 33

Debug logic, 33

Decimal floating-point unit (DFU), 11

Decimal system, 335–336

Decode instruction (DI), 550

Decode instruction unit, Cortex-A8 processor, 655–656

Decoders, 408–410, 650

as demultiplexer, 410

Dedicated L2 cache, 756

Dedicated processors, 27

Dedicated reservation station, pipelining, 623

Deeply embedded systems, 28–29

Delayed branch, 564

pipelining, 608–609

Delayed load, pipelining, 609

Delay slot, 608

Demand paging, 315–316

DeMorgan’s theorem, 392, 395, 406

Device communication, I/O modules, 250

D flip-flop, 416–420

Differential signaling, 96

Digital computer, 17

Digital logic

Boolean algebra, 389–394

combinational circuits, 396–414

gates, 394–396

programmable logic device (PLD), 423–428

sequential circuits, 414–423

Digital versatile disk (DVD), 235, 238–239

Direct access, 120

Direct-access device, 240

Direct address, 483

Direct addressing, 479, 493, 514

Direct cache access (DCA), 271–278

performance issue and benefits, 274–276

strategies, 276

Direct data intervention (DDI), 760

Direct Data I/O, 271

cache write operation, 277

comparison of DMA with, 277

packet input, 276–278

packet output, 278

strategy, 278

TCP/IP protocol handler, 278

write-back strategy, 277

write-through strategy, 277

Direction flag (DF), 570

Directives, 517

Direct-mapped cache, 170

Direct mapping technique, 146–150

Direct memory access (DMA), 90

comparison of DDIO with, 277

control/command registers of Intel 8237, 270–271

8237 DMA usage of system bus, 269

fly-by DMA controller, 270

function, 266–268

interrupt breakpoints during an instruction cycle, 267

programmed and interrupt-driven I/O, 265–266

SMPs, 707

using shared last-level cache, 272–274

Directory protocols, 711

Dirty (use) bit, 160

Disabled interrupt, 87

Discrete components, 18

Disk cache, 128

Disk drive, I/O, 249

Disk systems, physical characteristics of, 216

Dispatcher, 304

Displacement addressing, 481–483

mode, 485

Dividend, 363

Division, 363–366

flowchart for unsigned binary, 364

partial remainder, 363–365

twos complement, 365

Divisor, 363

DLL hell, 532

Double data rate, 195

Double-data-rate DRAM (DDR DRAM), 195

Double-sided disks, 216

Dual redundancy disk performance (RAID level 6), 225

Duplicated tag RAMs, 760

DVD, 235

DVD-R, 235

DVD-ROM, 235

DVD-RW, 235

Dynamic access random memory (DRAM) technology, 96

Dynamic instruction, 117, 118

Dynamic linker, 532–533

Dynamic-link libraries (DLLs), 532

Dynamic RAM (DRAM), 162, 179–181, 197, 202

DDR SDRAM, 195–196

pin configuration, 184

synchronous DRAM (SDRAM), 192–195

Dynamic run-time loading, 530

E

EAS/390 memory system, 453

Edge-triggered flip-flop, 421

EDVAC (Electronic Discrete Variable Computer), 11

Effective address (EA), 478, 480

EFLAGS register, Intel x86 processors, 569–570

Electrically erasable programmable read-only memory (EEPROM), 182

Embedded DRAM (eDRAM), 197, 198, 764

Embedded dynamic RAM (eDRAM), 125

Embedded Microprocessor Benchmark Consortium (EEMBC) benchmark, 501

Embedded operating system (OS), 27

Embedded systems, 24–29, 511

deeply, 28–29

operating system (OS), 27

organization, 25–26

Embedded trace macrocell (ETM) module, 33

Emulation (EM), 571

Enabled interrupt, 87, 674

Erasable programmable read-only memory (EPROM), 182, 184

Error control function, 98

Error-correcting codes, 188

Error correction, 232, 234

semiconductor memory, 187–192

Error correction code (ECC), 215, 216

Error detection, I/O modules, 251

Ethernet, 282–283

Euclid’s algorithm, 518

Exceptions, interrupts and, 573

Excitation table, 423

Exclusive-or (XOR) gates, 390

Exclusive policy, 165

Executable code, 508

Execute cycle, 76, 79, 84

micro-operations (micro-ops), 674–675

Execute instruction (EI), 550

Execution. See also Program execution

fetch and instruction, 545

fetched instruction, 77

instruction execution rate, 50–51

I/O program, 81, 83

of loads and stores in MIPS R4000 microprocessor, 616

multithreading, 718

RISC instruction, 588–593

speculative, 40

superscalar, 40, 645

Expansion boards, 8

Exponent overflow, 374

Exponent underflow, 374

Exponent value, 367

Extendable precision format, 372

Extended Binary Coded Decimal Interchange Code (EBCDIC), 441, 452

Extended precision formats, 370

Extension Type (ET), 571

External interface standards, 280–283

External memory, 118, 119, 199, 202

magnetic disk, 211–221

magnetic tape, 240–241

optical-disk systems, 234–240

RAID, 221–231

solid state drives (SSDs), 231–234

F

Family concept, 587

Fanouts, 286

Fetch cycle, 14, 76, 77, 79, 84, 85, 489, 545, 547, 671–673

micro-operations (micro-ops), 671–673

Fetched code bits, 188

Fetch instruction (FI), 550

Fetch instruction unit, 538, 545

Cortex-A8 processor, 653–654

execution of, 77

Fetch operands (FO), 550

Fetch overlap, pipelining, 549

Field-programmable gate array (FPGA), 425–428

interconnect, 427

I/O blocks, 427

logic block, 427, 428

structure, 427

Fine-grained threading, 743

FireWire Serial Bus, 281

Firmware, 99, 232, 690

First generation of computers. See IAS computer

First-in first-out (FIFO) algorithm, 159

First pass, 523–524

Fixed-head disk, 216

Fixed-point representation, 351

Fixed-point unit (FXU), 11

Fixed-size partitions, 310–311

Flag, register organization, 580

Flags. See Condition codes

Flash memory, 232–234

NOR and NAND, 201–202

operation, 200

Flip-flops, 415–418

basic, 419

clocked S–R, 416, 417

D, 416–420

edge-triggered, 421

J–K, 418, 420–421

S–R Latch, 415–417

Flit, 96

Floating-point arithmetic, 374–383, 444, 630, 638

addition, 375–377

division, 377

exponent overflow, 374

exponent underflow, 374

IEEE standard for binary, 381–383

minus infinity, 381

multiplication, 377–378

normalization, 377

precision considerations, 378–381

rounding to plus, 381

round to nearest, 380

round toward zero, 381

significand overflow, 375

significand underflow, 375

subtraction, 375–377

Floating-point notation, 366–374

base, 367

biased representation, 367

with binary numbers, 366–368

exponent value, 367

of IBM S/390 architecture, 369–370

IEEE standard for binary, 370–374

negative overflow, 369

negative underflow, 369

normal number, 367–368

positive overflow, 369

positive underflow, 369

principles, 366–370

significand, 367–368

sign of, 367

Floating-point representation, 366–374

Floppy disk, 217

Floppy (contact) magnetic disks, 212, 216

Flow control function, 96, 98, 101

Flow control packets, 107

Flow dependency, 635

FORTRAN programs, 298, 591

Fractions, 338–340

Frames, 140

I/O memory, 285

Front end, Pentium 4 processor, 649

Fully nested interrupt mode, 260

Functional mean, 52

Functional unit (FU)

pipelining, 623

processor organization, 566

Functions, 292–296

I/O, 88–90, 249–251

FXU (fixed-point unit), 11

G

Gaps, magnetic disks, 213

Gates, 17, 389, 394–396

delay, 395

functionally complete sets of, 395

NAND, 395, 396

NOR, 395–396

General-purpose computing using a GPU (GPGPU), 44–45

General purpose register, 480–482, 486, 540, 568–569, 579

Generic interrupt controller (GIC), 757

Generic timer, 758

Geometric mean, 52, 56–59

Gigabit Ethernet, 100

Global history buffer (GHB), 655–656

Gradual underflow, 383

Graphical symbol, 394, 397

Graphics processing units (GPUs), 44–45

multicore computers, 747–749

Greatest common divisor, 518–519

Guard bits, 378

H

Hamming code, 188

Hamming, Richard, 188

Hard disk, 216

Hard disk drives (HDDs), 231

parameters, 220

Hard failure, 187

Hardware cache coherence, 711–712

Hardware drivers, 511

Hardware interrupts, 760

Hardware transparency approach, 161

Hardwired implementation, 686–689

control unit inputs, 687–688

control unit logic, 688–689

Hardwired programs, 74

Harmonic mean, 52, 54–56

Hash functions, 316

Hashing technique, 317

Head, 211, 212, 216

Heterogeneous multicore organization, 747–755

Heterogeneous System Architecture (HSA) Foundation, 749

Hexadecimal, 340–342

Hexadecimal digits, 341

Hexadecimal notation, 340–342

HGST Ultrastar C15K600, 220

HGST Ultrastar HE, 220

High-definition optical disks (HD DVD), 239–240

High-level languages (HLLs), 510–511, 588, 590–593, 596

High-performance computing (HPC), 143

Hit, 124

Hit ratio, 129–131, 133, 149, 153, 158

Homogenous multicore organization, 747

Horizontal coherence, 128

Horizontal loss, 722

Horizontal microinstruction, 690

Host channel adapter (HCA), 286

HP Integrity Superdome X, 64

Human-readable devices, 247

Hybrid threading, 743

I

IA-64 architecture, 541

IAS computer, 11

arithmetic and logic unit (ALU), 11, 14, 15

conditional branch instruction, 16

control unit, 12, 14

data transfer, 15

execute cycle, 15

fetch cycle, 14

flowchart of, 15

input-output (I/O) equipment, 12

instruction cycle, 15

instruction groups, 15–16

logical control, 13

memory of, 11, 14

operation code (opcode) instruction, 14, 15

registers, 14

storage locations, 14

structure of, 12

unconditional branch instruction, 16

von Neumann’s earlier proposal, 12–14

IBM 360/91, pipeline streams of, 559

IBM 370/168, pipeline streams of, 559

IBM 801 system, 609

IBM 3033, pipeline streams of, 559

IBM z13 cache organization, 168–169

IBM z13 eDRAM cache structure, 197–198

IBM z13 I/O

channel path, 285

channels, 285

channel structure, 283–285

channel subsystems (CSS), 284

hardware system area (HSA), 284

I/O system organization, 285–287

I/O system structure, 286

logical partition, 284

subchannel, 285

subchannel set, 285

system assist processor (SAP), 284

Z frame, 285

IBM z13 mainframe computer, 9

cache structure, 763–765

drawer structure, 763

embedded DRAM (eDRAM), 764

organization, 762–763

processor unit (PU), 762

storage control (SC), 762

IBM z13 memory hierarchy, 126–127

IBM z13 storage control, 198

ICM (instruction cache and merge), 10

ICode interface, 33

Identification flag (ID), 570

IDU (instruction decode unit), 10

IFB (instruction fetch and branch), 10

If-Then (IT) instruction, 501

Immediate address, 479

Immediate addressing, 514

Immediate addressing mode, 479

Immediate constants, ARM, 499–500

Inclusion policy, 164–165

Inclusive policy, 164

Incremental scalability, 723–724

Increment-and-skip-if-zero (ISZ) instruction, 678

Indexed address, 540

Indexing, 482–483

Index registers, 482–483, 540

Indirect addressing, 479–480

Indirect cycle, 673–674

Indirect instruction cycle, 478

InfiniBand, 282, 286

Infinity arithmetic, 381

Infinity, IEEE interpretation, 381

Information technology (IT), 26

In-order completion, 638–639

In-order issue, 638–640

Input-output (I/O) process, 4

Institute of Electrical and Electronics Engineers (IEEE) standards

for binary floating-point arithmetic, 381–383

double-precision floating-point numbers, 611

802.3, 282

802.3 for ethernet, 282

802.11 Wi-Fi, 283

floating-point representations, 442

1394 for FireWire, 281

for rounding, 380

754 Subnormal Numbers, 382–383

Instruction address register, 79–80

Instruction buffer, pipelining, 621

Instruction buffer register (IBR), 14

Instruction cache, 125, 165

Instruction cycle, 76, 77, 79, 545–548, 675–676

data operation (do), 80

execute cycle, 545, 546

fetch and instruction execution activities, 545

fetch cycle, 545, 547

instruction address calculation (iac), 79–80

instruction fetch (IF), 80

instruction operation decoding (iod), 80

interrupts and, 82–87

interrupt stage, 545

operand address calculation (oac), 80

operand fetch (OF), 80

operand store (OS), 80

Instruction cycle code (ICC), 675

Instruction decode (ID) stage, pipelining, 621, 623

Instruction execution rate, 50–51

Instruction formats. See also Assembly

ADD instruction, 608

addressing bits, 490–491

addressing modes, 490

allocation of bits, 490–493

ARM, 499–502

DEC-10 instructions, 591

granularity of addressing, 491

high-level language (HLL), 588, 590–593, 596

If-Then (IT) instruction, 501

Intel x86, 497–499

JUMP instruction, 608

length, 489–490

memory-transfer length, 489, 490

MIPS R4000 microprocessor, 611–612

multiple instructions per cycle, 722

NOOP instruction, 608

operand address, 490

Patterson and Sequin [PATT82a], 590

PDP-8, 491–492

PDP-10, 492–493

PDP-11, 494

range of addresses, 491

reduced instruction set architectures, 602–604

register vs. memory address, 490–491

S/390 Move Characters (MVC) instruction, 604

SETHI instruction, 620

set of registers, 491

SPARC (Scalable Processor Architecture), 619–621

32-bit Thumb instructions, 501, 502

variable-length instructions, 493–497

VAX, 494–497, 499, 588, 590, 591

Instruction issue, 638–639

Instruction-level parallelism, 634, 637

Instruction pipelining, 548–565, 587, 630, 652, 718, 752

branch prediction, 560–564

control hazard (branch hazard), 558

data hazard, 557–558

dealing with conditional branches, 558–565

delayed branch, 564, 608–609

delayed load, 609

Intel x86 architecture, 647–648

loop buffer, 559–560

loop unrolling, 610

measures of pipeline performance, 553–556

MIPS R4000 microprocessor, 612–616

multiple streams, 558–559

optimization of, 608–610

pipeline bubble, 556

prefetched branch target, 559

reduced instruction set computer (RISC), 606–610

with regular instructions, 606–607

resource hazard, 556–557

strategy, 548–553

Instruction prefetch (fetch overlap), 549

Instruction register (IR), 14, 77, 435, 542, 547, 672, 678

Instruction set architecture (ISA), 2, 50, 294, 747, 751

ARM, 30, 501

Thumb-2, 501

Instruction sets, 508. See also Addressing modes

Instruction spatial locality, 117

Instruction temporal locality, 117

Instruction window, 640

pipelining, 623

Integers, 337–338

addition, 353–356

division, 363–366

fixed-point, 351

negation, 352–353

nonnegative, 346, 444

overflow rule, 353–354

packed byte and packed byte, 442

packed doubleword and packed doubleword, 443

packed quadword and packed qaudword, 443

packed single-precision floating-point and packed double-precision loating-point, 443

packed word and packed word, 442

radix point, 346

range extension, 349–351

signed, 444, 619

sign magnitude, 347

subtraction, 353–356

twos complement operation of, 347–349, 352, 358–363

unsigned, 346

Integrated circuit (IC), 8, 18

pattern, 18

Integrated memory controller (IMC), 272

Intel 82C55A programmable peripheral interface, 262–265

Intel 82C59A interrupt controller, 260–261

Interrupt Acknowledge (INTA) of, 260

Interrupt Request (INTR) of, 260

responsibility of, 260

Intel 3420 chipset, 9

Intel 8085, 682–686

Address Latch Enabled (ALE) pulse signals, 685

control unit, 683

CPU block diagram, 683

external signals, 684–685

incrementer/decrementer address latch, 682

interrupt control, 682

machine cycles, 683

OUT instruction, 685–686

pin configuration, 685

serial I/O control, 682

Intel 8237A

DMA controller, 268–270

DMA registers, 271

Intel 8255A programmable peripheral interface

architecture and operation, 262–264

keyboard/display terminal, 264–265

operating modes and configurations, 263–264

pin layout, 262–263

Intel 80386

interrupt modes of, 260–261

multiple I/O modules of, 260

user-visible register organization for, 545

Intel 80486 pipelining

condition codes in, 565

decoding, 564

execute cycle, 564

fetch cycle, 564

write back stage, 565

Intel cache evolution, 166

Intel Core i7-5960X, 756–677

Intel Core microarchitecture, 646–652

Intel core system cache structure, 198–199

Intel microprocessors

1970s, 21

1980s, 22

1990s, 22

present times, 22

Intel Quad-Core Xeon processor chips, 8

Intel x86 addressing modes, 483–486

based scaled index with displacement mode, 486

base mode, 485

base with displacement mode, 485–486

base with index and displacement mode, 486

displacement mode, 485

immediate mode, 484

mode calculation, 484

register operand mode, 484

relative addressing, 486

scaled index with displacement mode, 486

segment registers for, 484

Intel x86 architecture, 23–24

allocate stage, 650–651

branch prediction strategy, 649

branch target buffer (BTB), 649

cache/memory parameters, 648

control registers, 571–572

Core series microprocessor, 23–24

data hazards, 557

data types, 442–443

decode unit, 650

dispatching, 651–652

8080 microprocessor, 23

8086 microprocessor, 23

80286 microprocessor, 23

80386 microprocessor, 23

80486 microprocessor, 23–24

evolution of, 23–24

front ends, 648–650

hardware registers, 651

instruction fetch unit, 649–650

instruction queue unit, 650

instruction set, 24

instruction translation lookaside buffer (ITLB), 649

integer and floating-point register files, 652

interrupt processing, 573–575

microarchitecture, 646–652

micro-op queuing, 651

micro-op scheduling, 651–652

out-of-order execution logic, 650–652

Pentium series microprocessor, 24

pipelining, 647–648

predecode unit, 649–650

register organization, 568–573

register renaming, 651

reorder buffer (ROB) entry, 650

static prediction algorithm, 649

Intel x86 cache organization

execution unit, 165

fetch/decode unit, 165

instruction cache, 166

memory subsystem, 166

operating modes, 167

out-of-order execution logic, 165

write-back policy, 166

Intel x86 instruction format, 497–499

address size, 498

displacement field, 498

instruction prefixes, 498

ModR/M byte, 498

opcode field, 498

operand size, 498

segment override, 498

SIB byte, 498

Intel x86 memory management, 320–325

address spaces, 320–321

4-Gbyte linear memory space, 324

logical address in, 321

OS design and implementation, 321

parameters, 323

privilege level and access attribute, 321

requested privilege level (RPL), 322

segmented paged memory, 321

segmented unpaged memory, 320

segment number, 322

table indicator (TI), 321

unsegmented paged memory, 320

unsegmented unpaged memory, 320

virtual memory in, 321

Intel x86 operation types

call/return mechanism, 458–459

memory management, 459

MMX instructions, 460–462

SIMD instructions, 460–464

status flags and condition codes, 459–460

Intel x86 processor family

exception and interrupt vector table, 574

exceptions, 573

interrupt-handling routine, 575

interrupt processing, 573–575

interrupts and exceptions, 573

register organization, 568–573

Intel x86 program execution registers, 513

Intel Xeon processors

direct cache access strategies, 276

E5-2600/4600, 272–274

multicore processors, 272

Interconnection structures, 90–92

bus interconnection, 92–94

point-to-point, 92, 94–99

Interconnection transfers

I/O to or from memory, 92

I/O to processor, 92

memory to processor, 92

processor to I/O, 92

processor to memory, 92

Interleaved memory, 187

Interleaved multithreaded scalar, 722

Interleaved multithreading, 720

Interleaved multithreading superscalar, 722

Interleaved multithreading VLIW, 723

Intermediate queues, 309

Internal memory, 118

Internal processor bus, 539

International Reference Alphabet (IRA), 249, 441

Internet of things (IoT), 26–27

Interprocessor interrupts (IPIs), 760

Interrecord gaps, 240

Interrupt-driven I/O, 256–265

bus arbitration, 260

daisy-chain configuration, 260

design issues, 258–260

Intel 82C59A interrupt controller, 260–261

interrupt-handler program, 258

interrupt processing, 256–258

multiple interrupt lines, 259

software poll, 259

TESTI/O, 259

vectored interrupt, 260

Interrupt enable flag (IF), 570

cycle, 546, 674

Interrupts, 81–88, 299

classes, 81

control lines, 94

cycle, 84

disabled, 87

handler, 83, 85

instruction cycle and, 82–87

multiple, 87–88

nested interrupt processing, 89

point of view of user program, 83

program flow of control without and with, 82

sequential interrupt processing, 89

Interrupt service routine (ISR), 87

Intertrack gaps, 213

Interval arithmetic, 381

Inverted page table, 317

I/O address register (I/OAR), 75

I/O buffer (I/OBR) register, 75

I/O channels, 278–280

architecture, 280

block multiplexor, 279

byte multiplexor, 279

characteristics of, 279

function, 278–279

IBM z13 I/O, 285–287

multiplexor channel, 279

selector channel, 279

I/O command, 252

I/O components, 75

I/O controllers, 100, 118, 252, 253, 279

I/O devices

disk drive, 249

external, 247–249

human-readable devices, 247

keyboard/monitor arrangement, 248–249

machine-readable devices, 247

I/O driver software, 232

I/O functions, 88–90

I/O hub (IOH), 95

I/O-memory transfer, 90

I/O modules, 677

address recognition, 250

command decoding, 250

control function, 248–250

control lines, 93–94

data buffering, 250

data transfer, 248

device communication, 248, 250

error detection, 251

field-programmable logic array, 427

functions or requirements for, 249–251

interconnection structures, 91

interconnection transfers, 91

interface to, 248

I/O requests in RAID schemes, 229

machine instructions, 434

PCIe TLP transaction types, 105

processor communication, 250

QPI connections, 95

read-write operation, 160

registers and, 543

semiconductor memory, 187

status reporting, 250

structure, 251–252

timing, 219, 249–250

transducer, role of, 248

I/O privilege flag (IOPL), 570

I/O processor, 252

I/O program

execution of, 81, 83

time required for, 86

IPC (instructions per cycle), 718

Isolated I/O, 254

ISU (instruction sequence unit), 10

J

Java applications, 742

Java Virtual Machine, 742

JEDEC Solid State Technology Association, 195

J–K flip-flop, 418, 420–421

Job control language (JCL), 298

Job program, 296–298

Jump instruction, 453

K

Karnaugh maps, 399–404

Kernel (nucleus), 295

K-way set associative cache organization, 154–156

L

L1 cache, 125, 126, 758

L2 cache, 125, 126, 128, 758

L3 cache, 125, 126, 756

L4 cache, 125, 126, 197, 764

Label, 512–513

Lands, compact disks, 235

Lane, 96

Last-in-first-out (LIFO) queue, 483

Last-level cache, 271–276

Latency time, 217, 219

LC. see Location counter

Least-frequently used (LFU) algorithm, 143, 159

Least-recently used (LRU) algorithm, 143, 159, 315

Least significant digit, 335

Legacy FIQ line, 760

Line, 141

Linear tape-open (LTO)

system, 240

tape drives, 241

Line size, 142, 161–162, 165

Linkage editor, 531–532

Linking, 297, 494, 508, 527, 531–533

Link layer, 97–99, 107

Links, InfiniBand, 282

Linux, 27

Little endian ordering, 472–475

Little’s law, 47–48

Loader, 508

Loading, 528–530

Loading function, 526

Load/store addressing, ARM, 486–488

Load/store multiple addressing, ARM, 488–489

Load/store unit (LSU), 621

Load-time dynamic linking, 532

Locality, 127

Locality of reference, 113

Local variable, 458

Location counter (LC), 523

Locked operation, 105

Logical address, 313

Logical cache, 144

Logical data operands, 441–422

Logical operations (opcode), 449–451

Logical shift, 450

Logic block, 424, 427

Logic (Boolean) instructions, 437

Logic-memory performance balance, 40–42

Long-term data storage function, 4

Long-term scheduling, 303–304

Lookup table, 427

Loop buffer, pipelining, 559–560

Loop unrolling, pipelining, 610

Low-voltage differential signaling (LVDS), 97

LSU (load-store unit), 10

M

Machine code, 508

Machine cycles, 602, 683

Machine instructions. See also Instruction cycle; Instruction formats

addresses, 437–419

arithmetic instructions, 436

ARM architecture, 437

BASIC instruction, 436

branch instructions, 453–434

conditional branch instruction, 453

conversion instructions, 451–452

data transfer instructions, 448–449

elements of, 433–414

high-level language, 436

increment-and-skip-if-zero (ISZ) instruction, 454

input/output instructions, 452

instruction register (IR), 435

instruction set design, 439

I/O instructions, 436

logic (Boolean) instructions, 436

memory instructions, 436

MMX instructions, 460–462

multiple-address instructions, 439

next instruction reference, 434

operands, 440–422

operations (opcode), 433

reduced instruction set computer (RISC), 439

representation, 434–435

result operand reference, 434

SETEND instruction, 445

skip instructions, 454–455

source and result operands, 434

source operand reference, 433

stacks and, 438

symbolic representation, 435

system control instructions, 452–453

test instructions, 436

transfer-of-control instructions, 453–458

types of, 436

unconditional branch instruction, 453

zero-address instructions, 438

Machine language, 508, 511

Machine parallelism, 637, 643–644

Machine-readable devices, 247

Macroassembler, 523

Macro definitions, 515–516

Macro expansion, 516

Macro processing pass, 525

Magnetic disk

access time, 217

contemporary rigid, 212

cylinder, 216

data organization and formatting, 212–216

double-sided disks, 216

intertrack gaps, 213

latency time, 217, 219

multiple platters, 216

multiple zone recording (MZR), 214

performance parameters, 217–221

physical characteristics, 216–217

read and write mechanisms, 211–212

rotational positional sensing (RPS), 218

sectors, 213

seek time, 217, 218

sequential organization, 219

single-sided disks, 216

timing, 219–221

transfer time, 219

Magnetic RAM (MRAM), 204

Magnetic tapes, 240–241

Magnetic tunneling junction (MTJ), 204

Magnetoresistive (MR) sensor, 212

Mainframe computers, 39

Main memory, 5

Mantissa, 367

Many integrated core (MIC), 44

Mapping function of cache memory

associative, 151–153

content-addressable memory (CAM), 149–151

direct, 146–149

k-way set associative cache organization, 154–156

set-associative, 154–159

Mask, 450

Medium-term scheduling, 304

Memory, 75, 508. See also Cache memory

access time (latency), 120

associative access, 120

auxiliary, 126

bank, 187

capacity, 119

characteristics, 119

concepts for internal, 119

control lines, 93–94

cycle time, 120

direct access, 120

external, 118, 119

hierarchy, 121–128

instructions, 436

interconnection structures, 90–92

interconnection transfers, 91

levels of, 124

method of accessing units, 119

“natural” unit of organization of, 119

noncacheable, 161

PCIe TLP transaction types, 105

performance parameters, 120

physical types of, 121

random access, 120, 121

read-only memory (ROM), 121

real, 316

secondary, 126

sequential access, 119

transfer rate, 120, 121

Memory access, two-level, 128–135

Memory address register (MAR), 14, 75, 542, 547, 671–672

Memory bank, 187

Memory buffer register (MBR), 14, 75, 542, 547, 671–672, 674–675

Memory cell, 17

Memory controller hub (MCH), 272–273

Memory cycle time, 120

Memory hierarchy, 121–128

Memory instructions, 436

Memory management

ARM, 325–330

base addresses, 313

compaction, 312

Intel x86, 320–325

intermediate queue, 309

logical addresses, 313

page frames, 313

page table, 314

paging, 313, 324–325

partitioning, 310–313

physical addresses, 313

segmentation, 319–322

SMP, 709

swapping, 309–310

time-consuming procedure, 312

translation lookaside buffer (TLB), 317–319

virtual memory, 315–317

Memory management unit (MMU), 30, 143, 326, 478

Cortex-A, 30

Cortex-R, 30–31

Memory-mapped I/O, 254–255

Memory modules, 75, 76, 91

Memory protection, OS, 305

Memory Protection Unit (MPU), 31, 33

Memory systems, characteristics of, 118–121

MESI (modified/exclusive/shared/invalid) protocol, 712–718, 761

L1-L2 cache consistency, 717–718

line states, 713

read hit, 714

read miss, 714

read-with-intent-to-modify (RWITM), 714

state transition diagram, 713

write hit, 715

write miss, 714–715

MESI signaling, 716–717

Meta-assembler, 523

Metallization, 18

Microassembler, 523

Microcomputers, 3

Microcontroller chip, 27–28

Microelectronic chips, 18–20

Microinstructions, 690–692

Micro-operations (micro-ops), 166, 647, 648, 670–676

execute cycle, 674–675

fetch cycle, 671–673

indirect cycle, 673–674

instruction cycle, 675–676

instruction set, 677

interrupt cycle, 674

rules, 673

sequencing, 677

time units, 673

Microprocessor chips, 27–28

Microprocessor register organizations, 543–545

Microprocessor speed, 39–40

Microprogrammed control units, 587, 693–695

Microprogrammed implementation, 6

Microprogramming, 689–698

advantages, 698

arithmetic and logic unit (ALU), 694

control unit functions, 693–694

disadvantages, 698

microinstructions, 690–692

Wilkes control, 695–698

Microprogramming language, 690

Migratory lines, 761

Millions of floating-point operations per second (MFLOPS) rate, 51

Millions of instructions per second (MIPS) rate, 51

Minuend, 354

Minus infinity, 381

MIPS R4000 microprocessor, 610–616

enhancing pipelining, 614

execution of loads and stores, 616

instruction set, 611–612

partitioning of chip, 611

pipelining instructions, 612–616

MIPS rate, 51

Miss, 124, 149

MMX (multimedia task)

instructions, 460–462, 464, 572

registers, 572–573

Mnemonics, 435, 513

MOESI protocol, 761

Monitor (simple batch OS), 297

Monitor arrangement, I/O, 248

Monitor Coprocessor (MP), 571

Moore, Gordon, 19

Moore’s law, 19, 39, 43

consequences of, 19–20

Most significant digit, 335

Motherboard, 8

Motivation for assembly language programming, 510–512

Motorola MC68000 microprocessor registers, 543

Movable-head disk, 216

Multichip module (MCM), 20–22

Multicore, 44

Multicore computers, 6–8

arithmetic and logic unit (ALU), 8

cache coherence, 754–755

cache memory, 6

central processing unit (CPU), 6, 747–751

cores, 6, 8

digital signal processors (DSPs), 749–751

equivalent instruction set architectures, 751–754

external memory interface (EMIF), 751

graphics processing units (GPUs), 747–749

hardware performance, 737–740

heterogeneous multicore organization, 747–755

homogenous multicore organization, 747

instruction logic, 8

levels of cache, 745–746

load/store logic, 8

memory subsystem memory controller (MSMC), 755

MOESI model, 755

motherboard, 8

multicore shared memory (MSM), 751

multicore shared memory controller (MSMC), 751

organization, 745–747

power consumption, 739–740

printed circuit board (PCB), 7

processor, 6, 8

simplified view of major elements of, 7

software performance, 740–745

Multicore processors, 6, 8, 737

Multi-instance applications, 742

Multilane distribution, 97

Multilevel cache memory, 162–164

Multilevel memory hierarchy, performance modeling of, 128–135

Multiline macro definition, 516

Multiple-bit adders, 413–414

Multiple instruction, multiple data (MIMD) stream, 703

Multiple instruction, single data (MISD) stream, 703

Multiple interrupt lines, I/O, 259

Multiple parallel processing, 718

Multiple platters, magnetic disks, 216

Multiple streams, pipelining, 558–559

Multiplexers, 406–408

in digital circuits to control signal and data routing, 407

4-to-1, 406–407

using AND, OR, and NOT gates, 407

Multiplexor channel, 279

Multiple zone recording (MZR), 214, 236

Multiplicand, 356–357

Multiplication

arithmetic shift, 361

Booth’s algorithm, 360–363

flowchart for unsigned binary, 358

hardware implementation of unsigned binary, 357

twos complement, 358–363

unsigned integers, 346

Multiplier, 357, 360

Multiplier quotient (MQ), 14

Multiprocess applications, 742

Multiprocessor OS design, SMP considerations for, 300

Multiprogramming batch, 299–302

Multiprogramming system, 527

Multitasking, 300

Multithreaded native applications, 742

Multithreading, 718–723

blocked, 720–722

coarse-grained, 720

fine-grained, 720

implicit and explicit, 718–719

interleaved, 719–723

principal approaches, 719–723

process, 718–719

process switch, 719

resource ownership, 719

scheduling/execution, 719

simultaneous (SMT), 720, 723, 747

thread, 719

thread switch, 719

N

NAND flash memory, 201–202, 231

NAND gate, 395, 396, 406

NaNs, IEEE standards, 381–382

N-disk array, 229

Negation, integers, 352–353

Negative overflow, 369

Negative underflow, 369

Nested Task (NT) flag, 570

Nested vector interrupt controller (NVIC), 33

Netwide Assembler (NASM), 507, 517, 519

assembly-language directives, 515

Neumann, John von, 11, 73

Nibble, 340

Noncacheable memory approach, 161

Non-data Inclusive Coherent (NIC) directory, 197

Noninclusive policy, 165

Nonredundant disk performance (RAID level 0), 222–226

Nonremovable disk, 216

Nonuniform memory access (NUMA) machines, 702, 703, 726–730

advantages and disadvantages, 729–730

motivation, 727

organization, 727–729

processor 3 on node 2 (P2-3) requests, 729

Nonvolatile memory, 121, 126

Nonvolatile RAM technologies, 203, 205

Non-write allocate, 277

NOR flash memory, 201–202

NOR gate, 395

Normalized numbers, 59

Normal number, 367–368

NOR S–R latch, 416

NOT operation, 449

Not Write Through (NW), 572

No write allocate, 160

Numbers, operands, 440–441

Number system

base digit, 335

binary system, 337

converting between binary and decimal, 337–340

decimal system, 335–336

fractions, 338–340

hexadecimal notation, 340–342

integers, 337–338

least significant digit, 335

most significant digit, 335

nibble, 340

positional number system, 336

radix point, 336

Numeric Error (NE), 572

O

Object code, 508

Object-code form, 526

Offset addressing, ARM, 486–487

One-pass assembler, 523, 525–526

Operand fetch (OF) stages, pipelining, 621

Operands, 440–422, 513–514

bit-oriented view, 442

characters, 441

logical data, 441–422

numbers, 440–421

packed decimal, 440–421

Operating system (OS), 527, 543

batch system, 296

functions, 292–296

interactive, 296

interrupt-driven I/O or DMA operations, 301–302

interrupts, 299

memory management, 302

memory protection, 299

Multics OS, 303

multiprogramming batch, 299–302

objectives, 292–296

privileged instructions, 299

scheduling, 296, 303–309

setup time, 296

simple batch, 297–299

symmetric multiprocessors (SMPs), 705–709

timer, 299

time-sharing, 302–303

types of, 296–303

uniprogramming, 302

Operational technology (OT), 26

Operations (opcode), 445–438

AND, 450

arithmetic shift operation, 450

ARM architecture, 464–465

basic arithmetic, 449

common instruction set, 446–427

conversion, 451–452

data transfer, 448–449

IBM EAS/390 data transfer operations, 448

input/output, 452

Intel x86 operation types, 458–464

logical, 449–451

nested procedures, 455, 456

NOT, 449

procedure call instructions, 455–458

process actions for various, 447

reentrant procedure, 456

rotate or cyclic shift, 451

stack frame, 457

system control, 452–453

transfer-of-control, 453–458

XOR, 450

Optical memory, 211

characteristics, 239

compact disk (CD), 234–237

high-definition optical disks, 239–240

Organization, 121

OR gate, 395

Orthogonality, 492–493

OSA Express Controller, 287

Out-of-order completion, 638–642

Out-of-order execution (OoOE), 623, 650–652

Out-of-order issue, 640–642

Output dependency, 558, 635, 639–640

Overflow, 353

P

Packed decimal representation, 441

Packets, data, 101

Page fault, 315

Page frame, 313

Page-level cache disable (PCD), 572

Page-level writes transparent (PWT) bit controls, 572

Page replacement, 316

Pages, 313

Page tables, 314, 316–317

Paging, 313–314, 319–320, 572

demand, 315–316

x86, 324–325, 483

Parallelism, 630

application-level, 742

instruction-level, 634, 637

machine-level, 637, 643–644

multicore computers, 737–739

procedural dependency and, 635–636

process-level, 742

resource conflict and, 636–637

thread-level, 742

true data dependency and, 635

Parallel organizations, 703–705

Parallel processing

cache coherence, 709–718

chip multiprocessing, 720

clusters, 723–726

MESI (modified/exclusive/shared/invalid) protocol, 712–718

multiple instruction, multiple data (MIMD) stream, 703, 705

multiple instruction, single data (MISD) stream, 703

multiple processor organizations, 703–705

multithreading, 718–723

nonuniform memory access (NUMA), 726–730

single instruction, multiple data (SIMD) stream, 703, 705

single instruction, single data (SISD) stream, 703

symmetric multiprocessors (SMP), 705–709

write policies, 710

Parallel recording, 240

Parallel register, 418–419

Parameters, magnetic disks, 217–221

Parity bits, 188

Partial product, 357

Partial remainder, 363–365

Partitioning, I/O memory management, 310–313

Passive standby clustering method, 725

PCI Express (PCIe), 95, 99–107, 232, 282, 285, 756

address spaces and transaction types, 104–106

data link layer packets, 107

devices that implement, 101

I/O device or controller, 100

I/O drawers, 287

legacy endpoint category, 101

ordered set block, 103

physical layer, 102–103

protocol architecture, 101

root complex, 100

TLP packet assembly, 106–107

transaction layer (TL), 103–107

transaction layer packet processing, 107

Type 0 and Type 1 configuration cycles, 105

PCI Special Interest Group (SIG), 99

PC-relative addressing, 481

PDP-8 instruction format, 491–492

PDP-8 instruction format design, 491–492

PDP-10 instruction format, 492–493

PDP-10 instruction format design, 492–493

PDP-11 instruction format design, 494

PDP-11 processor, 79

Peak metric, 62

Performance parameters, 120–121

Peripheral component interconnect (PCI), 99

Peripheral device, 246, 247, 250, 253, 263, 269, 281

Peripheral (external) devices, I/O, 250

Personal technology, 27

Phase change disk, 237

Phase-change RAM (PCRAM), 203, 204

SET and RESET operation, 204

Phit (physical unit), 96

Physical address, 313

Physical cache, 144

Physical characteristics of data storage, 121

Physical layer, 96–97

Physical records, 240

Physical types of memory, 121

Pipelining, 39, 737. See also Instruction pipelining

processor organization for, 621–623

Pit, 235

Platters, 211, 216

Point-to-point interconnection structures, 92, 94–99

QPI link layer, 97–99

QPI physical layer, 96–97

QPI protocol layer, 99

QPI routing layer, 99

Point-to-point interfaces, 272

Polarization-current-induced magnetization switching, 204

Pollack’s rule, 740

Polycarbonates, 234, 235

POP stack operation, 489, 494

Positional number system, 336

Positive overflow, 369

Positive underflow, 369

Postindexing, 482–483

Power consumption, 739–740

Power density, 42

Predecoder (PD), pipelining, 621–622

Preindexing, 483

Prime number program, 519–520, 526

Principle of locality, 113–118

Printed circuit board (PCB), 7

Printers, 247

Privileged instructions, 299

Procedural dependency, parallelism, 635–636

Procedure call, 453

Procedure return, 458

Process

block, 99, 611

control block, 305

multithreading, 718–723

resource ownership, 719

scheduling, 303–309

states, 304–306

switch, 719

Process-level parallelism, 742

Processor organization, 538–539

common fields or flags, 543

execute (EX), 566

functional elements of, 677

instruction decode (ID), 566

instruction fetch (IF), 566

operand fetch (OF), 566

for pipelining, 566–568

requirements, 538

reservation station, 566–568

write back (WB), 566

Processors

interconnection structures, 91

interconnection transfers, 91

1970s, 21

1980s, 22

1990s, 22

present times, 22

Processor unit (PU), 9, 762

Product of sums (POS), 397, 398

Program counter (PC), 14, 76, 305, 407–408, 542, 547, 672

Program execution example, 78

execute cycle, 76

fetch cycle, 76, 79

fetched instruction, execution of, 77

instruction cycle, 76, 77, 79

interrupts, 81–88

I/O program, 81, 83

Programmable array logic (PAL), 424

Programmable logic array (PLA), 425

Programmable logic device (PLD), 423–428

complex PLDs (CPLDs), 425

field-programmable logic array, 425–428

programmable logic array (PLA), 425

simple PLD (SPLD), 424, 425

terminology, 424

Programmable read-only memory (PROM), 181, 182

Programmed I/O commands, 253, 255

instructions, 253–255

interrupt-driven I/O and, 256–265

isolated, 254

memory-mapped, 254

memory-mapped I/O, 254–255

overview of, 253

techniques, 252

Programming, 75

Program status word (PSW), 542

Protection Enable (PE), 571

Pseudoinstruction, 509, 514–515

PU chips, 197

Pushdown list, 483

Q

Queues, 47

I/O operations, 284

QuickPath Interconnect (QPI), 94–99

balanced transmission, 96

differential signaling, 96

direct connections, 94

error control function, 98

flow control function, 98

layered protocol architecture, 95

multiple direct connections, 94

packetized data transfer, 95

physical interface, 97

QPI link layer, 97–99

QPI physical layer, 96–97

QPI protocol layer, 99

QPI routing layer, 99

use on multicore computer, 95

Quiet NaN, 381–382

Quine–McCluskey method, 403–406

Quotient, 363

R

Radix, 335–337

Radix point, 336, 346

RAID (Redundant Array of Independent Disks), 211, 221–231

comparison, 230–231

RAID level 0, 222–226

RAID level 1, 227

RAID level 2, 227–228

RAID level 3, 228

RAID level 4, 229

RAID level 5, 229

RAID level 6, 230

Random access, 120, 121

Random-access memory (RAM), 179

Range extension, 349–351

Rate metric, 62

Rate metric measures, 62, 65

Read-after-write (RAW) delays, 623

Read-after-write (RAW) dependency, 558, 635

Read hit/miss, 714

Read mechanisms, magnetic disks, 212

Read-mostly memory, 182

Read-only memory (ROM), 121, 181–182, 410–411

truth table for, 411

Read-with-intent-to-modify (RWITM), 715

Real memory, 316

Recordable (CD-R), 237

Reduced instruction set computer (RISC), 3, 23, 439, 587

architecture, 600–606

Berkeley study, 592–593, 616

cache, 596–598

characteristics, 589

vs. CISC design, 604–606, 623–625

classic, 604–606

compiler-based register optimization, 598–600

complex instruction sets, 588

conditional statements, 590

elements of design, 588

global variables, 596

high-level language (HLL) and, 588, 590–593, 596

instruction execution, 588–593

large register file, 596–598

line of reasoning of, 589

one machine instruction per machine cycle, 602

operands, 591–592

operations, 590–591

pipelining, 606–610

procedure calls, 592

referencing a local scalar, 597–598

register-to-register operations, 602–603

register windows, 594–596

simple addressing modes, 603

simple instruction formats, 603

window-based register file, 597–598

Redundant disk performance via Hamming code (RAID level 2), 228

Reentrant procedure, 456

Reference machine, 62

Register addressing, 480–481, 514, 602–603

Register file, instruction pipe line, 593–598, 616

Register indirect addressing, 481

Register organization, 539–545

Register renaming, 642–643

Registers, 6, 14, 418–420, 539

address, 540

ARM, 578–580

control and status, 540–543, 569, 571–572

in control of I/O operations, 543

current program status register (CPSR), 578–580

data, 540

devoted to floating-point unit, 569

EFLAGS and RFLAGS, 569–570

general purpose, 540, 568–569, 579

index, 540

instruction register (IR), 542

instruction set design, 439

Intel x86, 568–575

memory address register (MAR), 542, 547

memory buffer register (MBR), 542, 547

microprocessor register organizations, 543–545

MMX, 572–573

numeric, 569

program status, 578–580

reduced instruction set computer (RISC), 594–596, 602–603

saved program status register (SPSR), 578–580

segment, 569

16-bit data, 544

software-visible, 578

tags, 569

user-visible, 539–541, 545

Register-to-register organization, 602

Register window, 594–596

Relative address, 314

Relative addressing, 481

Relocatable loading, 529–530

Relocatable load module, 530

Relocation, 527

Remainder, 366

Removable disk, 216

Reorder buffer, pipelining, 623

Replacement algorithms, cache memory, 159

Reservation station, processor organization, 566–568

Resident assembler, 523

Resident monitor, 297

Resistive-capacitive (RC) delay, 42

Resistive RAM (ReRAM), 203, 204

Resource conflict, parallelism, 636–637

Resource hazard (structural hazard), pipelining, 556–557

Resume flag (RF), 570

Retire, 652, 655, 656

Ripple counters, 420–421

Root complex, 100

Rotate (cyclic shift) operation, 451

Rotating interrupt mode, 261

Rotational latency, magnetic disks, 217

Rotational positional sensing (RPS), 218

Rounding, 380–381

Rounding, IEEE standards, 380

Rounding to plus, 381

RU (recovery unit), 11

Run-time dynamic linking, 532

S

Saturation arithmetic, 461

Scalar values, 472

Scheduling, 303–309

I/O queue, 308

long-term, 303–304

long-term queue, 308

medium-term, 304

process control block, 305–306

process states, 304–306

queuing diagram representation of processor, 308

short-term, 304–309

short-term queue, 308

techniques, 306–309

time-sharing system, 304

Secondary memory, 126

Second pass, 524–525

Sectors, magnetic disks, 213

Seek time, 221

magnetic disks, 218

Segmentation, Pentium II processor, 320

Segment pointers, 540

Selector channel, 279

Self-modifying code, 511

Semantic gap, 588

Semiconductor, 17, 18, 121, 200, 231

Semiconductor memory, 178, 187

address lines, 183

arrangement of cells in array, 182

chip logic, 182–184

chip packaging, 184–185

dynamic RAM (DRAM), 179–180

electrically erasable programmable read-only memory (EEPROM), 182

erasable programmable read-only memory (EPROM), 182

error correction in, 187–192

flash memory, 182

interleaved memory, 187

I/O module, 185

organization, 178

programmable ROM (PROM), 181, 182

random-access memory (RAM), 179

read-mostly memory, 182

read-only memory (ROM), 181–182

SRAM vs. DRAM, 181

static RAM (SRAM), 180–181

trade-offs among speed, density, and cost, 182

types, 179

write enable (WE) and output enable (OE) pins, 184–185

Sensor/actuator technology, 27

Sequential access, 119

Sequential-access device, 240

Sequential circuits, 414–423

counters, 420–423

flip-flops, 415–418

registers, 418–420

Sequential organization, magnetic disks, 219

Serial ATA (SATA) sockets, 9, 282

Serial recording, 240

Serpentine recording, 240

Server clustering approaches, 726

Set-associative mapping, 154–159

Sets, algebra of, 390–392

complement of, 391

defined, 390

intersection of, 390

union of, 391

Setup time, operating system (OS) efficiency, 296–297

Shannon, Claude, 389

Shift registers, 420

Short-term data storage function, 4

Short-term scheduling, 304–306

Signaling NaN, 381–382

Signal lines, PCI, 90

Sign bit, 347

Sign extension, 350

Significand, 375

overflow, 375

underflow, 375

Sign-magnitude representation, 347

Silicon, 18

Simple PLD (SPLD), 424, 425

Simultaneous multithreading (SMT), 720, 738, 747

Single error-correcting (SEC) code, 191

Single-error-correcting, double-error-detecting (SEC-DED) code, 191

Single instruction, multiple data (SIMD) stream, 703

Single instruction, single data (SISD) stream, 703

Single large expensive disk (SLEP), 222

Single-processor computer, 5–6

arithmetic and logic unit (ALU), 6

central processing unit (CPU), 5

internal structure of, 10

main memory, 5

processor, 5

registers, 6

system bus, 6

system interconnection, 5–6

Single-sided disks, 216

Single-threaded scalar, 721

Skip instructions, 454–455

Small Computer System Interface (SCSI), 281

Small electronics, 18

Small-scale integration (SSI), 19, 424

Snoop control unit (SCU), 758

Snoopy protocols, cache coherence, 711–712

Soft errors, 187

Software, 75

cache coherence solutions, 710–711

dynamic voltage and frequency scaling (DVFS), 753–754

I/O driver, 232

multicore computer performance, 740–745

poll, 259

processing models, 753–754

valve game threading, 743–745

Software poll technique, I/O, 259

Solid-state component, 18

Solid state drives (SSDs), 202, 231–234

compared to HDD, 231–232

organization, 232

practical issues, 232–234

SPARC (Scalable Processor Architecture), 593

addressing modes, 619

ALU operations, 618

branch instruction, 619–620

current window pointer (CWP), 617

effective address (EA) of an operand, 619

instruction format, 619–621

instruction set, 618–619

processor status register (PSR), 617

register set, 616–618

register window layout, 617

Sun SPARC, 472

UltraSPARC, 62, 316

window invalid mask (WIM), 617

Spatial locality, 114–116

SPEC CPU2006 benchmark suite, 117

SPEC documentation base metric, 62

benchmark, 62

peak metric, 62

rate metric, 62

reference machine, 62

speed metric, 62

system under test, 62

Special interest group (SIG), PCI, 99

Special mask interrupt mode, 261

SPECrate2017_int_base, 64

SPECrate2017_int_peak, 64

SPECspeed2017_int_base, 64, 66

SPECspeed2017_int_peak, 64

Speculative execution, 40

Speed metric measures, 62

Speedup factor, 555

Speedup of the system, 45–47, 740–741

Spin-transfer torque RAM (STT-RAM), 203, 204

Split cache, 164

S–R Latch, 415–417

Stack addressing, 483

Stack frame, 457

Stack instructions, 438

Stack pointer, 540

Standard Performance Evaluation Corporation (SPEC) benchmarks

floating-point benchmarks, 61

integer benchmarks, 61, 64

SPEC Cloud_IaaS, 60

SPEC CPU2017, 60–62

SPECjbb2015 (Java Business Benchmark), 60

SPECjvm2008, 60

SPECrate2017_int_base, 64

SPECrate2017_int_peak, 64

SPECsfs2014, 60

SPECspeed2017_int_base, 64

SPECspeed2017_int_peak, 64

SPECviewperf, 60

SPECvirt_sc2013, 60

SPECwpc, 60

State diagrams, instruction cycles, 434

State of a process, 304–306

Static instruction, 117, 118

Static linking, 532

Static RAM (SRAM), 33, 149, 162, 180–181, 202

Static random access memory (SRAM), 125

Status flags, 459–460

Status registers, 541–543

Status signals, I/O, 248–249

Storage control (SC), 762

Store buffer, pipelining, 622

Stored-program concept, 11

String constants, 520, 522

String manipulation, 520–522

String operations, 520, 522

Stripe, 224, 228, 229

Striped data, 228

Striped disk performance (RAID level 0), 222–226

Subnormal numbers, 382–383

Substrate, 211

Subtraction, 353–356

rule, 354

twos complement, 354–355

Subtrahend, 354

Sum of products (SOP), 397, 398

Superpipelined approach, 633–634

Superpipelined processor, 633–634

Superscalar, 10, 24, 43, 164, 494, 722, 737

branch prediction, 644–645

committing or retiring of instruction, 645

dependency in, 635–636

execution, 40

execution of programs, 645

implementation, 646

in-order completion, 638–639

instruction fetch stage, 645

instruction issue policy, 637–642

instruction-level parallelism in, 637

machine parallelism in, 637, 643–644

organization, 631

out-of-order completion, 639–642

overview, 630–637

pipelining and scheduling techniques, 166, 556

processors, characteristics, 589

register renaming, 642–643

reported speedups, 633

vs. superpipelining, 633–634

types of orderings, 638

SuperSpeed, 281

Swapping, I/O memory management, 309–310

Switch, 100

Symbolic program, 509

Symbol table, 523

Symmetric multiprocessors (SMPs), 702, 703, 705–709

availability, 706

bus organization, 708

characteristics, 705

DMA transfers, 707

existence of multiple processors, 706

incremental growth, 706

memory and I/O channels, 707

memory management, 709

operating system of, 705–709

performance, 705

reliability and fault tolerance, 709

scaling, 706

scheduling, 709

simultaneous concurrent processes, 709

synchronization, 709

Synchronous counter, 421–423

Synchronous DRAM (SDRAM), 192–195

DDR SDRAM, 195–196

Syndrome words, 188

System buses, 6, 92, 93, 680

System calls, 517–518

System code, 511

System control operations, 452–453

System interconnection (bus), 5–6

System Performance Evaluation Corporation (SPEC), 60. See also SPEC documentation

System under test, 62

T

Tags, cache memory, 153

Task Switched (TS), 571

Temporal locality, 114, 115

Test instructions, 436

Texas Instruments (TI) K2H SoC platform, 749–750

32-bit Thumb instructions, 501, 502

Thrashing, 149, 315

Thread, 719

Threading granularity, 743

Threading strategy

coarse-grained, 743

fine-grained, 743

hybrid, 743

simultaneous multithreading (SMT), 747

valve game threading, 743–745

Thread-level parallelism, 742

Throughput, 62

Thumb instruction set, ARM, 499–501

Thunderbolt, 282

Time-sharing operating systems (OS), 312–313

Timing

I/O modules, 219, 249–250

magnetic disk, 219–221

memory system effects on instruction, 657

TinyOS, 27

TLP packet assembly, 106–107

Data field, 106

end-to-end CRC field, 106

Header field, 106

Toshiba L200, 220

Tracks, magnetic disks, 212–213

Trailing significand field, 372

Transaction layer, 103–107

Transducer, I/O, 248

Transfer-of-control operations, 453

Transfer rate, 120

Transfer time, magnetic disks, 217–218

Transistors, 17–18

Translation, 524–525

Translation lookaside buffer (TLB), 317–319

True data (flow) dependency, parallelism, 635

Truth table, 390, 396, 423

binary addition, 412

for One-Digit Packed Decimal Incrementer, 403

for read-only memory (ROM), 411

64-bit, 412

Turing, Alan, 11

Two-level memory access, 128–135

characteristics of, 128

operation of, 128–129

performance parameters, 129–132

Two-pass assembler, 523–525

Twos complement operation of integers, 347–349, 352, 358–363

U

Ultra Enterprise 2, 62

UltraSPARC II processor, 62

Ultrastar C15K600, 221

Unary operator, 437

Unconditional branch instructions, 453, 502

Underflow, 369, 374

Unified cache memory, 164

Uniprocessors, 703–705, 707, 709

Uniprogramming, operating systems (OS), 296

Unit of transfer, 119

Universal Serial Bus (USB), 280–281

Upward compatible, 545

Use bit, 160

User/computer interfacing, OS, 292–294

User-visible registers, 539–541

Utilities, OS, 293

Utility program, 293

V

Vacuum tubes, development of, 11–17

Valve game threading, 743–745

Variable-length instruction formats, 493–497

Variable-sized partitions, 311–312

VAX architecture, 316

VAX instruction format design, 494–497, 499, 588

Vector, 260

Vector and floating-point units (VFU), 11

Vector floating-point (VFP) unit, 657

Vertical coherence, 128

Vertical loss, 722

Vertical microinstructions, 694–695

Very long instruction word (VLIW), 722

Video display terminals (VDTs), 247

Virtual address fields, 321

Virtual cache memory, 144, 149

Virtual Interrupt Flag (VIF), 570

Virtual memory, 128, 315–317, 543

demand paging, 315

page fault, 315

page replacement, 315

page table, 316–317

thrashing, 315

Virtual Mode (VM) bit, 570

Volatile memory, 27, 121

Von Neumann architecture, 73–74

Von Neumann machines, 13

W

Wafer, silicon, 18

Watchdog, 760

Web-based document access patterns, 117

Wi-Fi, 283

Wilkes control, 695–698

Words, 14, 119, 479

of memory, 77, 93, 179, 187, 543

packed, 461

Write after read (WAR) dependency, 558, 641

Write after write (WAW) dependency, 558, 639–640

Write allocate, 160, 277, 278

Write back cache, initiator reads from, 716

Write back technique, 143, 160, 277, 565, 613, 616

Write hit/miss, 715

Write mechanisms, magnetic disks, 211–212

Write operand (WO), 550

Write policy, cache memory, 159–161

Write Protect (WP), 572

Write through technique, 160, 277, 710

Write update, 277

Write-update protocol, 712

X

X86 and ARM data types, 442–445

X86 string instructions, 522

Xeon E5-2600/4600, 272–274

XOR gates. See Exclusive-or (XOR) gates

XOR operations, 450

XU (translation unit), 10

Z

Zero-address instructions, 438

Zeroth pass, 525

Zones, defined, 214

THE WILLIAM STALLINGS BOOKS ON COMPUTER AND
DATA COMMUNICATIONS TECHNOLOGY
DATA AND COMPUTER COMMUNICATIONS, TENTH EDITION

A comprehensive survey that has become the standard in the field, covering(1) data communications,
including transmission, media, signal encoding, linkcontrol, and multiplexing; (2) communication
networks, including circuit- and packet-switched, frame relay, ATM, and LANs; and (3) the TCP/IP
protocol suite, including IPv6, TCP, MIME, and HTTP, as well as a detailed treatment of network
security. Received the 2007 Text and Academic Authors Association (TAA) award for the best
Computer Science and Engineering Textbook of the year.

WIRELESS COMMUNICATION NETWORKS AND SYSTEMS (with Cory Beard)

A comprehensive, state-of-the art survey. The book covers fundamental wireless communications
topics, including antennas and propagation, signal encoding techniques, spread spectrum, and error
correction techniques. Satellite, cellular, wireless local loop networks, and wireless LANs, including
Bluetooth and 802.11 are examined. In addition, wireless mobile networks and applications are
covered.

COMPUTER SECURITY, FOURTH EDITION (with Lawrie Brown)

A comprehensive treatment of computer security technology, including algorithms, protocols, and
applications. The book covers cryptography, authentication, access control, database security, cloud
security, intrusion detection and prevention, malicious software, denial of service, firewalls, software
security, physical security, human factors, auditing, legal and ethical aspects, and trusted systems.
Received the 2008 TAA award for the best Computer Science and Engineering Textbook of the
year.

OPERATING SYSTEMS, NINTH EDITION

A state-of-the art survey of operating system principles. The book covers fundamental technology as
well as contemporary design issues, such as threads, SMPs, multicore, real-time systems,
multiprocessor scheduling, embedded OSs, distributed systems, clusters, security, and object-
oriented design. Third, fourth, and sixth editions received the TAA award for the best Computer
Science and Engineering Textbook of the year.

CRYPTOGRAPHY AND NETWORK SECURITY, SEVENTH EDITION

A tutorial and survey on network security technology. Each of the basic building blocks of network
security, including conventional and public-key cryptography, authentication, and digital signatures,
are covered. The book provides a thorough mathematical background for algorithms such as AES and
RSA. Important network security tools and applications, including S/MIME, IPSecurity, Kerberos,
SSL/TLS, network access control, and Wi-Fi security are covered. In addition, methods for countering
hackers and viruses are explored. Second edition received the TAA award for the best Computer
Science and Engineering Textbook of 1999.

NETWORK SECURITY ESSENTIALS, SIXTH EDITION

A tutorial and survey on network security technology. The book covers important network security
tools and applications, including S/MIME, IP Security, Kerberos, SSL/TLS, network access control,
and Wi-Fi security. In addition, methods for countering hackers and viruses are explored.

BUSINESS DATA COMMUNICATIONS, SEVENTH EDITION (with Tom Case)

A comprehensive presentation of data communications and telecommunications from a business
perspective. The book covers voice, data, image, and video communications and applications
technology and includes a number of case studies. Topics covered include data communications,
TCP/IP, cloud computing, Internet protocols, and applications, LANs and WANs, network security,
adnetwork management.

FOUNDATIONS OF MODERN NETWORKING: SDN, NFV, QoE, IoT, and Cloud

An in-depth up-to-date survey and tutorial on Software Defined Networking, Network Functions
Virtualization, Quality of Experience, Internet of Things, and Cloud Computing and Networking. The
book examines standards, technologies, and deployment issues. In addition, security and career
topics are covered.

	Cover
	Half Title
	Title Page
	Copyright
	Dedication
	Contents
	Preface
	About the Author
	Acronyms
	Part One Introduction
	1.1 Organization and Architecture
	1.2 Structure and Function
	1.3 The IAS Computer
	1.4 Gates, Memory Cells, Chips, and Multichip Modules
	1.5 The Evolution of the Intel x86 Architecture
	1.6 Embedded Systems
	1.7 ARM Architecture
	1.8 Key Terms, Review Questions, and Problems
	Chapter 2 Performance Concepts
	2.1 Designing for Performance
	2.2 Multicore, Mics, and GPGPUs
	2.3 Two Laws that Provide Insight: Ahmdahl’s Law and Little’s Law
	2.4 Basic Measures of Computer Performance
	2.5 Calculating the Mean
	2.6 Benchmarks and Spec
	2.7 Key Terms, Review Questions, and Problems
	Part Two The Computer System
	3.1 Computer Components
	3.2 Computer Function
	3.3 Interconnection Structures
	3.4 Bus Interconnection
	3.5 Point-to-Point Interconnect
	3.6 PCI Express
	3.7 Key Terms, Review Questions, and Problems
	Chapter 4 The Memory Hierarchy: Locality and Performance
	4.1 Principle Of Locality
	4.2 Characteristics Of Memory Systems
	4.3 The Memory Hierarchy
	4.4 Performance Modeling Of A Multilevel Memory Hierarchy
	4.5 Key Terms, Review Questions, and Problems
	Chapter 5 Cache Memory
	5.1 Cache Memory Principles
	5.2 Elements of Cache Design
	5.3 Intel x86 Cache Organization
	5.4 The IBM z13 Cache Organization
	5.5 Cache Performance Models6
	5.6 Key Terms, Review Questions, and Problems
	Chapter 6 Internal Memory
	6.1 Semiconductor Main Memory
	6.2 Error Correction
	6.3 DDR DRAM
	6.4 Edram
	6.5 Flash Memory
	6.6 Newer Nonvolatile Solid-State Memory Technologies
	6.7 Key Terms, Review Questions, and Problems
	Chapter 7 External Memory
	7.1 Magnetic Disk
	7.2 RAID
	7.3 Solid State Drives
	7.4 Optical Memory
	7.5 Magnetic Tape
	7.6 Key Terms, Review Questions, and Problems
	Chapter 8 Input/Output
	8.1 External Devices
	8.2 I/O Modules
	8.3 Programmed I/O
	8.4 Interrupt-​Driven I/O
	8.5 Direct Memory Access
	8.6 Direct Cache Access
	8.7 I/O Channels and Processors
	8.8 External Interconnection Standards
	8.9 IBM z13 I/O Structure
	8.10 Key Terms, Review Questions, and Problems
	Chapter 9 Operating System Support
	9.1 Operating System Overview
	9.2 Scheduling
	9.3 Memory Management
	9.4 Intel x86 Memory Management
	9.5 ARM Memory Management
	9.6 Key Terms, Review Questions, and Problems
	Part Three Arithmetic and Logic
	10.1 The Decimal System
	10.2 Positional Number Systems
	10.3 The Binary System
	10.4 Converting Between Binary and Decimal
	10.5 Hexadecimal Notation
	10.6 Key Terms and Problems
	Chapter 11 Computer Arithmetic
	11.1 The Arithmetic and Logic Unit
	11.2 Integer Representation
	11.3 Integer Arithmetic
	11.4 Floating-Point Representation
	11.5 Floating-Point Arithmetic
	11.6 Key Terms, Review Questions, and Problems
	Chapter 12 Digital Logic
	12.1 Boolean Algebra
	12.2 Gates
	12.3 Combinational Circuits
	12.4 Sequential Circuits
	12.5 Programmable Logic Devices
	12.6 Key Terms and Problems
	Part Four Instruction Sets and Assembly Language
	13.1 Machine Instruction Characteristics
	13.2 Types of Operands
	13.3 Intel x86 and ARM Data Types
	13.4 Types of Operations
	13.5 Intel x86 and ARM Operation Types
	13.6 Key Terms, Review Questions, and Problems
	Appendix 13A Little-, Big-, and Bi-Endian
	Chapter 14 Instruction Sets: Addressing Modes and Formats
	14.1 Addressing Modes
	14.2 x86 and ARM Addressing Modes
	14.3 Instruction Formats
	14.4 x86 and ARM Instruction Formats
	14.5 Key Terms, Review Questions, and Problems
	Chapter 15 Assembly Language and Related Topics
	15.1 Assembly Language Concepts
	15.2 Motivation For Assembly Language Programming
	15.3 Assembly Language Elements
	15.4 EXAMPLES
	15.5 Types of assemblers
	15.6 Assemblers
	15.7 Loading and Linking
	15.8 Key Terms, Review Questions, and Problems
	Part Five The Central Processing Unit
	16.1 Processor Organization
	16.2 Register Organization
	16.3 Instruction Cycle
	16.4 Instruction Pipelining
	16.5 Processor Organization for Pipelining
	16.6 The x86 Processor Family
	16.7 The ARM Processor
	16.8 Key Terms, Review Questions, and Problems
	Chapter 17 Reduced Instruction Set Computers
	17.1 Instruction Execution Characteristics
	17.2 The Use of a Large Register File
	17.3 Compiler-​Based Register Optimization
	17.4 Reduced Instruction Set Architecture
	17.5 Risc Pipelining
	17.6 MIPS R4000
	17.7 SPARC
	17.8 Processor Organization For Pipelining
	17.9 CISC, RISC, And Contemporary Systems
	17.10 Key Terms, Review Questions, and Problems
	Chapter 18 Instruction-Level Parallelism and Superscalar Processors
	18.1 Overview
	18.2 Design Issues
	18.3 Intel Core Microarchitecture
	18.4 ARM Cortex-A8
	18.5 ARM Cortex-M3
	18.6 Key Terms, Review Questions, and Problems
	Chapter 19 Control Unit Operation and Microprogrammed Control
	19.1 Micro-​Operations
	19.2 Control of the Processor
	19.3 Hardwired Implementation
	19.4 Microprogrammed Control
	19.5 Key Terms, Review Questions, and Problems
	Part Six Parallel Organization
	20.1 Multiple Processor Organizations
	20.2 Symmetric Multiprocessors
	20.3 Cache Coherence and the MESI Protocol
	20.4 Multithreading and Chip Multiprocessors
	20.5 Clusters
	20.6 Nonuniform Memory Access
	20.7 Key Terms, Review Questions, and Problems
	Chapter 21 Multicore Computers
	21.1 Hardware Performance Issues
	21.2 Software Performance Issues
	21.3 Multicore Organization
	21.4 Heterogeneous Multicore Organization
	21.5 INTEL Core i7-5960X
	21.6 ARM Cortex-​A15 MPCore
	21.7 IBM z13 Mainframe
	21.8 Key Terms, Review Questions, and Problems
	Appendix A System Buses
	A.1 Bus Structure
	A.2 Multiple-Bus Hierarchies
	A.3 Elements of Bus Design
	Appendix B Victim Cache Strategies
	B.1 Victim Cache
	B.2 Selective Victim Cache
	Appendix C Interleaved Memory
	Appendix D The International Reference Alphabet
	Appendix E Stacks
	E.1 Stacks
	E.2 Stack Implementation
	E.3 Expression Evaluation
	Appendix F Recursive Procedures
	F.1 Recursion
	F.2 Activation Tree Representation
	F.3 Stack Implementation
	F.4 Recursion And Iteration
	Appendix G Additional Instruction Pipeline Topics
	G.1 Pipeline Reservation Tables
	G.2 Reorder Buffers
	G.3 Tomasulo’s Algorithm
	G.4 Scoreboarding
	Glossary
	References
	Supplemental Materials
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Z
	THE WILLIAM STALLINGS BOOKS ON COMPUTER AND DATA COMMUNICATIONS TECHNOLOGY

